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Abstract: 3D Printed Injection Moulds (3DIM), commonly used for low volume production and
prototyping purposes, are known to fail abruptly and have a comparatively shorter life than conven-
tional moulds. Investigating the underlying critical factors affecting failure may help in reducing the
risk of abrupt failures and possibly prolong the 3DIM tool life. A hypothesis that the cooling time of
the Injection Moulding (IM) process is a critical factor for 3DIM tool failure has been proposed. The
failure hypothesis has been validated by theoretical calculations, FEA simulations and experimental
investigations. Experiments were performed using two different materials for the 3DIM tool (Visijet
M3-X and Digital ABS) and an engineering thermoplastic (Lexan 943-A) as the moulding material.
Results showed that cooling time was a critical factor on tool life and managing the thermal loading
on a 3DIM tool could lead to increased tool life. The paper identifies cooling time as the critical factor
affecting 3DIM tool life and presents a cooling regime that could possibly lead to prolonged tool life.

Keywords: rapid tooling; injection moulding; ejection failure; cooling time; additive manufacturing;
tool failure

1. Introduction

Injection Moulding (IM) is a polymer processing technique commonly used to mass
manufacture parts with complicated geometries for a wide range of industries, 35% by
weight of all polymers are processed by IM [1]. Mould tooling is a critical component
of the IM process, complex parts require complex tooling which leads to higher costs
and longer lead times via conventional manufacturing [2]. For an injection moulded
part, the processing and material cost account for a small fraction of the overall part cost,
the high upfront tooling represents a major cost [1]. Due to high tooling costs and long
lead times, IM was previously considered suitable only for high volume (>10,000 parts)
applications. Industries amortised the high upfront tooling costs over the life cycle of the
mould. However, for low volume production, the high upfront cost cannot be justified,
and industries turn to other manufacturing methods. Traditional moulds are machined
out of blocks of steel or aluminium [3]. Based on production quantity, the complexity
of the part and budget the common types of moulds used are production moulds (steel)
used for high volume (>100,000 parts), insert moulds (aluminium) used for medium
volume (10,000–100,000 parts), and rapid moulds (polymer-based 3D printing) used for low
volume (10–1000 parts) [3,4]. To reduce the high upfront cost of tooling, the IM industry
developed Master Unit Die (MUD) bases [5]. A MUD base is a complex assembly that
incorporates a standard frame, ejector plates, ejector pins, core pull mechanisms etc. and
pre-machined pockets for mould inserts [6]. A MUD base negates the need for expensive
mould base assemblies and instead uses swappable core and cavity inserts. To reduce lead
times and cost, industries are experimenting with the use of polymer-based Rapid Tooling
(RT) processes to quickly produce mould inserts at relatively cheaper costs compared to
traditionally machined mould inserts [7–9]. These mould inserts are used in a MUD base,
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thereby reducing the high upfront tooling costs and lead times making them suitable for
prototyping and low volume manufacturing purposes [10].

1.1. Rapid Tooling

The use of Additive Manufacturing (AM) technologies to quickly produce tools for
prototyping and low volume manufacturing is referred to as Rapid Tooling (RT) [7]. AM
technologies utilise a layer-by-layer building process which greatly reduces the wastage
of raw material, use of direct labour and complex machining operations thereby reducing
both the cost and lead time [11]. Recent improvements in Additive Manufacturing (AM)
technologies have led to increased use of RT techniques in the IM industry to create
mould tools (core and cavity inserts) for prototyping and low volume manufacturing
purposes [12,13]. These mould inserts are also commonly referred to as 3D Printed Injection
Moulds (3DIM). RT techniques involve the use of both metal and polymer-based AM
systems. The costs of metal AM systems, consumables and raw materials are significantly
higher than those for polymer-based AM. Hence most industries utilise polymer-based
AM systems for producing 3DIM inserts for prototyping and low volume manufacturing.
The SLA-1, developed in 1988 by 3D Systems®, used liquid resins (photopolymers) which
crosslinked (cured) when exposed to UV light. These were among the first systems that were
able to create non-porous parts. Currently, Stereolithography (SLA) and Material Jetting
(MJ) are the commonly used AM techniques to produce 3DIM inserts [14]. Other polymer
AM systems such as Fused Filament Fabrication (FFF) and Selective Laser Sintering (SLS)
have also been experimented with but did not perform well in producing 3DIM inserts
due to their porous nature [15–17]. SLA techniques have been used for RT since the early
1990s, photopolymers such as Renshape 7510 and Somos 7510 used by early SLA machines
had a low heat deflection temperature (HDT) of 85 ◦C [18,19]. The low HDT meant that
these tools could only be used to mould polymers which required a mould temperature of
lower than 85 ◦C. In addition, the comparatively inferior material properties and high cost
of these RT materials compared to traditional tooling materials led to the RT process not
garnering widespread industrial use [17].

However, recent advances in the AM industry have led to improvements in speed,
printing resolution, build quality and range of available materials [20,21]. These improve-
ments, along with a reduction in the cost of AM equipment over the years, has led to
renewed interest in RT.

1.2. Failure of 3D Printed Injection Moulds (3DIMs)

Early studies indicated that the properties of the polymer 3DIM materials were not
well suited to the demanding thermal conditions of injection moulding applications which
lead to failure via thermal degradation [17,19]. The 3DIM failures were usually observed
after several moulding cycles, while the process conditions remained the same. It was,
therefore suggested that 3DIM failure was not abrupt, but a progressive deterioration
leading to failure [17]. The pressure exerted by the incoming polymer flow was also
reported to cause deformation and abrupt failures of raised features of 3DIMs [22]. The
yield strength of the tool was also reported to be significantly reduced during the moulding
process which led to failure [23]. The surface roughness of the 3DIM tools due to the
layered manufacturing process was also reported as a significant factor leading to tool
failure [24]. Surface erosion was also observed after repeated moulding cycles which lead
to excessive flashing and safety issues [25]. Surface smoothening had a positive effect and
lead to reduced ejection forces. Coating the 3DIM surface with nickel has been reported
to decrease thermal degradation and improve mould life [26]. Infiltration of metals into
the 3DIM resins was also carried out to improve the strength of 3DIM tools but was not
successful in prolonging the tool life [27].

Although the failure of 3DIMs has been examined from the perspective of mechanical,
thermal and material properties, little literature exists on studying the effect of processing
conditions on the 3DIM tool life. Recently processing conditions was reported as a signifi-
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cant factor for 3DIM tool life [28,29]. In this paper, we investigate the effect of processing
conditions and specifically the effect of the cooling stage on the life of 3DIM tools.

1.3. Overview of the Paper

Section 2 of this paper describes the analytical and experimental methodology.
Section 3 presents the analytical and experimental results. Section 4 is a discussion of
these results. Conclusions with implications for practising engineers on the use of optimum
process settings for possibly increasing 3DIM tool life are provided to end the paper.

2. Materials and Methods

In our previous work, we disproved the common hypothesis from the literature that
failure of raised features on 3DIM tools is predominantly due to bending and shear stresses
developed due to injection pressure experienced by the tool features [29]. Refer to the
yellow block (stage 1) in Figure 1. After further experimentation and examination of failed
parts, we propose a new failure hypothesis for raised feature failures of 3DIM. Refer to the
green block (stage 2) in Figure 1.
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Figure 1. Complex stress environment on 3DIM during different injection moulding stages.

2.1. Hypothesised Failure Mode: Pin Failure Due to Interface Pressure and Frictional Forces

Hypothesis 1. The cooling of polymer (shrinkage) and heating of mould (expansion) during the
cooling stage leads to the development of interface pressure. This interface pressure results in higher
frictional resistance thereby requiring higher forces to eject the part during the ejection stage. The
frictional forces developed during part ejection leads to tensile failure of raised features.
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We propose that during the cooling stage of the moulding process, the molten polymer
cools down and shrinks (crystalising) until it is fully formed (solidified), meanwhile the
3DIM absorbs the heat from the molten polymer and expands. This shrinkage of part and
expansion of the mould results in an interference pressure at the interface of the mating
surface of the 3DIM tool and part. This interface pressure results in higher forces being
required to eject the part out of the 3DIM during the ejection stage. Tensile stresses are
developed due to frictional resistance between the 3DIM and part surface during the
ejection process. These stresses, when higher than the yield strength of the 3DIM material
at operating temperature, lead to 3DIM failure. Refer to stage 3 to 6 in Figure 2. The 3DIM
moulds are closed during the cooling stage, and all the heat from the molten polymer is
conducted into the 3DIM mould. The tip of the 3DIM features becomes hotter than the base
as they have more area of the conduct the heat and this causes the tip of features to become
vulnerable to failure. Stages 1 and 2 refer to the injection stage of the moulding process,
which does not drastically affect the shrinkage of the polymer and thereby the failure of
raised features.
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Figure 2. Graphical representation of different stages of injection moulding leading to failure.

2.2. Approach

The failure analysis of 3DIM was carried out in 2 stages, refer to Figure 1 for stage
details [29]. To test the hypothesis, we examined failure samples from previous experiments,
redesigned the 3DIM tools based on the learnings, re-printed the moulds and used them
to injection mould until failure occurred. The moulded samples and failed 3DIM tools
were analysed. A first-principles approach based on Lame’s equation for thick cylinders
was used to determine the interface pressure, radial stress and hoop stress in the core pins.
Finite element analysis and experimental investigations were also performed.

2.2.1. Design of the Part and 3DIM Tool

Several injection moulded example parts at a local plastic injection moulding firm
(Talbot Technologies Ltd., Wigram, New Zealand) were studied to determine commonly
occurring features. Screw bosses were identified as a common feature among many injection
moulded parts. A flat 1.5 mm thick circular plate with different size core holes was designed,
the wall thickness was uniform across the whole part and a standard 1.5◦ draft angle was
used on the raised features (an experiment with no draft angles on the moulds was also
conducted for comparison purposes). The sizing for screw holes was based on the standard
specifications from a threaded screw insert manufacturer SPIROL®. Figure 3a shows the
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3DIM core and Figure 3b shows the cavity design. The pin configuration and sizing are
given in Table 1. The part and tool design were carried out using SolidWorks® 2019.
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Figure 3. (a) Core side of 3DIM showing the raised features (core pins); (b) Cavity side of 3DIM
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Table 1. Dimensions of the core pin and distance from the gate (extracted and reproduced from
Bagalkot et al. (2017) with permission [29]).

Name Diameter (mm) Height (mm) Aspect Ratio Distance from Gate (mm)

M2 Core Pin 3.63 3.18 1.14 35.8
M3 Core Pin 4.75 3.56 1.33 35.8

M3.5 Core Pin 5.54 3.81 1.45 39.45
M4 Core Pin 6.38 4.7 1.35 23.71
M5 Core Pin 7.16 6.35 1.12 23.71

2.2.2. Re-Design of Part and 3DIM Tool

After analysing the samples from the initial moulding experiments using the 3DIM
tools shown in Figure 3, we found that the M3.5 core pin was the last feature to fail in all
the 3 initial experiments and the failure sequence in all 3 sets of experiments was similar.
Since we wanted to confirm our hypothesis of cooling and shrinkage failure, we wanted to
simplify the tool and remove the effects of differential shrinkage in the part that might be
occurring due to differently sized features at different areas on the part. We eliminated 3 pin
sizes and modified the tool to have two pins of different sizes at different distances from
each other. The two-pin sizes (M2 and M5) used were the most commonly failed features
from the previous tools. Figure 4a shows the boss layout and boss sizes on the original part
and Figure 4b shows layout and sizing of the redesigned part. Since the pin layout had
been modified, the 3DIM core, cavity and the MUD base also had to be redesigned. See
Figure 5a for the redesigned 3DIM core insert and Figure 5b for the cavity insert.

2.2.3. Theoretical Analysis

Lame’s equations for thick cylinder shrink fitting were used to calculate the result-
ing interference pressure between the part and the mould. The temperature conditions
required were obtained via mould flow simulations using Moldex3D® 2021 and validated
using physical measurements via a contact thermometer HH502 from OMEGA®. The
experimental measurements were taken at the start and end of the moulding cycle. The
final part temperature difference between experimentally measured values and values from
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Moldex3D simulations were within 5 ◦C. Hence, we used the temperature data obtained
from Moldex3D over the complete moulding cycle for analytical calculations and FEA
simulations. Material properties for Lexan 943-A and Digital ABS were based on datasheets
from suppliers [30].
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2.2.4. Empirical Testing

Two sets of 3DIM inserts based on the original design were printed using two different
Material Jetting systems using two different resins; the details of AM systems, manufacturer,
material and printing parameters used are all provided in Table 2. The same machines,
material and printing parameters were then used to print two sets of the re-designed
3DIM inserts. The Projet 3500 AM system failed during empirical testing and hence only
the Object Connex 350 was used for the latter stages. A design of experiments (DOE)
approach was not utilised and instead, a progressive learning method was employed. After
each experiment, we wanted to incorporate the learnings from the previous experiment to
improve our process. The 3DIM tool cost prohibited a DOE approach.
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Table 2. Material specification and printing parameters used for printing 3DIM inserts gate (extracted
and reproduced from Bagalkot et al. (2017) with permission [29]).

MJ Machine 1 MJ Machine 2

Machine Projet 3500 Object Connex 350
Manufacturer 3D Systems Stratasys

Material Visijet M3X Digital ABS
Layer Thickness 30 Microns 30 Microns

Print Mode Not Applicable Matte
Cleaning Water Jet Cleaning Water Jet Cleaning

A master unit die (MUD) was machined out of Aluminium 7075 and the 3DIM core and
cavity inserts were fitted into the MUD base as shown in Figure 6, and a Babyplast 10/12
injection moulding machine was used for the moulding process. Figure 7 shows the ejector
assembly with the ejector plates and pins. Lexan 943-A, an engineering thermoplastic from
SABIC used for moulding aerospace interior parts, was used as the moulding resin. Due to
the lack of hopper dryers at the University of Canterbury, we used an oven to dry the resin
at 80 ◦C for 6 h as recommended by the material supplier to remove any traces of moisture.
The material properties of the moulding resin Lexan 943-A are provided in Table 3.
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Table 3. Material Properties of Lexan 943-A.

Description Value

Density 1.2 g/cm3

Melt Flow Rate 9.00 cm3/10 min
Drying Temperature 120 ◦C

Max Moisture 0.020%
Hopper Temperature 60 ◦C

Melt Temperature 280–300 ◦C
Mould Temperature 80–100 ◦C

The list of different pin layout, cooling time and tooling material is shown in Table 4.
The process parameter setting was carried out according to the method presented in [25]
and the process parameters used for the experiments are shown in Table 5. The cooling
time (1), (2), (3) in Table 5 refers to the 3 different cooling times used. Cooling time here
refers to the cycle time from the end of the injection stage to the mould open stage. In
conventional moulding, the part is ejected immediately after the mould opens, but in our
experiments, we used a small delay of 5 s to make sure the part was fully formed. To study
the effect of cooling and shrinkage, all the other process parameters were kept constant
between experiments and only the cooling time was adjusted.

Table 4. List of cooling times, tooling material and pin layout used.

Cooling Time Material Pin Layout

45 s Digital ABS 5 Pin
45 s Visijet M3-X 5 Pin

30 s Digital ABS 5 Pin
30 s Visijet M3-X 5 Pin
30 s Digital ABS 4 Pin

15 s Digital ABS 4 Pin

Table 5. Injection moulding process parameters.

Description Value

Resin Lexan 943-A
Type Polycarbonate

Mould Temperature 28 ◦C
Melt Temperature 300 ◦C
Injection Pressure 60 MPa

Fill Time 0.2 s
Cooling Time (1) 45 s
Cooling Time (2) 30 s
Cooling Time (3) 15 s

Mould Open Time Open until the mould temperature returned to 28 ◦C

The materials for 3DIM inserts are UV curable photopolymers (thermosets), these
materials are known to have low thermal conductivity. Previously we found that the heat
from the molten polymer did not penetrate to the inner layers of the inserts and was only
transferring heat to a depth of about 0.25–0.4 mm [29]. For this reason, the cooling channels
inside the 3DIM would need to be very close to the surface of the 3DIM for them to be
effective. Drilling cooling channels close to the surface would introduce new complications
for tool failure analysis and hence no cooling channels were incorporated at this stage.
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3. Results
3.1. Theoretical Results
Interface Pressure between Part and Core

Interface pressure here refers to the pressure developed during the cooling stage of
the IM process. During the cooling stage, the molten polymer inside the mould cavity
is cooling and crystallising to form the part and the tool is absorbing heat from molten
polymer and expanding. This shrinkage of the part and expansion of the tool results in
interference at the mating surface. In Figure 8 red arrows indicate the interface pressure
developed at the mating surface due to interference and the dotted lines show the potential
shrinkage of part and expansion of the tool.
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Figure 8. (a) Front section view of the raised feature showing the interface pressure due to shrinkage
of tool and expansion of part.; (b) Top section view of the raised feature showing the interface area.

A detailed calculation of the interface pressure using the dimensions of the M5 core
pin is presented below, Table 6 gives the description of variables and the respective values.
The interface pressure is calculated using Lame’s equation for thick cylinder shrink and
press fits.

The interface pressure Q for a shrink-fit of two different materials is given by:

Q = [
δ[

R
Ep

{(
R2

p+R2

R2
p−R2

)
+ νp

}]
+
[

R
Et

{(
R2+R2

t
R2−R2

t

)
− νt

}] ] (1)

The tool is solid and hence Rt = 0. The interference is due to thermal effects, i.e., the
shrinkage of the part (cooling) and expansion of the tool (heating) during the cooling stage
of the injection moulding cycle, we have δ = δr, Thus

Q = [
δr[

R
Ep

[{
R2

p+R2

R2
p−R2

}
+ νp

]
+ R

Et
[1 − νt]

] ], (2)

where,
δr = (δt − δp), (3)

Since we have two different materials, and two different initial and final temperatures.
The displacement for each of the material is calculated separately.
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Table 6. Description of the input variables and values for M5 core pin.

Symbol Description Value Units

R Interface Radius 3.58 mm
Rp Part Radius (Outer) 5.08 mm
Rt Tool Radius (Inner) 0 mm
νp Poisson’s Ratio-Part material 0.41
νt Poisson’s Ratio-Tool material 0.36
Ep Youngs Modulus-Part 2350 MPa
Et Youngs Modulus-Tool 2600 MPa

αp
Co-efficient of thermal

expansion (Part) 7.00 × 10−5 1/◦C

αt
Co-efficient of thermal

expansion (Tool) 1.50 × 10−4 1/◦C

Tip Initial part temperature 120 ◦C
Top Final part temperature 90 ◦C
Tit Initial tool temperature 25 ◦C
Tot Final tool temperature 90 ◦C

Temperature Conditions of the Part:
The part material is molten and is injected into the tool and starts to cool. Since

polymers don’t have a defined melting temperature the softening point is used as the
temperature at which the part starts to solidify and shrink. So Tip is the Vicat softening
point and To is, the final temperature at which the part is ejected.

δp = Rαp
(
Top − Tip

)
, (4)

Temperature Conditions of the Tool:
The tool is initially at ambient temperature before the moulding cycle begins and the

final temperature is the temperature measured at the end of the cycle.

δt = Rαt(Tot − Tit), (5)

Since the tool is solid, the magnitude of hoop and radial stress is equal to the
interface pressure.

σht = −Q, (6)

σrt = −Q, (7)

For the part, at its inner diameter, the magnitude of radial stress is equal to the
interface pressure:

σrp = −Q, (8)

and the hoop stress is given by:

σhp = Q

{
R2

p + R2

R2
p − R2

}
, (9)

Substituting input values from Table 6 in Equations (1)–(9), the hoop stress, radial
stress and interference pressure is obtained and are shown in Table 7.
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Table 7. Descriptions of output variables and values for M5 core pin.

Symbol Description Value Units

Q Interface Pressure 8.39 MPa
Tip Initial part temperature 120 ◦C
Top Final part temperature 90 ◦C
Tit Initial tool temperature 25 ◦C
Tot Final tool temperature 90 ◦C
σhp Hoop Stress on part at Rp 24.95 MPa
σht Hoop Stress on tool at Rt −8.39 MPa
σrp Radial Stress on part at Rp −8.39 MPa
σrt Radial Stress on tool at Rt −8.39 MPa

The yield strength of the tool material (Digital ABS) at ambient temperature is reported
on the datasheet as 55–60 MPa, our operating temperature for the tool ranges between
110 ◦C and 25 ◦C. The yield strength of the material at elevated temperature was previously
obtained via experimental investigations [29]. The yield strength of the tool material at
100 ◦C is reported as 12.5 MPa and drops to 7.5 MPa at 125 ◦C. Comparing it to the hoop
stress and radial stress on the tool we conclude that the stresses developed due to thermal
loading cause the failure of core pins and the further ejection mechanism causes it to break
off. However, it is important to note that this theoretical calculation is simplistic and
considers just the interference of the vertical surfaces and does not incorporate the top and
bottom capped surfaces. A more complex finite element analysis (FEA) is presented in the
next section.

3.2. Finite Element Analysis

From the theoretical calculations in the previous section, we could see that the stresses
developed due to thermal loading on the tool were close to the yield strength of the
tool at operating temperatures. To better understand the failure mechanism, a thermo-
structural FEA analysis of the 3DIM core pin assembly was performed and the results
are presented below. To validate the FEA modelling and process, initially, a simple 2-part
model was used to run thermo-structural analysis to obtain the interface pressure, hoop
stress and radial stresses. A comparison between the theoretical and FEA values is shown
in Table 8. The theoretical calculations assume there is no axial deformation, but there is
slight deformation in the axial direction in the FEA model, this is the reason for the slight
variation in the results.

Table 8. Comparison of theoretical vs FEA results carried out for validation of the FEA modelling process.

Description FEA Theoretical Units

Interface pressure 8.59 8.39 MPa
Hoop stress part 26.68 24.95 MPa
Hoop stress tool −8.59 −8.39 MPa
Radial stress part −8.59 −8.39 MPa
Radial stress tool −8.59 −8.39 MPa

Once validated, a 2D axisymmetric model of the M5 core pin, cavity hole and the
part was modelled using ANSYS® 2020 and is shown in Figure 9. The FEA analysis was
carried out in 2 stages: Step 1, a transient thermal analysis (cooling stage) to obtain a
temperature plot and Step 2, a static structural analysis to obtain thermal stresses and
interference pressure.
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1 

 

 
Figure 9. 2D Axisymmetric model of the core, cavity and part assembly.

3.2.1. Step 1: Transient Thermal Analysis

The FEA analysis was carried out using ANSYS® 2020. A transient thermal analysis
was used to obtain the temperature distribution in the assembly at the end of the cool-
ing stage (45 s). The input temperature required for the simulations was obtained from
Moldex3D injection moulding simulations. The part temperature starting from the injection
stage (molten material) to the end of the cooling stage was obtained from Moldex3D, the
temperature data was also validated by measuring the part temperature at the start of
the cycle (temperature of the molten material) and part temperature at the end of the
cycle (fully formed part). The temperature plot for the assembly is shown in Figure 10.
Quadrilateral mesh elements with 0.1 mm sizing were used. The initial part temperature
is the temperature at the start of the cooling stage (217 ◦C) and the tool is at ambient
temperature initially. The mould assembly has fixed support at the top and bottom edges
and frictionless support at the right edge.

3.2.2. Step 2: Static Structural Analysis

Static structural analysis was used to obtain the thermal stresses developed due to the
expansion of the tool and shrinkage of the part as a result of the cooling stage. The temper-
ature distribution from the transient thermal analysis was exported into a static structural
analysis to determine the thermal stresses. Figure 11 shows the directional deformation in
the X-Axis (radial deformation) and Figure 12 shows the directional deformation in Y-axis
(axial deformation). This deformation is the reason for the high interference pressure and
the hoop and radial stresses developed in the tool.
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The hoop stress plot on the assembly is shown in Figure 13a, and the radial stress plot
is shown in Figure 13b. The tool is constrained inside an aluminium MUD base which
prevents it from expanding radially outward, this puts the tool under a compressive state.
The hoop and radial stress are directly dependent on the heat transfer between part and
tool during the cooling stage.
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3.2.3. Step 3: Static Structural Analysis

In our case, the core side of the 3DIM tool is attached to the fixed half of the moulding
machine and the cavity side is attached to the moving half of the moulding machine. Once
the cooling stage is completed, the moving half is pulled back and the part stays attached to
the cavity. To simulate this in FEA, we used a displacement boundary condition on the core
side of the tool (−6 mm in Y-axis) and the cavity side of the tool was fixed. This was carried
out in order to simplify the number of constraints and steps. A 0.2 co-efficient of friction
was assumed between the part and moving half of the mould (core) and bonded contact
was assumed at the part and non-moving half of the mould (cavity). This is a simplified
assumption, in our experiments, the part was stuck to the cavity in the majority of cases
(95% of the time) and to simulate this a bonded contact assumption was used. Since this is
a simplified 2D axisymmetric model of one core pin, without the use of bonded contact, the
part was being stuck to the core instead of the cavity. We suspect that due to simplification
of the geometry, the differential shrinkage of the part is not considered and this shrinkage
might be one of the reasons the part during experiments is stuck to the cavity and not the
core. This is an exploratory study of the effects of cooling on the raised features.

The displacement was simulated over a period of 1.5 s. Figure 14 shows the equivalent
stress distribution at a time step of 0.1 s where the core pin has displaced 0.3 mm. The
equivalent stress at the bottom and the top edge is higher than the yield strength of the
material. Figure 15a shows the hoop stress distribution and Figure 15b shows the radial
stress distribution at a time step of 0.1 s. There is a sudden increase in hoop and radial
stress from the end of the cooling stage to the first displacement. We suspect that the high
radial and hoop stress on the tool results in chipping of the part when it is ejecting, this
is consistent with the experimental results. Figure 16a,b show the radial and hoop stress
on the tool at a time step of 0.75 s, as the tool slides, the contact area reduces and the
stresses reduce.
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High compressive values of hoop stress are evident in the tool (Figure 16a), and this is
attributed to the tool being constrained on its outer surface (right edge of the model). The
constraint represents the situation of the tool being inserted into a MUD base, which adds a
constraint against expansion. The simulation was also run without this boundary condition,
and the results (not shown) indicated lower hoop stress as it allowed free expansion of
the tool.

3.3. Experimental Results
3.3.1. Cooling Time 1: 45 s Cooling Time

3DIM inserts for this experiment were printed using the material Visijet M3-X. The
process parameter shown in Table 4 was used with a 45 s cooling time. After each moulding
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cycle, the moulds were kept open and compressed air cooling was used in between cycles
to cool the 3DIM inserts back to 28 ◦C. This was the only experiment in which the 3DIM
cavity inserts were observed to be deteriorating. In this case, the 3DIM inserts were seen to
be deteriorating from the 3rd moulding cycle. The first moulding cycle was normal and
the part ejected as intended, but during the subsequent moulding cycle, the part became
stuck inside the cavity side of the tool and required manual ejection (pulling the part using
pliers). On the 4th moulding cycle during the part ejection, the part was broken. Figure 17a
shows the broken part and the tool, the part was firmly stuck inside the tool and the ejector
pins punched a hole through the part during the ejection stage. We concluded that the
cavity failure was due to a combination of insufficient draft angle and excessive shrinkage
of the part. Figure 17b shows the state of the tool after ejection. Since the 3DIM is enclosed
inside an aluminium MUD base, the cavity holes become smaller when the 3DIM expands
during the cooling stage. We believe that this results in higher frictional forces and results
in edge chipping of the 3DIM cavity.
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Figure 17. (a) Broken part with punched ejector holes stuck inside 3DIM cavity; (b) 3DIM cavity with
broken part stuck inside after ejection and highlighting the potential expanded state of the cavity
holes in a red circle.

The edges on the 3DIM cavity holes were chipping during ejection and becoming
stuck onto the part. Figure 18a shows the broken edge of the 3DIM cavity and Figure 18b
shows the broken edge piece of the tool stuck onto the part. The edges of the cavity holes
on the side closer to the central location of the tools were seen to be deteriorating. We
suspect that these failures are not solely due to interference pressure, but due to inadequate
draft angle which resulted in aggravating the effects of interference pressure and ejection.
The 3DIM inserts were printed again with an increased draft angle of 1.5 degrees and the
tool life increased from 3 shots to 7 shots before any sign of deterioration was observed.
These failures can be compared to the FEA stress states shown in Figures 14 and 15.

Core Failures

Failure of the core insert was first observed on the 3rd moulding cycle. Analysing the
moulded part from the third shot, we could identify the raised feature (core pin) of the
3DIM tool that had fractured at the base and stuck onto the part during the ejection stage.

In Figure 19a the M5 core pin before the moulding cycle began is shown, subsequently
in Figure 19b the M5 core pin after the 3rd moulding cycle is shown. The M5 core pin is no
longer present here and was fractured during the moulding cycle and stuck inside the part
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during ejection. In Figure 20, the 3rd part during which the M5 core pin broke off can be
seen stuck inside the part. The core pin is broken at the base but is protruding outside, this
is because the part starts to eject and the frictional resistance increases and breaks the pin,
before breaking some portion of the part is ejected and that is why the pin protrudes. This
can also be seen in Figure 15, the core starts moving away and the part is slightly ejected,
but the stresses resulted in failure of the pin.
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Figure 18. (a) 3DIM insert showing part missing from the tool that was broken during ejection; (b)
Broken part of 3DIM tool material stuck to the moulded part. (White material is the 3DIM tool and
grey material is the part).
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Figure 19. (a) 3DIM tool with an intact core pin before moulding; (b) 3DIM tool with a broken a
missing core pin after moulding and part ejection during 3rd shot.
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Figure 20. M5 core pin on the 3DIM tool broken and stuck inside the part during ejection. (White
coloured material is the tool and grey coloured material is the part).
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We attributed these raised feature (core pin) failures to interference pressure and
ejection forces. The cooling rate is an important factor that affects part shrinkage and in the
case of a 3DIM tool, it also affects the tool expansion. In this case, the high shrinkage is due
to the slow rate of cooling. The longer cooling time also means the 3DIM tool is heating
up and expanding which results in a high interference at the part-tool mating surface. The
interference pressure along with the rough surface due to the layered printing process
results in a higher frictional force during ejection which causes the 3DIM raised features
to break off. The higher the interference pressure, the higher the ejection forces, which
effectively means longer cooling cycles (slower cooling rate) lead to abrupt failure of the
3DIM tool. Referring to the stresses in Figure 16a, this high stress at the base of the pin
leads to the raised feature failure.

3.3.2. Cooling Time 2: 30 s Cooling Time

3DIM Inserts for this experiment were printed using Visijet M3-X and Digital ABS.
The process parameter (2) shown in the table was used with a 30 s cooling time. In this
set of experiments the mould was initially kept closed for 30 s after injection and the parts
were ejected immediately after mould opening.

Cavity Failures

There were no observed cavity failures during this experiment, Figure 21 shows the
3DIM cavity after 10 Shots.
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Core Failures

In this experiment we reduced the cooling time to confirm our hypothesis that reducing
cooling time would decrease the interference pressure and thereby reduce the frictional
resistance during the ejection stage leading to a higher 3DIM tool life.

To reduce the interference, we needed to reduce thermal shrinkage of the part and
thermal expansion of the tool. This was achieved by changing the cooling regime. Opening
the mould after 30 s of closed cooling, meant the part was exposed to ambient air, which
leads to the part cooling down faster than when it was kept closed for 45 s. Opening
the mould also meant that the tool would stop heating up as it was exposed to ambient
air. This setting should result in comparatively lower interference than in experiment 1.
In theory the complete moulding cycle time for both experiment 1 and 2 is 45.15 s, but
in experiment two, interference was lesser because the cooling rate was faster as it was
exposed to ambient air after 30 s. In experiment 1 the M5 core pin fractured completely
and broke on the 3rd moulding cycle and in experiment 2 with reduced cooling time the
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M5 core pin started chipping on the 5th moulding cycle, see Figure 22. The other core pins
(raised features) were also seen to be deteriorating progressively.
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chipping failure on the 5th shot.

While reducing the cooling time reduced the interference and frictional forces during
ejection and thereby the probability of abrupt failures, the 3DIM raised features were still
chipping off and becoming stuck inside the part during ejection.

In Figure 23 the progressive deterioration of the raised feature can be clearly seen.
Comparing the failure of the M5 core pin we could see that reducing the cooling time led
to reduced frictional resistance and thereby transitioned from abrupt failure to progressive
deterioration. An oblique view of the failure and progressive deterioration of the core pin
has previously been documented [29].

All the above experiments were performed using the 5-pin layout 3DIM tool design
shown in Figure 3. Since the hypothesis involved shrinkage of the part, we wanted to rule
out the possibility of the pin configuration causing differential shrinkage around the part
area. The experiments were also repeated with the modified 4 pin layout 3DIM tool design
shown in Figure 5. After examining the moulded parts, we concluded that the failure
patterns observed were similar to the previously observed experiment.

3.3.3. Cooling Time 3: 15 s Cooling Time, Increased to 20 s

3DIM inserts for this experiment were printed using Digital ABS and the printing
parameters shown in Table 2. Based on the results from previous experiments, we wanted
to further reduce the cooling time to determine if failure of raised feature was avoidable.

The 15 s cooling time was used to try and further reduce the interference thereby
reducing the ejection forces. This experiment was only run for 5 moulding cycles, because
the cooling time was in-adequate and the parts were not fully formed (solidified) before
ejection. The data sheet from moulding material suppliers recommend parts to be ejected
at 80 ◦C, the part temperature when measured after ejection was averaging 105 ◦C. The
external skin layer of the part was solidified, but the internal layers were still in the process
of solidifying. When the ejector pins operated, instead of ejecting the part, they punched
holes on the part as shown in Figure 24a,b, the parts also deformed due to the ejection force
as they had not yet solidified when the ejector pins operated.

While lowering the cooling time is an appropriate method to decrease interference
pressure, the cooling time also has to be sufficient to enable the parts to fully form and
solidify before they can be ejected. Since the tool had not shown any signs of deterioration,
we decided to continue the experiment and increased the cooling time to 20 s. Figure 25
shows the sequence of parts moulded using the 20 s cooling time. The first sign of failure on
the M5 core pin was seen after 14 shots. This was a significant increase from the previous
7th shot failure.
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Figure 24. (a) Part showing holes punched by ejector pins as the parts were not completely solidified;
(b) Deformed part during ejection stage as the part was not completely solidified.
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Figure 25. Part sequence, moulded using 20 s cooling time. Numbers refer to shot. Parts 1–4 not
shown as they are were not fully formed due to shorter cooling time. Mould failure occurred at
shot 14.

4. Discussion and Conclusions
4.1. Findings

The rate of cooling or cooling time is one of the key factors that affect part shrinkage.
In conventional moulds, cooling only affects part shrinkage and thereby the part quality
and generally has no adverse effect on the tool life. Whereas in 3DIM tools, cooling affects
both the part quality and tool life. Cooling time was found to be a critical factor in 3DIM
tool life; abrupt failure of raised features on 3DIM tools could be avoided by using a suitable
cooling regime. Longer cooling time tends to cause higher part shrinkage and 3DIM tool
expansion which led to high interference pressure and thereby caused abrupt failures of
raised features during ejection. When the cooling times were reduced, we could see a
progressive deterioration of the 3DIM tool rather than abrupt failures. In the majority of use
cases, the tool showing signs of progressive deterioration was still usable but the tool with
abrupt failures could not be used due to safety issues. The current work has examined the
shrinkage and resulting inference stresses for raised parts, specifically circular cross-section
bosses. The principles are expected to generalise to other raised features such as ribs and
thin walls. For flat parts in the plane of the parting line, the results are not expected to be
relevant, as these features are not subject to appreciable frictional resistance at ejection.

From results in experiments 1, 2 and 3, we could see the tool life increase with decreas-
ing cooling time. In Experiment 1 with a 45 s cooling time, we had an abrupt failure on the
3rd shot. Whereas, in Experiment 2 with a 30 s cooling time, we had progressive deteri-
oration of the core pin starting on shot 7 and failing completely on the 9th shot. Further
reducing the cooling time to 20 s led to a 3DIM tool showing no signs of deterioration until
the 14th shot. This was the lowest cooling time at which a part could be ejected, and lower
cooling times lead to unformed parts. While we believe cooling channels would not help in
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reducing the cooling times, due to the low thermal conductivity of polymers, we believe a
different approach, such as compressed air cooling, could decrease the interference

4.2. Limitations of the Research

The rate of cooling is also a critical factor for part quality, in this research we did not
consider the part quality and thereby the effects of cooling rate/time on part quality is
not discussed. Flash cooling will result in brittle parts with poor mechanical properties
that might not be suited to their application. The compressed air cooling was carried out
manually between each injection moulding cycle and the tool temperature was measured
at 3 different locations before the next moulding cycle. There is a possibility that the tool
was not uniformly cooled and there might have been some hot spots that lead to further
worsening of interference pressure

4.3. Implications for Future Research

The cooling stage of the moulding cycle is the longest (45 s), this is a significant amount
of time for heat transfer between the molten polymer and 3DIM tool. The thermal stresses
developed are a critical factor for tool failure. In conventional moulding the cooling stage
only affects the part quality and cycle time, therefore the effect of cooling on tool life has
not been of much interest. It is important for tool designers to consider the thermal stresses
on raised features of the 3DIM and equally important for technicians to use an appropriate
cooling time. The conventional tool design principles of 0.5-degree draft angles, heated
moulds for easier flow of material are some of the common pitfalls when using 3DIM tools.

4.4. Conclusions

This paper has evaluated the hypothesis and confirms that a raised feature on a 3DIM
tool experiences a compressive stress, that is developed due to the interference between
part and tool during the cooling and tensile stresses that is developed due to the frictional
resistance between the part and the tool during the ejection stage.

The interference was found to be increasing with increasing cooling times and thereby
also increasing the frictional resistance during the ejection stage. The hypothesis was
evaluated on theoretical and experimental grounds.
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