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Effect of Schizochytrium
limacinum supplementation to a
low fish-meal diet on growth
performance, lipid metabolism,
apoptosis, autophagy and
intestinal histology of
Litopenaeus vannamei

Xinzhou Yao1,2,3†, Yingying Lin1,2,3†, Menglin Shi1,2,3,
Liutong Chen1,2,3, Kangyuan Qu1,2,3, Yucheng Liu1,2,3,
Beiping Tan1,2,3 and Shiwei Xie1,2,3*

1Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University,
Zhanjiang, China, 2Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering
Research Centre of Guangdong Province, Zhanjiang, China, 3Key Laboratory of Aquatic, Livestock
and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
In this experiment, we aimed to evaluate the relationship between the addition

of Schizochytrium limacinum to low fish meal diets on growth performance,

apoptosis, autophagy, lipid metabolism, and intestinal health of Lipenaeus

vanamei. The diet containing 25% fish meal was used as a positive control

(FM) and the other three diets contained 15% fish meal and were supplemented

with 0, 0.3, and 0.6% S. Limacinum (LF, LFLD, LFHD). The shrimp (0.22 ± 0.00 g)

were divided into four replicates of 40 shrimp per tank and fed four times daily

to apparent satiation for 8 weeks. Results showed that the final weight (FBW)

and weight gain rate (WGR) of shrimp fed FM and LFHD diets were significantly

increased compared to those fed the LFLD diet (P<0.05), and there was no

significant difference in survival rate (SR) and feed conversion rate (FCR) among

the groups (P>0.05). Supplementation of S. Limacinum in low fish meal diets

had no effects on shrimp body composition (P<0.05). There were significant

differences (P<0.05) in low-density lipoprotein (LDL-C) glucose (GLU),

triglycerides (TG), and total cholesterol (TC) in the hemolymph of shrimp fed

the LF diet compared to those fed the LFLD and LFHD diets. HE staining and

transmission electron microscopy (TEM) results showed that the microvilli

height, mucosal folds height, mucosal folds width and muscle layer thickness

in the intestine of shrimp fed the LF diet were significantly reduced compared

to those fed the other three diets (P<0.05). Swelling of the endoplasmic

reticulum and irregular mitochondria in the gut of shrimp fed the LF diet was

also observed by TEM, and the endoplasmic reticulum and mitochondria of

shrimp fed the LFHD diet returned to a healthy state. Hepatopancreas genes

expression results were showed that the gene expression of 5′ -AMP-activated
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protein kinase (ampk), stearoyl-CoA desaturase (scd1), acetyl-CoA carboxylase

1 (acc1), and malonyl-CoA decarboxylase (mcd) of shrimp fed the LF diet was

significantly increased compared to those fed the FM diet (P<0.05). The gene

expression of sterol regulatory element-binding protein (srbep) and carnitine

palmitoyl transferase 1 (cpt-1) of shrimp fed the LFLD diet was significantly

increased compared to those fed the LF diet (P<0.05). The gene expression of

acc1, mcd and scd1 of shrimp fed the LFHD diet was significantly reduced

compared to those fed the LF diet (P<0.05). Results of genes expression

associated with apoptosis in the hepatopancreas showed that the gene

expression of B lymphocytoma-2 (bcl-2), BCL2 associated X apoptosis

regulator (bax) and cysteinyl aspartate specific proteinase 8 (caspase 8) of

shrimp fed the LF diet was significantly reduced compared to those fed the FM

diet (P<0.05). The gene expression of bcl-2 of shrimp fed the LFHD diet was

significantly reduced compared to those fed the LF diet (P<0.05). Genes related

to autophagy in the hepatopancreas showed that the expression of autophagy-

related protein 12 (atg 12), autophagy-related protein 13 (atg 13) and beclin1 of

shrimp fed LF the diet was significantly reduced compared to those fed the FM

diet (P<0.05). The gene expression of atg 12 and atg 13 of shrimp fed the LFHD

diet was significantly increased compared to those fed the LF diet (P<0.05). In

summary, reducing fish meal is detrimental to the growth performance and

intestinal health of shrimp, and 0.6% S. Limacinum supplementation can

improve the growth performance, promotes hepatopancreas lipid

metabolism, reduces apoptosis, promotes autophagy and improve intestinal

health of Litopenaeus vannamei.
KEYWORDS

Litopenaeus vannamei, soy protein concentrate, Schizochytrium limacinum, lipid
metabolism, apoptosis, autophagy, intestinal health
Introduction

Litopenaeus vannamei has the characteristics of fast growth,

strong disease resistance, and delicious taste, which has

important economic value, and the annual production has up

to 5.8 million tons in 2020 (FAO, 2022; Xu et al., 2022a). Fish

meal is rich in amino acids, vitamins, and minerals which are

necessary for the growth of fish, shrimp, and crab, and has a

special flavor that makes it good palatability (An et al., 2018).

Nonetheless, the high cost of fish meal has increased the cost of

feed Previous studies found that fish meal in aquatic animal feed

can be substituted by different protein sources, such as soy

protein peptide (Lin et al., 2022), soy protein concentrate (Zhu

et al., 2020), fermented soy pulp (Kari et al., 2022), hydrolyzed

fish protein powder (Hlordzi et al., 2022), bacterial protein meal

(Chen et al., 2021b), concentrated dephenolization cottonseed

protein (Zhao et al., 2021), blood meal (Kirimi et al., 2016), black

soldier fly (Huang et al., 2022), meat and bone meal (Ai et al.,

2006), and hydrolyzed feather meal (Campos et al., 2017). Plant

proteins are widely available and inexpensive, which were

favored by researchers for partial replacement of fish meal in

aquatic animal feed (Liao et al., 2022). However, plant protein
02
generally has the disadvantages of amino acid imbalance and

high content of anti-nutritional factors (Jannathulla et al., 2019),

and adding excessive plant protein can also affect the growth

performance, intestinal microecology, and nutrition metabolism

of aquatic animals (Ray et al., 2020). In our previous study, we

found that the essential nutrient balance in low fish meal diets

improved growth properties and intestinal fitness of shrimp (Xie

et al., 2016; Xie et al., 2020c).

Fish meal contains high levels of fish oil, which is rich in n-3

long-chain polyunsaturated fatty acids, especially for

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)

(Cho and Kim, 2011). Consequently, the content of high-

unsaturated fatty acids decreases accordingly in the low fish

meal diets. Polyunsaturated fatty acids are essential fatty acids

for fish and crustaceans, which cannot be synthesized in vivo and

must be obtained from food (Dyall et al., 2022). DHA is a

polyunsaturated fatty acid, which has various functional roles in

regulating the physiological health of the body and has

important regulatory influences on growth, inflammatory

response, development, immune regulation, and antioxidation

in aquatic animals (Ruyter et al., 2022). DHA is an essential fatty

acid for many fish, shrimp, and shellfish larvae, previous study
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proved that dietary supplementation of DHA in the low fish

meal diet could improve the immune system response and

intestinal fitness of Penaeus monodon (Xie et al., 2020b).

Schizochytrium Limacinum (S. Limacinum), a type of marine

algae, is rich in the highly unsaturated fatty acid DHA (Li et al.,

2018). In contrast to other algae, S. Limacinum is produced by

employing heterotrophic propagation and was regarded as

microalgae with the potential to produce DHA in an industrial

chain (Sarker et al., 2016; Osmond et al., 2021). Numerous

studies have been conducted to demonstrate the improvement of

the growth performance of aquatic animals by feeding diets

containing S. Limacinum, such as Litopenaeus vannamei (Wang

et al., 2017), Salmo Salar (Sprague et al., 2015), Ictalurus

punctatus (Li et al., 2009), Danio rerio (Byreddy et al., 2019),

Trachinotus Ovatus (Xie et al., 2019), Epinephelus Lanceolatus

(Garcıá-Ortega et al., 2016). In addition, there have been several

studies showing that dietary supplementation of S. Limacinum

be significantly enhanced the non-specific immunity of

Trachinotus Ovatus (Xie et al., 2019) and improve the

intestinal health of Oreochromis niloticus (Souza et al., 2020)

and Oncorhynchus mykiss (Lyons et al., 2016). The results of

another study suggest that S. Limacinum can be a promising

low-level substitute for fish meals, which could improve the fillet

texture of largemouth bass (Liao et al., 2022).

Few studies have been reported on the effect of S. Limacinum

addition in the low fish meal diet of Litopenaeus vannamei.

Thus, the intention of this experiment was to assess the effects of

low fish meal diet supplementation with S. Limacinum on

growth performance, hemolymph biochemistry, intestinal

health, lipid metabolism, apoptosis, and autophagy of

Litopenaeus vannamei.
Materials and methods

Diet preparation

Two diets with different levels of the fish meal were

formulated as the positive control (FM) and negative control

(LF), and two levels of S. Limacinum were added to the LF,

which were labeled as LFLD and LFHD. The nutritional

composition of the four diets was shown in Table 1.

Ingredients were crushed and passed through an 60 mesh

sieve, weighed accurately, and blended well (M-256, South

China University of Technology, Guangzhou), next were

stirred well with pre-weighed distilled water, fish oil, soybean

oil, soy lecithin, and pre-configured coated crystal amino acids as

described by Xie et al. (Xie et al., 2020c). The 1.0 mm and

1.5 mm feeds were extruded by a twin-screw extruder (F-26,

South China University of Technology, Guangzhou), followed

by being heated in an oven at 90°C for 60 min and air-drying at
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room temperature, the diets were storage at -20°C until use (Li

W. et al., 2022).
Experimental shrimp and management
conditions

Juvenile Litopenaeus Vannamei were purchased from

Zhanjiang Yuehai Seed Co. The shrimp was transferred to a

pre-disinfected specimen pond for one month and acclimatized

for one week to the experimental conditions before the start of

the experiment. Then 640 healthy shrimp with similar body sizes

(0.22 ± 0.00g) were randomly assigned to 16 fiberglass tanks

(500 L) with 40 shrimp per tank. The shrimp were periodically

fed four times a day (7:00, 11:00, 16:00, 21:00) for 8 weeks.

During the time of trial, water temperature and salinity were to

be measured daily, with the water temperature at 28.0-30.0°C,

salinity at 26-30‰, pH at 7.6-8.1, and ammonia nitrogen level

below 0.05 mg/L (He et al., 2017). In addition, each tank was

aerated to ensure enough oxygen, and the water was changed by

approximately 60% at 2h after the first feeding every day.
Sample collection and analysis

Growth indexes
At the end of 8 weeks of feeding, shrimp were starved and

treated for 24 h before being anesthetized using MS-222 (Zhou

et al., 2019; Xu et al., 2021). Samples were then collected, and

shrimp in each tank was counted and weighed to determine the

initial weight (IBW), final weight (FBW), survival rate (SR), feed

conversion rate (FCR), and weight gain rate (WGR).

Immediately after weighing, 10 shrimp were randomly selected

from each tank, and blood was taken using a 1 mL sterile syringe,

and placed in a 1.5 mL sterile centrifuge tube. The hemolymph

was gathered by centrifugation at 1500 x g for 10 min at 4°C

through a benchtop high-speed frozen centrifuge (JIDI-20R,

Guangzhou JIDI Instruments Ltd. formula). Six shrimps were

randomly detected from each tank, which were stored at -20°C

for the shrimp body composition analysis using standard

methods (Feldsine et al., 2002). Moisture was determined in a

constant-weight oven at 105°C. The content of crude protein

and Crude lipid were determined using the Kjeldahl method

(Kjeltec™8400, Sweden) and the Soxhlet extraction method

(extractant petroleum ether), respectively, according to the

description of (Zhang et al., 2018; Liu et al., 2021).

Hemolymph biochemical indexes and enzyme
activity analysis

Hemolymph biochemical indicators were measured using

kits developed by Nanjing Jiancheng Institute of Biology

(China), the content of high-density lipoprotein (HDL-C),
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low-density lipoprotein (LDL-C), glucose (GLU), triglyceride

(TG), total protein (TP), and total cholesterol (TC), and the

activities of aspartate aminotransferase (AST), alanine

aminotransferase (ALT) were measured using a full-

wavelength enzyme marker (Thermo, Multiskan GO 1510).

The commercial kit IDs were as follows: A112-1-1, A113-1-1,

A154-1-1, A110-1-1, A045-2, A111-1, C009-2-1, and C009-2-1,

respectively. The methods of the kit were tested strictly

according to the description of (Gui et al., 2019; Wu et al., 2021).

Quantitative real time PCR analysis
Total RNA was obtained from the hepatopancreas and

intestine of Litopenaeus vannamei using the TransZol Up Plus

RNA kit (Transgen, China), and the extracted RNA was assayed

by NanoDrop2000 (Thermo USA), and the massification of

RNA was determined by the A260/280 ratio (Zhu et al., 2021;
Frontiers in Marine Science 04
Zhang et al., 2022a). Reverse transcription was performed using

the PrimeScriptTM RT kit (Takara, Japan) according to the

manufacturer’s instructions. Oligo dt (18T) primer random 6

mers, PrimeScriptTM RT enzyme mixture I, 5× PrimeScriptTM

buffer, and RNase-free water were used to reverse transcribe

1000 ng of RNA at 37°C for 15 min, followed by inactivation at

85°C for 5 s (Li Y. et al., 2022; Xu et al., 2022c).

The polymerase chain reaction was performed using SYBR®

Green Premix Pro Taq HS qPCR Kit II (Accurate Biotechnology

(Hunan) Co., Ltd.) and the system was quantified fluorescently

on a LightCycler 480 (Roche Applied Science) according to the

set procedure for 10 The fluorescence quantification of the

samples was performed on a LightCycler 480 (Roche Applied

Science) according to a set procedure. The 10 ml system

consisted of 0.5 mM of forward and reverse specific primers, 5

ml of 2× SYBR® Green Pro Taq HS Premix II, 10 ng of cDNA
TABLE 1 Formulation and proximate composition of experimental diets (% dry matter).

Ingredient Treatments

FM LF LFLD LFHD

Fish meal 25 15 15 15

Soybean meal 25 25 25 25

Peanut meal 12 12 12 12

Soy protein concentrate 0 10 10 10

Flour 20 20 20 20

Brewer’s yeast 2 2 2 2

Shrimp shell powder 2 2 2 2

Chicken Powder 3 3 3 3

Fish Oil 1.5 2.3 2.3 2.3

Soybean Oil 2 1.9 1.9 1.9

Choline 0.2 0.25 0.25 0.25

Soy lecithin 1 1 1 1

Vitamin and mineral premixes a 1 1 1 1

Calcium dihydrogen phosphate 1 2 2 2

Vitamin C 0.1 0.1 0.1 0.1

Micro Nutrients Mix 0 0.05665 0.05665 0.05665

Microcrystalline cellulose c 3.2 0.65 0.35 0.05

L selenomethionine type II b 0 0.007 0.007 0.007

Sodium carboxymethyl cellulose 1 1 1 1

Docosahexaenoic acid 0 0 0.3 0.6

Proximate composition

Dry matter

Crude protein 40.02 40.57 40.84 40.62

Crude lipid 7.61 7.55 7.41 7.53
frontie
aVitamin and Mineral Premix ((kg) 1 of diet): thiamine, 5 mg; riboflavin, 10 mg; vitamin A,5000 IU; vitamin E, 40 mg; vitamin D3, 1000 IU; menadione, 10 mg; pyridoxine, 10 mg; biotin,
0.1 mg; cyanocobalamin, 0.02 mg; calcium pantothenate, 20 mg; folic acid, 1 mg; niacin, 40 mg; vitamin C, 150 mg; iron, 100 mg; iodine, 0.8 mg; cupper, 3 mg; zinc, 50 mg; manganese, 12
mg; selenium, 0.3 mg; cobalt, 0.2 mg.
bL selenomethionine type II Sichuan New Yimei Biotechnology Co., Ltd, Selenium Power II (L-selenomethionine ≥ 0.5%, selenium ≥ 0.2%)
cMicro Nutrients Mix (kg-1 of wet weight diet): threonine, 0.5g; glycine, 1g; alanine, 1.5g; methionine, 1.5g; lysine, 2g; g-aminobutyric acid, 0.2g; taurine, 0.6g; ornithine, 0.12g; phytase, 0.4g;
vitamin B2, 1mg; vitamin B12, 10mg; niacin, 10mg; ferrous Glycinate, 60mg; zinc amino acid complexes, 30mg; purchased from Shanghai Aladdin Biochemical Technology Co. and
Guangzhou Chengyi Aquaculture Co.
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template and RNase-free water (Chi et al., 2017). The

denaturation step lasted for the 30s at 95°C, followed by 40

amplification cycles, denaturation at 95°C for 5s, and annealing

at 60°C for 30s before analysis of the solubility curves. The

relative gene expression was calculated by the 2-DDCt method

using ef-1a as the internal reference gene (Chen et al., 2021a;

Wang et al., 2022). (The information of the primers used in this

study was shown in Table 2).

Intestinal tissue analysis
Intestine of four shrimpwas randomly selected from each tank

for hematoxylin-eosin (H&E) stain and transmission electron

microscopy (TEM) analysis. The intestine was stored in Bouin’s

solution for 24 h and then dehydrated in 75% ethanol. Then the

tissue was dehydrated and washed with xylene, The samples were

cleaned in toluene followed by embedding in paraffin tomake solid
Frontiers in Marine Science 05
waxblocks.A rotarymicrotomewasused tocut the solidwaxblocks

into transverse section blocks into 5 mm sections followed by

mounting on the slide and staining with hematoxylin-eosin

(H&E). The slides were observed under a microscope (Olympus,

BX51, Tokyo, Japan) and the built-in software was used tomeasure

the thickness of themuscle layer, the height of themucosal fold, and

the width of the mucosal fold. TEM was performed as the method

described before (Xie et al., 2018): intestines were fixed with 2.5%

glutaraldehyde for 2h, washed and fixed with osmium acid for 3h,

dehydrated and embedded with resin, and ultrathin sections were

made of resin blocks, followed by staining with saturated uranyl

acetic acid solution for 30min and distilledwater washing followed

by lead citrate for 30min.Finally, the cytoarchitecturewasobserved

byTEM (HitachiHT7700TEM, Japan) and the length ofmicrovilli

was measured with Image-Pro Plus 6.3 software (Media

Cybernetics, Inc., Rockville, USA).
TABLE 2 Primers used for quantitative real-time PCR.

Gene name Sequence of primer (5′ -3′) sources

caspase3 F ACATTTCTGGGCGGAACACC AGL61582.1

caspase3 R GTGACACCCGTGCTTGTACA

caspase8 F CACGGAAGCTCTCCCTACAG (Yin et al., 2021)

caspase8 R GAAGACCTTGGGTTTCCCCC

bcl-2 F CCTTGCTTGACACAGTCGGA (Yin et al., 2021)

bcl-2 R CAGACAAGGTCGTGAGGTGG

bax F GGTGGAATCACAAGAGAGCGA (Yin et al., 2021)

bax R TGTTCTCCACGGTGTCTCAC

atg13 F GAGACTTTTTACCGCTTCGC XM_027375959.1

atg13 R ATCCTGCTGGACCTCTATGG

atg12 F GAGAAGGAGAAAACTGCGAC XM_0273638831

atg12 R CTACCCAACCTACTGGCTTC

beclin1 F CTGTCTGAGGTGGAGGCTGA MH797016.1

beclin1 R ATGTGGAAGGTGGTGTTGAA

ampk F TCAGAGGAGGAGCAGGAAC KP272117.1

ampk R CCCGAGGTCTAATAGGCAC

srbep F ACTGAGCTCAACACCTTCCG MG770374·1

srbep R TGCTGGTGAAGAGCTGTCTG

acc1 F TGCATAGAAACGGCATTGCG XM_027360190·1

acc1 R TTTGACACCTGAGCCAGACC

mcd F AAGACCACAGGAAGGGACCA XM_027376735·1

mcd R GACACTTGAGATGCCACCCA

fas F CAGGTGGAGATGCTCCTCGTGTT HM595630.1

fas R GGTGACTAGCTCGGCTACATGGTT

cpt-1 F CAACTTCTACGGCACTGAT XM_027361886.1

cpt-1 R GTCGGTCCACCAATCTTC

scd1 F TGTCTTACACCTTATCAATGGC XM_027374708·1

scd1 R CGTTCGTATGTTCCTCTTCGTC

ef-1a F GTATTGGAACAGTGCCCGTG JF288785.1

ef-1a R ACCAGGGACAGCCTCAGTAAG
caspase 3, cysteinyl aspartate specific proteinase 3; caspase 8, cysteinyl aspartate specific proteinase 3; bcl-2, B lymphocytoma-2; bax, BCL2 associated X apoptosis regulator; Atg13,
autophagy-related protein 13; atg12, autophagy related protein 12; ampk, 5′ -AMP-activated protein kinase; srebp, sterol regulatory element-binding protein; acc1, acetyl-CoA carboxylase
1; mcd, malonyl-CoA decarboxylase; fas, fatty acid synthase; cpt-1, carnitine palmitoyl transferase 1; scd1, stearoyl-CoA desaturase; ef-1a, elongation factor 1a.
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Calculations and statistical analysis
These statistics are obtained as follows:

Survival rate  SR,  %ð Þ = final number of shrimp
initial number of shrimp

� 100

Weight gain rate  WGR,  %ð Þ

=
final body weight − initial body weight

initial body weight
� 100

Feed conversion rate  FCRð Þ

=
feed consumed  gð Þ

final body weight − initial body weight

The results are expressed as mean ± SEM. There was a one-way

ANOVA for all data and a Duncan’s multiple tests was performed

using SPSS 21.0 to identify significant between treatment differences.

The probability value of P<0.05 is statistically significant and

indicates a significant difference in the results.
Result

Growth performance

The results in Table 3 show that the FBW andWGR of shrimp

fed the LFLDdiet were significantly lower than those fed the FMdiet

(P < 0.05), dietary supplementation of 0.6% S. Limacinum

significantly increased the growth of shrimp (P<0.05). The SR and

FCR of shrimp were similar among the four groups.
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Analysis of whole shrimp
body composition

The results in Table 4 show the whole shrimp body composition.
Hemolymph biochemical indexes

As shown in Table 5, the HDL-C content of shrimp fed the LF

diet was significantly increased compared to those fed the FM and

LFHDdiets (P < 0.05). The LDL-C content of shrimp fed the LF and

FM diets were significantly increased compared to those fed the

LFLDandLFHDdiets (P<0.05). TheGLUcontent of shrimp fed the

LFLDandLFHDdietswere significantly lower than those fed theFM

andLFdiets (P<0.05). TheTGcontent in the hemolymphof shrimp

fed theLFdietwas significantly lower than those fed theLFDHdiet (P

< 0.05), and the TG content of shrimp fed the LFLD diet was

significantly lower than those fed the other diets (P < 0.05). AST and

ALT activity in the hemolymph of shrimp fed the LF diet were

significantly increased compared to those fed the other diets (P <

0.05). TC levels in the hemolymph of shrimp fed the FM diet were

significantly increased compared to those fed the other diets

(P < 0.05).
The expression levels of the lipid
metabolism, apoptosis, and autophagy-
related genes

Lipid metabolism-related gene expression levels were shown

in Figure 1. The gene expression of ampk of shrimp fed the LFLD
TABLE 3 Effect of low fish meal diet supplemented with Schizochytrium limacinum on the growth performance of Litopenaeus vannamei.

Index FM LF LFLD LFHD

IBW 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.00

FBW 4.67 ± 0.23b 4.55 ± 0.04ab 4.30 ± 0.21a 4.59 ± 0.10b

SR 79.38 ± 3.75 76.88 ± 5.15 83.13 ± 5.15 77.50 ± 6.77

WGR 2104.77 ± 9.71c 1986.33 ± 4.74ab 1930.01 ± 29.19a 2014.02 ± 21.33b

FCR 1.94 ± 0.06 1.96 ± 0.05 2.06 ± 0.01 2.03 ± 0.02
Values in the table are the mean of four replicates of treatment and are expressed as mean ± SEM (n=4). Values in the same row with different superscript letters are significantly different
(P<0.05).
Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum; IBW, initial body weight (g);
FBW, final body weight (g); SR, survival rate (%); WGR, weight gain rate (%); FCR, Feed conversion rate.
TABLE 4 Effect of low fish meal diet supplemented with Schizochytrium limacinum on the body composition of Litopenaeus vannamei.

Index FM LF LFLD LFHD

Moisture (%) 75.28 ± 0.36 74.90 ± 0.86 76.63 ± 2.11 76.27 ± 0.49

Crude lipid (%) 3.81 ± 1.39 3.74 ± 1.13 3.32 ± 1.66 3.48 ± 1.45

Crude protein (%) 17.66 ± 3.07 17.31 ± 1.45 16.51 ± 1.67 16.49 ± 0.90
fro
Values in the table are the mean of four replicates of treatment and are expressed as mean ± SEM (n=4). Values in the same row with different superscript letters are significantly different
(P<0.05).
Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum.
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diet was significantly increased compared to those fed the FM

and LFHD diets (P<0.05). The gene expression of srbep was

significantly higher in shrimp fed the LFLD and LFHD diets

than those fed the FM and LF diets, which is decreased with the

dietary S. Limacinum supplementation (P<0.05). The gene

expression of acc1 and scd1 of shrimp fed the LFLD and

LFHD diets were significantly increased compared to those fed

the FM diet, which is decreased with the dietary S. Limacinum

supplementation (P<0.05). The gene expression ofmcd and cpt-1

of shrimp fed the LFLD diet was significantly increased

compared to those fed the FM and LFHD diets (P<0.05). the

gene expression of fas of shrimp fed the LFLD and LFHD diets

were significantly reduced compared to those fed the FM and LF

diets (P<0.05).

Apoptosis and autophagy-related gene expression levels

were shown in Figure 2. The gene expression of bax and

caspase 8 of shrimp fed the other three diets were

significantly reduced compared to those fed the FM diet

(P<0.05). The gene expression of caspase 3 of shrimp fed the

LF diet was significantly reduced compared to those fed the

other three diets (P<0.05). The gene expression of bcl-2 of

shrimp fed the LF and LFHD diets were significantly reduced

compared to those fed the FM diet (P<0.05). The gene

expression of beclin1 of shrimp fed the other three diets were

significantly reduced compared to those fed the FM diet

(P<0.05). The gene expression of atg 12 of shrimp fed the

LFLD and LFHD diets were significantly reduced compared to

those fed the FM diet, which is decreased with the dietary S.

Limacinum supplementation (P<0.05). The gene expression of

atg 13 of shrimp fed the LF and LFLD diets was significantly

reduced compared to those fed the FM and LFHD

diets (P<0.05).
Intestinal histology

The statistical results of the intestinal histology are shown in

Table 6. The microvilli height, mucosal fold height, mucosal fold
Frontiers in Marine Science 07
width, and muscle layer thickness of shrimp fed the LF diet were

significantly reduced compared to those fed the other diets

(P<0.05). The mucosal fold height, mucosal fold width, and

muscle layer thickness of shrimp fed the LFLD diet were higher

than those fed the other diets. As shown in Figure 3, TEM results

showed that with the decrease in dietary fish meal levels, the

endoplasmic reticulum and mitochondria of shrimp fed the LF

diet were found to be swollen, in which the mitochondrial matrix

became irregularly arranged and tended to dissolve. After the

supplementation of 0.3% S. Limacinum in the low fish meal diet,

the endoplasmic reticulum recovered to its original state, but the

mitochondria were irregular and the mitochondrial matrix was

marginalized. After supplementation with 0.6% S. Limacinum,

the mitochondria recovered to the level of fish meal.
Discussion

SPC has been proven as a high-quality protein source to replace

fish meal protein in the feed of a wide range of aquatic animal

species (Paripatananont et al., 2001; Chen et al., 2019; Zhang et al.,

2022b). Several researches have pointed out that satisfactory growth

and feed utilization were obtained in juvenile cobia (El-Saidy and

Gaber, 2003) and juvenile starry flounder (Li et al., 2015) when

dietary SPC inclusion was below 60%, and even further increased

SPC content in the diet can cause lower dietary efficiency and higher

death rates in fish. However, Zhao et al. showed that the SR and

SGR of Nile tilapia were not affected even if the fish meal was totally

replaced with SPC (Salze et al., 2010; Zhao et al., 2010). Earlier

studies reported that it was possible to reduce the dietary fish meal

content from 20% to 5% with SPC without negatively affecting the

growth of Litopenaeus vannamei (Ray et al., 2020). The results of

Paripatananont et al. showed that 50% substitution offishmeal with

SPC in the diet of Penaeus monodon could support the normal

growth of shrimp (Paripatananont et al., 2001), which was similar to

the results of the current research. Results of this trial showed that

the FBW of Litopenaeus vannamei was not influenced when the

dietary fish meal content was reduced from 25% to 15%, after
TABLE 5 Effect of low fish meal diet supplemented with Schizochytrium limacinum on hemolymph biochemical parameters of Litopenaeus
vannamei.

Index FM LF LFLD LFHD

HDL-C (mmol L-1) 0.40 ± 0.01bc 0.32 ± 0.01a 0.36 ± 0.02ab 0.45 ± 0.01c

LDL-C (mmol L-1) 1.72 ± 0.24c 0.95 ± 0.05b 0.45 ± 0.03a 0.67 ± 0.10a

GLU (mmol L-1) 1.60 ± 0.07b 1.53 ± 0.03b 1.24 ± 0.09a 1.35 ± 0.06a

TG (mmol L-1) 2.00 ± 0.22bc 1.73 ± 0.11b 1.23 ± 0.12a 2.29 ± 0.24c

AST (U L-1) 33.23 ± 1.25c 36.96 ± 0.37d 29.65 ± 0.12b 26.92 ± 0.72a

ALT (U L-1) 36.11 ± 0.11a 44.18 ± 0.55c 39.52 ± 0.41b 35.17 ± 0.55a

TC (mmol L-1) 1.84 ± 0.06d 1.39 ± 0.13c 0.66 ± 0.05a 0.86 ± 0.14b
fro
Values in the table are the mean of four replicates of treatment and are expressed as mean ± SEM (n=4). Values in the same row with different superscript letters are significantly different
(P<0.05).
Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum.
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amino acids, micronutrients, and fish oil was supplemented in the

low fish meal diet to balance the nutritional profile. Several similar

studies have also been done on Epinephelus lanceolatus, Salmon,

and Seriola rivoliana (Ai et al., 2006; Perez-Velazquez et al., 2018;

Katerina et al., 2020). Some studies reported that dietary
Frontiers in Marine Science 08
supplementation with 4% S. Limacinum improved the growth

performance of Litopenaeus vannamei (Wang et al., 2016), 3% S.

Limacinum improved the growth performance of Trachinotus

ovatus (Xie et al., 2019). Interestingly, (Xie et al., 2020b) found

that 0.75% S. Limacinum supplementation in a low fish meal diet
FIGURE 1

Effect of low fish meal diet supplemented with Schizochytrium Limacinum on the expression levels of hepatopancreas lipid metabolism-related
genes in Litopenaeus vannamei. Vertical bars represent the mean ± SEM (n = 5). Data marked with letters differ significantly (P < 0.05) among
groups. Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with
0.6% S. Limacinum.
FIGURE 2

Effect of low fish meal diet supplemented with Schizochytrium Limacinum on the expression levels of hepatopancreas apoptosis and
autophagy-related genes in Litopenaeus vannamei. Vertical bars represent the mean ± SEM (n = 5). Data marked with letters differ significantly
(P < 0.05) among groups. Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF
supplemented with 0.6% S. Limacinum.
TABLE 6 Effect of low fish meal diet supplemented with Schizochytrium limacinum on the intestinal tissues of Litopenaeus vannamei.

Parameters Diets

FM LF LFLD LFHD

Microvilli height (μm) 2.54 ± 0.01d 1.46 ± 0.01a 1.67 ± 0.04b 2.26 ± 0.08c

Mucosal folds height (μm) 57.45 ± 3.68b 41.60 ± 2.73a 89.91 ± 4.35c 76.01 ± 6.42c

Mucosal folds width (μm) 49.88 ± 3.20bc 36.18 ± 1.92a 53.18 ± 1.06c 45.76 ± 1.45b

Muscle layer thickness (μm) 56.21 ± 3.21b 36.80 ± 2.09a 83.47 ± 2.86c 78.71 ± 9.51c
fro
Values in the table are the mean of six replicates of treatment and are expressed as mean ± SEM (n=6). Values in the same row with different superscript letters are significantly
different (P<0.05).
Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum.
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improved the growth performance of Penaeus monodon. High

levels of nutrients in S. Limacinum such as DHA,

docosapentaenoic acid (EPA), and carotenoids may contribute to

the growth of animals (Xie et al., 2019). However, some studies have

also found that supplementation with high levels of S. Limacinum is

detrimental to the growth performance of Litopenaeus vannamei

and blunt snout bream (Wang et al., 2016; Wang C. et al., 2020).

Our results showed that the supplementation of 0.6% S. Limacinum

had a positive effect on the FBW and WGR of shrimp.

Hemolymph is important for fat absorption and transport, and

TG is transported as an energy substance between adipose tissue

and the liver via hemolymph (Gyan et al., 2021). The fitness of

aquatic animals which can be assessed using blood parameters
Frontiers in Marine Science 09
(Lemaire et al., 1991). Several studies have shown that SPC

substitution for fish meal affects blood indicators (Zhang et al.,

2019; Wang J. et al., 2020; Zhang Q. et al., 2021). TG and TC are

important indexes of lipid sedimentation in animals. LDL-C is

responsible for transporting liver cholesterol to tissue cells

throughout the body, and HDL-C is responsible for transporting

excess cholesterol from blood or tissues to the liver pancreas (Yepiz-

Plascencia et al., 2000; Hamilton-Reeves et al., 2007). In the present

trial, the levels of TC and TG in the hemolymph of Litopenaeus

vannamei fed the LFLD diet were significantly reduced, and when

the addition level of S. Limacinum increased to 0.6%, the levels of

TC and TG increased significantly. Studies have shown that

unsaturated fatty acids are effective in lowering hemolymph
FIGURE 3

Effect of low fish meal diet supplemented with Schizochytrium limacinum on the histology of the midgut of Litopenaeus vannamei. Where: FM,
high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum. MF,
mucosal folds; a, width of mucosal folds; b, height of mucosal folds; c, thickness of the annular sarcolemma; MV, microvilli; ER, endoplasmic
reticulum; N, nucleus; NM, nuclear membrane; M, mitochondria.
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cholesterol levels (Pentieva et al., 2003) and high levels of dietary

unsaturated fatty acids prevent triglycerides from penetrating the

lipoprotein particles of the liver, resulting in lower levels of TG

secreted by hepatocytes into the hemolymph (Yu et al., 2012).

According to (Zhang X. et al., 2021), diets supplemented with 0.5%-

2.0% S. Limacinum significantly increased the hemolymph TG

content of Litopenaeus vannamei and had no significant effect on

the TC content, which was similar to the present study

supplemented with 0.6% S. Limacinum but the TC content first

decreased significantly and then increased. Hemolymph GLU is the

most important energy substance in the hemolymph and is the

direct source of energy required for all types of activities in aquatic

animals (Boonanuntanasarn et al., 2016). Supplementation of S.

Limacinum under the present experimental conditions decreased

the hemolymphGLU content of shrimp, a result that is inconsistent

with the results of studies on Pelodiscus sinensis (Zhang X. et al.,

2021), possibly because of the species and possibly because of the

enhanced energy consumption of the substance metabolism. HDL-

C and LDL-C are able to be transported in shrimp for lipids (Yepiz-

Plascencia et al., 2000). Whereas HDL-C removes TC from the

blood and sedimentation in the liver, which is then excreted from

the animal, LDL-C plays an important part in the immune system

of shrimp (Yue et al., 2012; Chen et al., 2018). The current research

showed a decrease in HDL-C and LDL-C levels and a significant

decrease in HDL-C in the hemolymph of Litopenaeeus vannamei

fed the LF diet, which is different from the results hemolymph in

Micropterus salmoides fed low-level fish meal diet supplemented

with 4% S. Limacinum (Liao et al., 2022). Reasons for this may be

the differences in diet composition, species, and amount of S.

Limacinum supplementation. AST and ALT activity are

important health parameters of liver function in invertebrates

(Song et al., 2018). AST and ALT are the two most important

transaminases in the body and are generally present in the liver

(Zhou et al., 2013; Liu et al., 2019). When the liver is damaged, the

AST and ALT stored in the liver will be transferred to the blood

(Barcellos et al., 2004). In the current research, the AST and ALT

activities in the hemolymph of Litopenaeus vannamei fed the LFLD

and LFHD diets were significantly reduced, a result consistent with

the fact that dietary supplementation with 0.8%-1.2% S. Limacinum

reduced the blood AST/ALT ratio of Cyprinus carpio var. Jian (Liu

et al., 2016) and dietary supplementation with 1% S. Limacinum

reduced the AST and ALT activities in the blood of Labidochromis

caeruleus (Cui et al., 2018). These results indicated that the

supplementation of S. Limacinum in the diet can decrease liver

injury in aquatic animals.

Due to the altered hemolymph biochemical parameters in

shrimp, we further investigated the effect of low fish meal diet

supplementation with S. Limacinum on the expression of genes

related to apoptosis, lipid metabolism, and autophagy in

Litopenaeus vannamei. Lipid metabolism refers to the process

of fat synthesis and catabolism, the digestion of fat, which is

subject to the action of a variety of enzymes and bile (Serrano

et al., 2021; Su et al., 2022). Lipid metabolism is mainly in the
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liver, and research has found that DHA can regulate the

molecular mechanism of lipid metabolism and promote

hepatocytes to stimulate the synthesis of lipoprotein lipase to

further promote lipid metabolism (Morabito et al., 2019;

Deragon et al., 2021). Ampk is a modulator of energy

metabolism in cells. Under low energy regulation, ampk

inhibits TG synthesis and activates the b-oxidation process of

fatty acids to produce more ATP (Gaidhu et al., 2010; Wang

et al., 2018; Xu et al., 2022b). The findings of this research

revealed that the gene expression of ampk and cpt-1 in shrimp

fed the LF diet showed an increasing trend compared to those

fed the FM diet but the gene expression of ampk and cpt-1

increased and then decreased after supplementation with S.

Limacinum, which indicated an increase in energy production

from lipolysis. The gene expression of fas in shrimp fed the LFLD

and LFHD diets was significantly lower than those fed the FM

diet, and the gene expression of acc1 and cpt-1 in shrimp fed the

LFLD and LFHD diets was significantly higher and then

significantly lower than those fed the FM diet, suggesting a

decrease in lipid synthesis after supplementation with S.

Limacinum. The combined effect of lipid synthesis genes and

lipolysis genes resulted in reduced lipid deposition. Srebp is a

major regulator of cholesterol and fatty acids and a critical gene

in lipid synthesis. (Eberle et al., 2004; Kamisuki et al., 2009).

From the experimental results, shrimp fed the high SPC

increased the expression of genes related to lipid synthesis,

probably due to the ability of soy protein amphiphilic globulin

to adsorb lipids (Lusas and Riaz, 1995). It may also be due to

DHA’s inherent property of lowering lipids (Horrocks and Yeo,

1999). Studies in human cardiovascular disease have found that

DHA reduces total blood cholesterol and triglyceride levels

(Mozaffarian and Wu, 2011), and in mice, DHA has been

found to reduce the size of fat cells and lower body fat levels

(Lu et al., 2015). Dietary supplementation with S. Limacinum

decreased the expression of genes related to lipid synthesis,

suggesting that S. Limacinum can reduce lipid synthesis. This

is similar to the results of Zhu et al. (Zhu et al., 2013) which

indicated that supplementation of S. Limacinum in the diet

promoted lipid metabolism and inhibited fat deposition.

Apoptosis is divided into the endogenous mitochondrial

pathway, the endoplasmic reticulum stress pathway, and the

exogenous receptor apoptosis pathway (Sitarek et al., 2022). In

the endogenous mitochondrial pathway, bcl-2 family proteins

(anti-apoptotic protein bcl-2 and pro-apoptotic protein bax)

control outer mitochondrial membrane permeability by

regulating mitochondrial membrane potential (Green, 2022).

Bax is normally found in the cytoplasm and when it receives an

endogenous apoptotic signal, it relocates to the surface of

mitochondria and constitutes a trans-mitochondrial

membrane pore, which releases apoptotic factors. It has been

suggested that the opening of the membrane pore causes a

decrease in membrane potential and also leads to

mitochondrial swelling and deformation (Chipuk et al., 2012).
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Caspase 3 is also one of the downstream effectors of the

endogenous pathway (Samali et al., 1999). It has been shown

that a decrease in mitochondrial membrane potential leads to an

upregulation of the bax/bcl-2 ratio and promotes caspase 3

activation (Zorova et al., 2018). In addition, caspase 8 also

activates caspase 3 directly or indirectly in exogenous signal-

regulated pathways (Bridgham et al., 2003). The results of the

current research showed that supplementation with 0.6% S.

Limacinum appeared to reduce the expression of caspase 3 and

thus inhibit the apoptosis in the hepatopancreas of shrimp; the

expression of caspase 8 was also significantly reduced and thus

inhibit apoptosis. Dietary supplementation with 0.6% S.

Limacinum activated the expression of bcl-2 in the

hepatopancreas of shrimp to further inhibit apoptosis. It has

been suggested that autophagy eliminates damaged proteins and

damaged organelles from the body (Tesseraud et al., 2021).

Cellular autophagy is a highly conserved metabolic process

that degrades its components through lysosomes to maintain

cellular homeostasis and plays an important role in degrading

damaged organelles, resisting pathogenic infections, and

regulating inflammatory responses (Deretic, 2021). The

process of cellular autophagy includes the formation of

segmented membranes, the formation of autophagosomes,

membrane fusion of autophagosomes with lysosomes, and the

digestion of inclusions by autophagosomes (Cao et al., 2021). Atg

13 and beclin1 are participating in the startup of autophagic

bubbles (Kabeya et al., 2005; Hosokawa et al., 2009), and atg 12 is

responsible for the formation of autophagosomes (Radoshevich

et al., 2010). In this experiment, dietary supplementation of 0.6%

S. Limacinum significantly increased hepatopancreas atg 12 and

atg 13 gene expression in shrimp, and it is hypothesized that S.

Limacinum has an effect of promoting autophagy. Researches

have shown that hepatic autophagy promotes glycolipid

metabolism and protein turnover (Song et al., 2010). Several

studies have shown that autophagy is involved in intracellular

nonspecific immune responses, that an appropriate numbers of

autophagy is a self-protective function driving cell survival (Shi

and Kehrl, 2008), and S. Limacinum could activate autophagy-

related gene expression to improve the immune response

in shrimp.

Intestinal morphology and structure are important for

nutritional intake and sustain normal intestinal function (Gao

et al., 2013; Vizcaıńo et al., 2014), and intestinal morphology is

associated with shrimp health (Tang et al., 2009). The height of the

mucosal fold and the width of the mucosal folds can be used as a

measure of the functional characteristics of the intestinal walls.

(Emami et al., 2012). Muscle layer thickness also plays an essential

role in the metabolic digestion and absorptivity of the intestine, and

increasing the thickness of the muscles can increase the absorptivity

and metabolic digestion of nutrients in the intestine (Chen et al.,

2021b). The results of this research showed that S. Limacinum

supplementation in low fish meal diets improved the intestinal

morphology and structure of Litopenaeus vannamei, with an
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increase in mucosal folds length, mucosal folds width, and muscle

layer thickness. Meanwhile, the TEM results showed that the

intestinal microvilli height of shrimp fed the LFLD and LFHD

diets were significantly increased compared to those fed the LF

diet, indicating that dietary supplementation of S. Limacinum

improved the intestinal microvilli structures. However, this result is

contrary to previous studies, which showed that dietary

supplementation with 1.2% S. Limacinum did not affect intestinal

microvilli structure in Nile tilapia, possibly due to the different

amounts of S. Limacinum supplementation and interspecific

differences (Souza et al., 2020). The TEM results also showed that

shrimp fed a LF diet showed endoplasmic reticulum stress, irregular

mitochondrial ridges, and significant swelling in the intestine, which

was improved when the diet was supplemented with S. Limacinum,

and the intestinal mitochondria and endoplasmic reticulum

recovered well when supplemented with 0.6% S. Limacinum.

Earlier researches have demonstrated that reducing fish meal levels

can damage the intestinal epithelial structures (Xie et al., 2018) and

upregulate the gene expression associated with endoplasmic

reticulum stress, which leads to the severity of endoplasmic

reticulum stress in the intestine (Xie et al., 2020a). Some studies

have reported that dietary supplementationwith 3%and6%defatted

S. Limacinum can increase intestinal villi height, but excessive levels

can impede nutrient absorption (Xiao et al., 2021). Supplementation

with 0.75% S. Limacinumwas found to improve intestinal health and

enhance immunity in Penaeus monodon (Xie et al., 2020b). The low

fishmealdiet supplementedwith0.6%S.Limacinum in this studynot

only promoted the early development of the intestinal tract of

Litopenaeus vannamei but also improved the digestive capacity of

the intestine, improved the endoplasmic reticulum and

mitochondrial structure, further improving the intestinal health

and contributing to the healthy growth of shrimp.
Conclusion

The present study revealed that supplementation with 0.6%

S. Limacinum in the low fish meal diet levels improved the

growth performance, reduced hepatopancreatic cell apoptosis,

promoted autophagy, and improved intestinal health in shrimp.
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