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Parasite infections,
neuroinflammation, and
potential contributions
of gut microbiota

Jérémy Alloo, Ines Leleu, Corinne Grangette
and Sylviane Pied*

Center for Infection and Immunity of Lille-CIIL, Centre National de la Recherche Scientifique-CNRS
UMR 9017-Institut National de la Recherche Scientifique et Médicale-Inserm U1019, Institut Pasteur
de Lille, Univ. Lille, Lille, France
Many parasitic diseases (including cerebral malaria, human African

trypanosomiasis, cerebral toxoplasmosis, neurocysticercosis and

neuroschistosomiasis) feature acute or chronic brain inflammation processes,

which are often associated with deregulation of glial cell activity and disruption

of the brain blood barrier’s intactness. The inflammatory responses of

astrocytes and microglia during parasite infection are strongly influenced by

a variety of environmental factors. Although it has recently been shown that the

gut microbiota influences the physiology and immunomodulation of the

central nervous system in neurodegenerative diseases like Alzheimer’s

disease and Parkinson ’s , the putat ive l ink in parasi te- induced

neuroinflammatory diseases has not been well characterized. Likewise, the

central nervous system can influence the gut microbiota. In parasite infections,

the gut microbiota is strongly perturbed and might influence the severity of the

central nervous system inflammation response through changes in the

production of bacterial metabolites. Here, we review the roles of astrocytes

and microglial cells in the neuropathophysiological processes induced by

parasite infections and their possible regulation by the gut microbiota.

KEYWORDS

parasitic disease, brain-inflammation, immunopathophysiology, astrocytes,
microglia, gut microbiota, immunoregulation
Introduction

Many of the protozoans and metazoans associated with high-mortality, high-morbidity

diseases (such as Plasmodium (P.) falciparum, Toxoplasma (T.) gondii and Trypanosoma

(T.) brucei, Taenia (T.) solium, and Schistosoma (S.) mansoni) can invade the brain and

induce neuropathological disorders (1, 2). The latter are often associated with systemic or
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local, acute or chronic neuroinflammatory processes with a variety

of clinical outcomes (Supplementary Tables 1, 2). Parasite-induced

brain inflammatory disorders mostly damage the central nervous

system (CNS), with life-threatening consequences (3–5). In most

cases, the causative neuroinflammatorymechanisms have yet to be

determined. However, the pro-inflammatory cytokines and

chemokines released by activated states of astrocytes and

microglial cells have been identified as key factors in these

neuropathophysiological processes.

Astrocytes and microglial cells are major components of the

CNS, where they help to regulate homeostasis and maintain the

intactness of the blood-brain barrier (BBB) (6–9). They serve as

the CNS’s resident immune cells and so have a major role in the

local innate immune response and inflammatory processes –

particularly during pathogen invasion or tissue damage (7, 10–

12). Astrocytes and microglia also function as antigen-

presenting cells (13).

Deregulation of glial cell activity is commonly observed in

CNS inflammatory parasitic diseases. This deregulation is often

associated with the cytotoxic effects of nitric oxide, reactive

oxygen species, and pro-inflammatory mediators. Nevertheless,

deregulation can also be associated with a neuroprotective

response (7). In fact, astrocytes secrete neuroactive molecules

(including nerve growth factor, glioma-derived growth factor,

ciliary neurotrophic factor, and neurotrophic factors [like

leukemia inhibitory factor]) that have an important role not

only in neuroregeneration but also in the attenuation of

neurotoxic phenomena (13, 14). Furthermore, microglial cells

can adopt an alternative anti-inflammatory phenotype

characterized by the production of cytokines/chemokines that

protect neurons (10) and also regulate the level of fatty acids and

neurotrophic or angiogenic factors (15). Accordingly, glial cells

are key regulators of pro/anti-inflammatory responses induced

in the brain during parasitic diseases. These inflammatory

responses are dependent on numerous parameters associated

to the parasite specie, their life cycle and biology, the targeted

cells, induced-immune responses, antigenic variation and

immune escape strategy elicited by the parasite (16). Here, we

review the various response patterns associated with acute or

chronic parasite-induced brain inflammation.

During a host-parasite interaction, the inflammatory

response of astrocytes and glial cells is strongly influenced by

various environmental factors, including host genetic factors,

immune experience, and the intestinal microbiota (11, 17). The

gut microbiota (GM) is known to have a major role in the

immunomodulation of the CNS in general and during

neuroinflammatory and neurodegenerative diseases (such as

Parkinson’s disease, Alzheimer’s disease, depression, and

multiple sclerosis) in particular (17–21). We shall also review

(i) the roles of astrocyte and microglial cells in the

neuropathophysiological processes induced by parasite

infections and (ii) how these roles are possibly influenced by

the GM (12).
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Parasites that trigger acute
neuroinflammation

Cerebral malaria

Cerebral malaria (CM) is the deadliest complication of

Plasmodium falciparum infection and causes approximately

500,000 deaths per year worldwide (2). Patients with CM

generally develop acute neurologic manifestations: a

combination of diffuse encephalopathy and decreased

consciousness progresses to deep coma, seizures and, in some

cases, death (22). Children who survive CM show transient or

permanent neurologic sequelae and cognitive impairments (23).

Along with parasite sequestration within the brain microvessels,

CM is associated with an impaired immune response and

excessive, uncontrolled neuroinflammation resulting from the

production of pro-inflammatory cytokines and chemokines by

activated astrocytes and microglial cells (3, 24, 25). We recently

reported that this pro-inflammatory response is promoted by (i)

the phagocytosis of infected red blood cells by microglial cells

and (ii) the transfer of parasite microvesicles to astrocytes via

microtubule-associated protein 1 light chain 3 (LC3)-dependent

autophagy. The LC3-associated phagocytosis results in the

production of high levels of chemokine (C-X-C motif) ligand

10 (CXCL10), chemokine (C-C motif) ligand 2 (CCL2), tumor

necrosis factor alpha (TNF-a), and interferon gamma (IFN-g))
known to be involved in the pathogenesis of CM (26, 27). As

shown in Figures 1, 2, these cytokines and chemokines promote

disruption of the BBB and the brain infiltration of pathological

ab CD8+ T lymphocytes expressing chemokine (C-X-C motif)

receptor 3 (CXCR3), leading to neuronal damage (25, 28–32).
Human African trypanosomiasis

Human African trypanosomiasis (HAT) results from

infection by either T. brucei (T.b), T. gambiense, or T. brucei

rhodesiense. Infection by T. brucei starts with a hematolymphatic

phase and ends with a meningoencephalitic stage. The

neuropathology affected approximately 3000 people in Africa in

2015 (5) and is characterized by headaches, psychological changes,

sleep disturbances, sensorimotor problems, psychiatric

disturbances, and (in some cases) death (33). The parasite

colonizes the brain parenchyma in several steps (34). HAT is an

immune process that results from the excessive activation of

perivascular macrophages, astrocytes, and microglia cells (35,

36). For example, the formation of microglial nodules and

astrocytic hypertrophy has been observed in T.b-infected brains

(10, 11). Some parasites are phagocytosed by innate immune

system cells (such as perivascular macrophages) but most escape

immune clearance by expressing a new variant surface

glycoprotein during each humoral immune system attack (37).
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Activation of glial cells in the brain promotes the production of

pro-inflammatory factors (TNF-a, IFN-g, CXCL10, and CXCL9),

which is associated with local functional disturbance. In

Trypanosoma-infected brains, macrophage activation via the

toll-like receptor 9 (TLR9) pathway and the MyD88 innate

immune signal transduction adaptor (Myd88) leads to the

release of TNF-a, IFN-a/ß/g and interleukin (IL)-1ß (38). These

inflammatory mediators promote the endothelial expression of

intercellular cell adhesion molecule 1 (ICAM1) and vascular cell

adhesion molecule 1 (VCAM1). Limited production of CXCL10

by astrocytes has also been observed but is enough to trigger the

recruitment of T lymphocytes and then their infiltration into the

CNS parenchyma (11). The recruited T lymphocytes are

sensitized by Trypanosoma antigen presented by macrophages.

Further massive T lymphocyte recruitment is triggered by the

CXCL10 produced by activated astrocytes. In turn, this promotes

the release of matrix metalloproteinase-2 and -9 (MMP2/9),

which are involved in loss of the BBB’s integrity and thus create

a gateway for parasite dissemination (11) (Figures 1, 2).

In both CM and trypanosomiasis, the elevated production of

pro-inflammatory cytokines and chemokines (by astrocytes) and

the subsequent T lymphocyte recruitment are harmful. It is

noteworthy that CXCL10 (produced mainly by astrocytes) might

have a major neuropathogenic role; for example, CXCL10-/- and

CXCR3-/- mice challenged with P.berghei ANKA or T.brucei
Frontiers in Immunology 03
control the infection more readily and are resistant to the

neurologic disorder (11).
Parasites that drive chronic
neuroinflammatory processes

Neurotoxoplasmosis

Neurotoxoplasmosis is caused by the protozoan parasite T.

gondii. The disease is contracted by ingestion of either excreted

oocysts or cysts located in the muscle and nervous tissues of

infected mammals (39). Toxoplasmosis is one of the world’s

major food-borne diseases and is widespread in a third of the

world's population (12). Primary infection with T. gondii is

asymptomatic in most hosts but tends to be symptomatic in

immunocompromised individuals and pregnant women. T.

gondii can replicate within a wide variety of cell types,

including brain cells (40). T. gondii can persist throughout the

host’s lifetime in the brain as cysts, which are located principally

in neurons and glial cells (39). The parasite’s initial contact with

the host cells engages cell surface molecules, such as surface

antigen-1, laminin, ICAM1, VCAM1, and activated leukocyte

cell adhesion molecule (41, 42). The effectiveness of the human

immune response to T. gondii is evidenced by low incidence of
FIGURE 1

Mechanisms of the acute CNS inflammation induced by a protozoan parasite infection. The parasites P. falciparum and T. brucei enter the blood
and then infect various cell types, in order to escape the immune system and splenic clearance. During this phase, the parasites activate
circulating immune cells; in turn, this induces inflammation and favors the expression of adhesion molecules (ICAM-1 and VCAM-1) by
endothelial cells and the activation of glial cells (astrocytes and microglia). This results in a vicious circle because the inflammation makes it
easier for parasites to enter and accumulate in the glial parenchyma. The sensing of parasites by the glial cells induces the production of pro-
inflammatory cytokines, allows the recruitment of immune cells and creates a pro-inflammatory environment. The brain inflammation disturbs
the BBB and helps the parasite to invade the glial parenchyma. The accumulation of parasites exacerbates the activation of astrocytes and
microglia cells and leads to a harmful, pro-inflammatory environment.
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symptomatic disease, despite an overall seroprevalence of about

30%. It is clear that T cell trafficking and migration into the

infected brain are critical factors in damage to the CNS. The

crosstalk between T. gondii and the host involves a wide range of

proteins and signaling networks. If an individual becomes

immunocompromised, T. gondii cysts in the brain can

reactivate and produce potentially lethal neurotoxoplasmosis.

Activation of glial cells by interaction with T. gondii favors the

production of pro-inflammatory cytokines and chemokines such

as IL-1a, IL-6, granulocyte-macrophage colony-stimulating

factor, CXCL10, CCL2, CCL3, CCL4, and IFN-g (39, 43).

Astrocytes that lack the IL-6 receptor or glial fibrillary acidic

protein lose their ability to control the parasite. As a result, the

inflammation spreads throughout the brain and can be fatal (44)

(Figures 2, 3). Excessive brain inflammation and neuronal

damage are prevented by the autoregulation of astrocytes and

neurons via the secretion of anti-inflammatory cytokines, such
Frontiers in Immunology 04
as IL-27 and transforming growth factor beta (TGF-b); these
cytokines have immunosuppressive activity and influence T cell

functions (11, 39, 43, 45).
Neurocysticercosis

Neurocysticercosis (NCC) is a CNS disease caused by T.

solium. It was responsible for around 28,000 deaths in 2010.

NCC is a neglected tropical disease and is mainly found in

countries with ineffective healthcare systems (46). The clinical

manifestations associated with NCC include seizures, epilepsy,

focal neurologic impairments, elevated intracranial pressure, and

cognitive decline. The disease manifestations depend on the

number and size of the cysticercus or the parasitic stage

development (47). NCC is thought to result from the

neuroimmune processes induced by the parasite’s eggs,
B C DA

FIGURE 2

Host regulation of neuroimmune processes during acute versus chronic parasite infection. (A) During an acute parasite infection (e.g by P.
falciparum or T.brucei), parasites cross the BBB and activate astrocytes and microglia, which produce large amounts of pro-inflammatory
cytokine/chemokines (e.g CXCL-10) that recruit T lymphocytes. Together, CD8+ and CD4+ T lymphocytes favor a pro-inflammatory
environment by releasing molecules like perforin, granzyme, reactive oxygen species and IFN-g. This release leads to disruption of the BBB,
which favors parasite entry, aggravates the brain inflammation, and causes collateral damage to neurons. (B) In contrast, immune tolerance and
pro-inflammatory responses are balanced during a chronic parasite infection. The cysts release compounds that inhibit granuloma formation
and the activation of resident glial cells. For example, the parasites polarize pro-inflammatory macrophages into anti-inflammatory
macrophages, which suppress the production of adhesion molecules and the local TH1 response via TGF-b and IL-10 production. Other cyst-
derived compounds polarize CD4+ cells into regulatory T cells (Tregs) by modulating the maturation of dendritic cells and preventing the
infiltration and migration of neutrophils, eosinophils and monocytes from the peripheral system into the brain via the production of
immunomodulatory cytokines and the blockade of chemokines and adhesion molecules. Through an as-yet unknown mechanism, the parasite
also inhibits the activation of microglia and astrocytes. Nevertheless, some of the material released by the cysts elicits an inflammatory reaction
(mainly characterized by the secretion of IFN-g and TNF-a by the activated glial cells and leukocytes). The chemoattractants lead to the
recruitment of neutrophils, eosinophils and monocytes, which form a granuloma. Formation of a granuloma limits the collateral damage caused
by the TH1 response and enables the parasite to be contained and destroyed. The astrocytes and microglia become activated and the BBB is
damaged (C). Progressively, the TH1 response is replaced by a TH2 response and fibrosis occurs where the cyst was located. This fibrosis is
associated with neuronal damage (D).
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which are produced in the intestine. Once the eggs have entered

the bloodstream, they disseminate to various tissues - including the

brain. After crossing the BBB, T. solium forms a cyst within the

brain and can persist for several month or years - probably through

active evasion and immunosuppression (47–49). After 3 to 10

years, the larvae degenerate (via as-yet unknown mechanisms) and

lose their ability to control the CNS inflammation (47, 50). A TH1

pro-inflammatory response is then engaged; the TNF-a, IFN-g, IL-
1ß, IL-18, and IL12 released by microglia and macrophages trigger

the expression of the adhesionmolecules ICAM1 and VCAM1 and

the chemoattractants and chemokines CXCL2, CXCL8, CCL5,

CCL2, and CCL20 by astrocytes and endothelial cells. This

damages the BBB and leads to cerebrospinal fluid leakage,

greater leukocyte migration, and granuloma formation in the

CNS (47, 50). The granulomas primarily comprise

multinucleated giant cells, macrophages, T and B lymphocytes,

plasma cells, neutrophils, eosinophils, and microglia around a

degenerated cyst. The TH1 response is counterbalanced by a

TH2 response characterized by IFN-g, IL-18, IL-4, IL-10, IL-13
and TGF-b production and that leads to progressive fibrosis (47,

49, 51). Neuroinflammation and granuloma in NCC constitute a

“double-edged sword”: the granuloma protects the adjacent CNS

tissue from the parasite but leads to damaging fibrosis and seizures

(52) (Figures 2, 3).
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Neuroschistomiasis

Neuroschistomiasis (NS) is a poorly characterized

neuroinflammatory disease remaining caused by S. mansoni, S.

japonicum, and S. haematobium. The prevalence of NS has not

been reliably determined, although at least 600 million people in at

least 79 countries are thought to be at risk of infection (53). About

2 to 4% of individuals infected by S.japonicum develop

neurological manifestations (54). Patients suffering from NS

generally have headaches, visual disturbances, delirium, seizures,

motor impairments, ataxia, and encephalopathy (55). NS results

from an immune process associated with the ectopic deposition of

eggs in the leptomeninges and the cerebral cortex, via as-yet

unknown mechanisms (53). By analogy with NCC, it has been

suggested that eggs in the brain escape the immune response and

survive there for weeks. However, larval degeneration triggers the

release of antigens and a TH1 pro-inflammatory response

favoring (i) the recruitment of CD4+ T cells, eosinophils,

macrophages and monocytes, and (ii) granuloma formation,

leading to brain tissue necrosis (53). In fact, the TH1 response

(characterized by IFN-g, IL-2, IL-4, IL-5, IL-9 and IL-13

production) is gradually replaced by a TH2 anti-inflammatory

response with overproduction of IL-10 (limiting the degree of

neurologic damage) (54) (Figures 1, 2). However, many questions
FIGURE 3

The chronic latent brain inflammation induced by parasite infection. T. solium and S. mansoni are intestinal parasites. Their eggs pass into the
blood and then cross the BBB via as-yet unknown mechanisms. T. gondii infects leukocytes and crosses the BBB via a “trojan horse” mechanism
or via a paracellular or transcellular route. Once inside the glial parenchyma, the parasites form extracellular cysts (for T. solium and S. mansoni)
or intracellular cysts (for T. gondii) in neurons and microglia cells. The cysts can survive for several years and induce a low-level pro-
inflammatory response. However, after few years or in an immunocompromised state, the cysts degenerate (for T. solium and S. mansoni) or
proliferate (for T. gondii) and strongly activate astrocytes and microglia cells. In turn, this excessive activation creates a pro-inflammatory
environment that damages neurons and the BBB.
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remain with regard to the pathophysiological mechanisms

associated with NS, including how the parasite interacts with

glial cells, how it crosses the BBB, and how it survives in the brain.

Indeed, the current lack of effective treatments and the

emergence of resistant parasites highlight the urgent need for

novel biomarkers and potentially curative therapeutics for these

neuroinflammatory diseases. Targeting the GM (in order to

reduce the glial cells’ pro-inflammatory activity and thus

counteract the brain inflammation) is an interesting strategy,

as already demonstrated for Alzheimer’s disease, Parkinson's

disease or multiple sclerosis (17, 19, 20). However, researchers

are only now starting to investigate the GM’s effect on parasite-

induced neuroinflammatory diseases and to develop prebiotics,

probiotics or fecal transplantation techniques for preventing and

dampening the disease process (56–58).
Involvement of the GM in parasite-
driven CNS inflammation

The host’s microbiota is a consortium of bacteria, viruses,

fungi, archaea, and protozoa. These microorganisms co-evolved

with the host and colonize the skin and the respiratory, urogenital

and gastrointestinal tracts (59). Commensal communities are

essential for the body’s development and functioning. The GM

harbors trillions of microbes (mostly bacteria); an adult human

harbors around 200 to 300 different bacterial species, most of

which are located in the ileum and the colon (60) and interact with

each other (61). Whereas the human genome contains about

23,000 genes, the GM provides up to 10 million genes in total (62)

and about 600,000 in a given individual (63). Even though the GM

is highly resilient, its composition changes and can be modulated

by factors like diet, age, sex, geographic location, ethnicity,

exercise, and drug intake (63). The GM’s crucial role in human

health comes through a variety of physiological mechanisms:

modulation of the gut barrier and the host’s metabolism (64,

65), local and systemic immune regulation (66, 67), neural

development, and emotional development (65, 68–70).

Abnormal changes in the GM’s composition or activity – a so-

called state of dysbiosis – are thought to be involved in the

development of many diseases. It has recently been shown that

dysbiosis contributes to extra-intestinal diseases and notably those

affecting the CNS (71). Dysbiosis is involved in the development

of the brain (68) but also in mental illnesses, such as eating

disorders (72), autism (73), schizophrenia, anxiety disorders,

mood disorders (74), and neurodegenerative diseases associated

with neuroinflammation (such as Alzheimer’s and Parkinson’s

diseases) (21 , 75–79) . In pat ients suffer ing from

neurodegenerative diseases, a growing body of evidence

indicates an association between GM dysbiosis and leakage of

the intestinal barrier. This leakage favors inflammatory responses
Frontiers in Immunology 06
and the release of compounds into the systemic circulation, which

worsen the brain inflammatory process (21, 80, 81).

A link between the GM and the brain has been evidenced by

experiments in germ-free mice, in which damage to the BBB can

be partially restored by fecal transplants (82, 83). Microglia from

germ-free mice or mice treated with an antibiotic presented an

immature profile and an impaired immune response. This defect

of the GM is associated with changes in microglial mRNA

profiles in the germ-free mice: genes involved in cell

activation, pathogen recognition, and host defense were

downregulated in the animals’ microglia, whereas genes

encoding survival factors (which are usually suppressed in

conventional animals) were upregulated (84, 85). Furthermore,

other experiments in animal models showed that antibiotic-

associated dysbiosis reduced neurogenesis in the hippocampus

and thereby induced memory loss (83, 86). On the same lines,

many research studies have highlighted the GM’s impact on the

BBB’s integrity and the activity of CNS cells – either by

modulating metabolites produced by bacterial species (82, 87–

91), modulating the immune response (86, 92–96) or even by

influencing the activity of the vagal nerve (97).

Even if Toxoplasma, Plasmodium, Trypanosoma and

Schistosoma are all known to disturb the GM, a link with

brain inflammation resulting from infection is not clearly

established (56, 98–101). However, modification of the GM’s

composition has been described during toxoplasmosis since

gram-negative bacteria like the enterobacteria aggravated the

ileitis induced by T. gondii infection by perturbing tryptophan

metabolism, dopamine level and decreasing Treg counts (66,

102, 103). Ileitis in T. gondii-infected mice was associated with

elevated intestinal permeability, greater bacterial translocation,

mild-to-moderate meningitis, behavior and cognitive disorder in

wild-type mice (relative to germ-free mice) (102, 104–107).

GM dysbiosis has also been observed in P. yoelii- and

P.berghei ANKA-infected C57BL/6 mice. Dysbiosis was

generally associated with a low Firmicutes count and elevated

Proteobacteria and Verrucomicrobiae counts (98, 108). These

preclinical results were confirmed in a study of P. falciparum-

infected children living in a rural village in Mali: the GM was

enriched in Bacteroidetes and depleted in Firmicutes, relative to

the GM in European children. We are investigating the possible

association between the development of cerebral malaria and the

composition of the GM. Our preliminary results suggest a role for

GM dysbiosis in the brain inflammatory process leading to

cerebral malaria in C57BL/6 susceptible mice infected with P.

berghei ANKA by modifying the pro-inflammatory response of

glial cells. Moreover, dysbiosis induced by antibiotics or probiotics

protect against cerebral malaria These data corroborate previous

published work showing that the P. berghei ANKA infection

induced changes in the GM which in turn impact malaria

severity (56, 98). GM dysbiosis has also been observed during
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cerebral trypanosomiasis gut microbiota in mice and human

(101). GM dysbiosis was associated with alterations in fatty

acids and bile acids metabolism in infected mice (109). In

addition, it has been recently described that the increase of BBB

permeability correlates with increased levels of IL-17, IL-22 and

brain infiltration by bacterial metabolites, notably butyrate (110).

This results in a rise in glutamate, excitotoxicity and cell death in

the brain parenchyma (111). In neuroschistosomiasis, a recent

study has shown that CNS macrophages including microglia play

a role in forming granulomas around the parasite eggs (55).

Indeed, in mice infected with S. japonicum it has been recently

shown alterations in the intestinal barrier and GM composition

upon infection with a possible link to microglial cells phenotype

(112, 113).
The consequences of GM
modification by a parasite infection

Parasite infections can induce dysbiosis and thus impact the

host’s inflammatory response and susceptibility to infection (114).

Indeed, it has been demonstrated that the GM influences the

pathogenicity of certain parasites or helminths directly (through

bacteria-parasite interactions) or indirectly (by providing essential

metabolites and therefore a more conducive environment for

parasite proliferation and growth) (88). Of note, in vivo imaging

of P. berghei-expressing luciferase has shown high amount of

parasites in the mesentery and intestinal lumen which perturbated

GM by favouring interactions and nutritional competition with

gut bacteria (98, 115–119). Parasites can also modulate the GM

composition indirectly through immunoregulatory factors. It is

the case for T. gondii, IFN-g and NO released during infection can

cause the loss of Paneth cell and inhibit the production of

antimicrobial peptides (116–119).

In some cases, the GM is enriched in certain bacterial phyla

that reduce the severity of the disease associated with protozoan,

fungal, helminth or bacterial infections (103). This is the case for P.

berghei ANKA infections: the GM of "resistant" mice had a higher

proportion of Firmicutes (56). It has also been shown that mice

experimentally colonized with the a-galactosyl-expressing
intestinal pathobiont E. coli O86: B7 produced anti-a-galactosyl
antibodies, which prevent invasion of the liver by sporozoites (120).
Could modulation of the GM help to
prevent the neuroinflammation
induced by parasite infections?

It has been suggested that a eubiotic GM helps to maintain

and/or restore homeostasis of the BBB and to prevent

inflammatory processes in the brain. Various signaling molecules
Frontiers in Immunology 07
produced by the GM enable microbes to communicate with the

host’s neuro-immune system, and cytokines are produced by the

host in response to microbes (121). Most of these molecules act on

glial cells (Figures 4, 5) and might modulate inflammation. Indeed,

short-chain fatty acids (SCFAs) can influence the gut–brain axis

via various mechanisms, including epigenetic modifications.

SCFAs can inhibit the TLR4/TBK1/NF-kB/TNF-a pathway in

astrocytes and microglial cells by inhibiting histone deacetylase,

which results in downregulation of pro-inflammatory cytokine/

chemokines production (20, 115, 124–127). Acetate can cross the

BBB, and butyrate can restore the barrier’s intactness. SCFAs can

also reverse dysfunctional microglial phenotypes in GF mice (82).

Interestingly, aryl hydrocarbon receptor agonists inhibit VEGF-ß

production and stimulate TGF-a production by the microglia and

thereby limit the astrocyte’s inflammatory response, disturbance of

the BBB, and the infiltration of leukocytes into the CNS (116,

117) (Figure 5).

Furthermore, many researchers have reported on the GM’s

influence through the synthesis of various neurotransmitters and

neuromodulators with crucial roles in gut-brain communication

(Figure 5). Indeed, some bacteria are able to produce amino

acids like gamma-aminobutyric acid (the main inhibitory

neurotransmitter in the CNS). The GM can also regulate the

level of serotonin, which has central roles in anxiety and

depression and mediates changes in hippocampal levels of 5-

hydroxyindoleacetic acid and brain-derived neurotrophic factor

and plasma levels of tryptophan (118). The GM can notably

control neurotransmitter production through the regulation of

glutamate, which can be neurotoxic at high levels (119, 128, 129).

Recently, bacterial-surface-derived compounds like

peptidoglycans have emerged as potential key regulators of

GM–brain interactions (130).

Several strategies can be used to restore the GM, such as (i) the

administration of specific nutrients that promote the growth of

certain bacterial species (i.e. prebiotics), (ii) the introduction or

expansion of "beneficial" bacteria species (i.e. probiotics), and (iii)

the wholesale or selective transplantation of a donor GM (i.e. fecal

transplantation) (57). Many probiotics reportedly exhibit anti-

inflammatory properties, notably in the context of inflammatory

bowel diseases (122, 131). Several probiotics have been shown to

communicate with the brain and influence behavior through vagal

nerve signaling. Promising results have also been reported in the

context of autoimmune neurodegenerative diseases like

Parkinson's disease and Alzheimer's disease. Lactobacillus reuteri

is able to metabolize tryptophan into indoles, which bind to the

aryl hydrocarbon receptor expressed by astrocytes and microglia;

this modulates the production of pro-inflammatory chemokine/

cytokines and the cells’ ability to respond to lipopolysaccharide by

limiting NFkB translocation (90, 117, 132–134) (Figure 4).

Probiotics might also interact with enteroendocrine cells, i.e.

sensory cells that form synapses with vagal afferents

(neuropodia) (135). Lastly, we have shown that some probiotics
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exhibit anti-inflammatory properties via the interaction between

peptidoglycan and NOD2 (136). We speculate that probiotic-

derived peptidoglycans might constitute a novel means of treating

neuro-inflammation.

Along with antiparasitic drugs, the value of fecal transplants

and probiotics was recently evaluated in the context of infections

by protozoans (such as Giardia duodenalis, Cryptosporidium

parvum, Eimeria tenella) and nematodes (such as Toxocara canis

and Strongyloides venezuelensis) (58). Fecal transplantation

appears to be the most effective way of restoring the GM and

combating neuroinflammatory diseases but is used on critical

cases only. A better understanding of the molecular crosstalk
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between the GM and the brain should lead to the development of

nove l therapies for CNS inflammat ion caused by

parasite infections.
Conclusion

The brain inflammation processes induced during parasite

infections are not well understood and cannot easily be treated.

The r e f o r e , a n y t r e a tmen t t ha t c an r edu c e th i s

neuroinflammation will have a considerable public health

impact. In this context, strategies that target the GM (notably
FIGURE 4

Modulation of the CNS inflammation response by the GM during a parasite infection. Eubiosis of GM favors the maintenance of the gut barrier’s
intactness (122, 123). Moreover, the GM can produce metabolites like SCFAs, tryptophan, tryptophan derivatives, neurotransmitters, and vitamins,
which are disseminated through the host’s circulation. These metabolites are known to have an impact on the BBB’s intactness and on CNS
cells like astrocytes and microglia. Infection by a parasite induces dysbiosis of the GM directly or indirectly, which perturbs metabolite
production, impairs gut barrier intactness and allows the possible translocation of bacteria throughout the organism. Dysbiosis is associated with
an impairment of glial cell activity and loss of the BBB’s intactness. Dysbiosis might also favor the excessive pro-inflammatory response of glial
cells induced by the parasite and that leads to neuronal damage.
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by the development of food supplements able to regulate acute,

harmful inflammation in particular and/or neuroinflammatory

diseases in general) should be taken into consideration, along

with antiparasite drugs.
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The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl
Med (2014) 6:263ra158. doi: 10.1126/scitranslmed.3009759

83. Luczynski P, Neufeld KAM, Oriach CS, Clarke G, Dinan TG, Cryan JF, et al.
Growing up in a bubble: Using germ-free animals to assess the influence of the gut
microbiota on brain and behavior. Int J Neuropsychopharmacol (2016) 19:pyw020.
doi: 10.1093/ijnp/pyw020
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