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Purpose: Breast cancer (BC) is the highest frequent malignancy in women

globally. Approximately 25–60% of BC patients with chronic neuropathic pain

(CNP) result from advances in treating BC. Since the CNP mechanism is

unclear, the various treatment methods for CNP are limited. We aimed to

explore the brain alternations in BC patients with CNP and the relationship

between depression and CNP utilizing resting-state functional magnetic

resonance imaging (rs-fMRI).

Methods: To collect the data, the female BC survivors with CNP (n = 20) and

healthy controls (n= 20) underwent rs-fMRI. We calculated and compared the

functional connectivity (FC) between the two groups using the thalamus and

periaqueductal gray (PAG) as seed regions.

Results: Patients with BC showed increased depression and FC between the

thalamus and primary somatosensory cortices (SI). Moreover, the Hospital

Anxiety and Depression Scale-Depression (HADS-D) and pain duration were

linked positively to the strength of FC from the thalamus to the SI. Furthermore,

the thalamus-SI FC mediated the impact of pain duration on HADS-D.

Conclusion: In BC patients with CNP, the ascending pain regulation

mechanism is impaired and strongly associated with chronic pain and

accompanying depression. This research increased our knowledge of the

pathophysiology of CNP in patients with BC, which will aid in determining the

optimal therapeutic strategy for those patients.

KEYWORDS

breast cancer, functional MRI, chronic neuropathic pain (CNP), depression, functional

connectivity (FC)

Introduction

Breast cancer (BC) is the highest prevalent malignancy affecting women globally

(1). With increased treatment efficacy (surgery, radiotherapy, hormonal treatment,

chemotherapy, or combined treatment), this disease has more survivors than ever (2).

However, many survivors suffer from chronic pain, including chronic neuropathic
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pain (CNP), with approximately 25–60% of women with CNP

after receiving BCmedication (3). CNP is a collection of distinct

chronic pain manifestations induced by harm or disorder of

the somatic sensory system, such as post-surgical nerve and

tissue damage and inflammation exceeding 3 months. It is a

syndrome caused by nerve dysfunction due to extensive nerve

fiber injury (4, 5). Symptoms include all kinds of debilitating

pain, including burning, shooting, and stabbing, which usually

lasts indefinitely (4, 6). Accordingly, the mechanism of the CNP

is still unclear, and the symptoms are more resistant than other

types of pain to available treatments (7). Therefore, patients

frequently experience complications for the remainder of their

lives. Depression, observed in 18–54.4% of patients with BC,

is among the highest prominent psychological conditions (8–

11). Depression seriously affects mental health, work, and life

(12). Meaningfully, depression is related to elevated deaths in

patients with BC (13). Depression is the primary factor affecting

the functional status of patients with BC (14). A good correlation

exists between pain and depression in patients with BC (15, 16).

Although this is a common phenomenon, its brain mechanism

remains unclear.

Functional MRI (fMRI) is a commonly recognized method

to examine brain function, especially in pain research. CNP

involves morphological changes and functional adaptations

of brain processing (17, 18). Damage to the ascending and

descending pain regulation mechanisms may account for

the aberrant sensory manifestations of people with chronic

pain (19). The thalamus can transmit nociceptive signals to

the somatosensory cortices (SI) through the spinothalamic

projection, which is crucial in the ascending pain pathway (20).

The descending pain regulation mechanisms are significantly

involved in pain perception. These pathways project to neurons

in the dorsal horn of the spinal cord to control the ascending

information of pain, and the higher cortex dominates the

periaqueductal gray (PAG), which is the main control center

in the descending pain regulation pathway (21). Li et al. (22)

discovered aberrant functional connectivity (FC) patterns across

ascending and descending pain mechanisms in individuals with

post-herpetic neuralgia, where the thalamus and PAG were

utilized as seeds. In numerous chronic pain cases, abnormal

FC of the pain regulation system has been reported, such as

migraines (23), low back pain (24), painful diabetic neuropathy

(25), chronic neuropathic pain (17), trigeminal neuralgia (26),

sciatica (27), and neuropathic pain (28). Nevertheless, it is

unclear how the ascending and descending pain regulation

systems lead to CNP in patients with BC. Moreover, the

connection between chronic pain and depression in patients

with BC remains unexplored.

Herein, we utilized fMRI to evaluate neural changes in

ascending and descending pain mechanisms in BC patients with

CNP and to assess the link between CNP and depression in

depth. We speculated that the FC between the thalamus, PAG,

and other brain areas in BC patients with CNP was disrupted

and that a defective FC may be associated with pain features

and depression. If the hypotheses are confirmed, our study will

enhance the understanding of the CNP in BC, which will greatly

benefit the development of new treatments for BC.

Methods

Subjects

Our research complied with the recommendations of the

Declaration of Helsinki, and the Local Ethical Institutional

Review Board accepted the procedures. Before each procedure,

all subjects signed informed consent. This research involved 20

right-handed patients with BC (20 women: mean age 52.25I ±

6.55 years) and 20 ideally suited healthy right-handed controls

(20 women: mean age 49.95± 6.06 years).

The inclusion criteria included (1) patients with BC survived

1-year or more post-therapy and experienced CNP for at

minimum 3 months, (2) 18 years of age or older, and (3)

a pain rating equal to or exceeding 3 out of 10. Exclusion

criteria included (1) cognitive decline; (2) brain metastases; (3)

past psychiatric disorders; (4) receiving central pain treatment

throughout 1 month; (5) concurrent illnesses, like severe

infection or systemic illness (rheumatologic, cardiac, respiratory,

gastrointestinal, neurological, and endocrine); (6) past events

of neural disorders or dementia, psychiatric illnesses, or failure

to accomplish the test methods and MRI scans; and (7) an

unwillingness to participate in the study.

Demographic and clinical features

At admission, demographics (marital status and education)

and clinical data (cancer stage, surgeries and therapies

administered, and antidepressant and/or pain killers use) were

acquired through self-reports and electronic health records.

Pain

Peripheral painkillers were stopped 1 week before the fMRI

scan, and no painkillers were given during the scanning to

ensure the accuracy of the data. We recorded the duration of

CNP for each patient as pain duration. The CNP of patients

with BC was evaluated using the visual analog scale (VAS) score

(0–10 cm, with greater scores showing increased pain). Subjects

indicated their current and historical pain levels by pointing to

a spot on the line between the two faces. One experienced pain

specialist measured the VAS (past) and VAS (during scanning)

of patients to evaluate the pain intensity.
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Depression

The hospital anxiety and depression scale (HADS) is a 14-

item self-reported survey with anxiety and depression subscale

scores (29). HADS performs well in evaluating anxiety disorders

and depression symptoms in patients with BC (29–32). We

assessed the incidence and degree of depressive manifestations

using the hospital anxiety and depression scale-depression

(HADS-D). Each HADS-D item varies from 0 (no symptoms) to

3 (severe symptoms), while depression total scores are calculated

as aggregates varying from 0 to 21. The reference range is 0–7,

8–10 indicates the status, and 11 or more indicates depression.

The HADS-D has demonstrated reliability and validity for

depression in different demographics, including patients with

BC. The measure requires around 3min to complete. We

measure all subjects using HADS-D.

Statistical analysis

Using two-sample t-tests, age and educational years

variations between patients with BC and healthy controls were

determined. A Chi-square test was utilized to examine gender

disparity between the two groups.

fMRI data acquisition and preprocessing

A Philips Ingenia 3T MR scanner (RoyalPhilips,

Amsterdam, the Netherlands) was employed to obtain 3T

fMRI results. Subjects were asked to maintain their heads steady

throughout scanning, and a sponge pad was utilized to limit

unconscious head motion. Also, subjects were instructed to stay

awake and close their eyes, and refrain from engaging in specific

or intense thinking.

BOLD signals were acquired utilizing a gradient-echo-planar

imaging sequence (EPI) with the next metrics: TR (repetition

time) = 2,000ms, TE (echo time) = 30ms, flip angle =

90◦, slices = 36, slice thickness = 4mm, slice spacing =

4mm, matrix = 128 × 128, volumes = 200, volume interval

= 2 s, and voxel size = 2 × 2 × 2 mm3. Concurrently,

high-resolution T1-weighted structural photos were acquired

using a 3-dimensional magnetization prepared rapid acquisition

gradient echo sequence (MPRAGE) with the next scanner

metrics: TR = 7.44ms, TE = 3.46ms, flip angle = 8◦, sagittal

slices = 301, slice thickness = 1.2mm, slice spacing = 0.6mm,

image matrix = 240 × 240, volume = 1, and voxel size = 1 × 1

× 1 mm3.

A brief description of preprocessing pipeline was as follows:

(1) the initial 10 volumes of each functional scan matching every

subject acclimation to the scanning setting and magnetization

stabilization were neglected; (2) movement adjustment was

conducted to lessen the impacts of head movement; and (3)

functional photos were co-registered to structural photos and

spatially normalized to the Montreal Neurological Institute

template. Each voxel was resampled to 3 × 3 × 3 mm3;

(4) the liner-drift, Friston-24 criteria, the white matter signal,

and the CSF signal were retrieved as covariates and regressed

to lessen non-neural signals; (5) a scrubbing action was also

conducted for high motion time points; and (6) eventually,

a band pass filter (0.01–0.08Hz) was used to eliminate high-

frequency noise influences and smoothed with an 8mm full-

width-half-maximum isotropic Gaussian kernel. Therefore, the

collected finding was analyzed deeper.

Considering that the thalamus and PAG are important nodes

in the ascending and descending pain mechanisms, they were

selected as the starting points for the FC analysis of resting-

state fMRI (rs-fMRI) data. To ensure homogeneity among all

participants following standard fMRI analysis pipelines, the

thalamus seed was derived from the Harvard Oxford subcortical

structural atlas (90% threshold), a population-based probability

atlas in MNI-152 standard space (33). The PAG seed was

determined using the Duvernoy atlas of the Human Brainstem

and Cerebellum in MNI-152 standard space (34). Resting-state

seed-based FC analysis was conducted utilizing the toolbox

Data Processing Assistant for rs-fMRI (DPARSF; http://www.

restfmri.net/forum/DPARSF) pipeline.

The mean time series of the thalamus and PAG were

extracted, and voxel-wise FC was calculated between the

thalamus and the remaining voxels within the brain. The same

method was used to calculate the FC of PAG. The differences

in the seed-based FC in patients with BC and HC were assessed

using a general linear model within the gray matter masks. The

grouping information was set as contrast while age, gender, and

educational years were set as covariables to regress their linear

effect on FC. p ≤ 0.001 was corrected for multiple comparisons

using familywise error correction at the cluster level, matching

to an adjusted p ≤ 0.05, using statistical parametric mapping

(SPM12; http://www.fil.ion.ucl.ac.uk/spm). Subsequently, the

mean value within the resultant cluster was extracted and linked

to the clinical indicators in patients with BC.

Mediation analysis

A bootstrappedmediation analysis was employed to evaluate

the mediatory link among pain duration, HADS-D, and seed-

based FC. Using 2000 bootstrap samples and the PROCESS

macro (http://processmacro.org, vs. 2.16.3) in statistical product

service solutions (SPSS; IBM, vs. 23.0), 95% confidence intervals

(CI) for model parameters were determined. The objective of

the mediation analysis was to examine if a significant variation

existed between the total effect (path c) and the direct effect

(path c
′

) that the mediator (M) accounts for. Two models

were evaluated using the thalamus-SI FC as the mediator: (1)

pain duration to be the independent variable and HADS-D
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TABLE 1 Demographic and clinical data of breast cancer (BC) patients and healthy controls (HC) (mean ± SD).

BC patients Healthy controls T p

Female 20 20 - >0.05

Age (year) 52.25± 6.55 49.95± 6.06 1.153 0.256

Education (year) 11.10± 2.79 11.80± 3.47 0.703 0.487

Pain duration (month) 5.05± 0.95

VAS (past) 5.65± 1.66

VAS (scanning) 5.15± 1.63

HADS-D 7.40± 3.35 0.75± 1.52 8.1 <0.001

VAS, Visual Analog Scale; HADS-D, Hospital Anxiety and Depression Scale-Depression.

ratings to be the dependent variable and (2) HADS-D ratings

to be the independent variable and pain duration to be the

dependent variable. A mediation was considered significant

when bootstrapped upper as well as lower 95% CIs showed a

number except zero.

Validation analysis

To examine the consistency of the present findings. We

also regressed the global signal in our current data and

performed FC, correlation, and mediation analyses identical to

our previous analyses.

Results

Demographics, pain, and depression
features

Table 1 summarizes sex, age, years of education, pain

duration (month), pain intensity [VAS (past) VAS (during

scanning)], and depression (HADS-D) in patients with BC and

HC (Figure 1A). Sex (p > 0.05), age (t = 1.153, p = 0.256),

and educational years (t = 0.703, p = 0.487) demonstrated a

non-significant variation between the two groups. Therefore, the

quantified depression condition using HADS-D scales showed

significant elevation in the BC group contrasted with the healthy

group (T = 8.1, p < 0.001; Figure 1B). Eight (40% of the total)

patients with BC had a HADS-D score ≥ 8.

Associations between pain characters
and HADS-D

For patients with BC, Pearson correlation analysis

demonstrated that pain duration and VAS (past) scores were

positively linked to HADS-D scores (pain duration vs. HADS-D:

r = 0.53, p = 0.01; VAS (past) vs. HADS-D: r = 0.49, p = 0.02;

Figure 2). Furthermore, VAS (past) was positively related to

VAS (scanning) (r = 0.60, p= 0.005; Figure 2).

Seed-based FC

Patients with BC displayed significantly stronger FC with

the primary SI and inferior parietal lobule (IPL) than healthy

controls when the thalamus was set as the seed p ≤ 0.001

(familywise error correction, corrected p ≤ 0.05 at cluster level;

Table 2, Figure 3). FC between the thalamus and cerebellum of

patients with BC was weaker than that of healthy controls p ≤

0.001 (familywise error correction, corrected p ≤ 0.05 at cluster

level; Table 2, Figure 3). Importantly, HADS-D scales and pain

duration were positively correlated with the FC between the

thalamus and SI (HADS-D vs. FC: r = 0.71, p < 0.001; pain

duration vs. FC: r = 0.58, p = 0.007; Figure 4). We identified a

non-significant association between thalamus-SI FC and HADS-

D in healthy controls. Using PAG as the seed region showed a

non-significant variation in FC between the two groups.

Mediation analysis

The thalamus-SI FC mediated the pain duration effect on

HADS-D (direct effect = 0.36; indirect effect = 1.56, p < 0.05;

95% CI: [1.23, 2.12], Figure 5, left panel). In contrast, the impact

of HADS-D on pain duration showed no mediation role by the

thalamus-SI FC (direct effect = 0.26; indirect effect = 0.22; 95%

CI: [−0.27, 1.12], Figure 5, right panel).

Validation analysis

Our results from validation analyses were consistent with

our previous results above. Contrasted to the control group,

the BC group exhibited raised FC between the thalamus as

well as SI, correlating with the HADS-D score and pain

duration. The thalamus-SI FC mediated the impact of pain
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FIGURE 1

Pain characteristics (VAS and pain duration) and psychological variables (HADS-D) of BC patients and healthy controls. (A) Pain characteristics
(VAS and pain duration) and HADS-D in BC patients. (B) HADS-D were significantly larger in BC patients than that in healthy controls. HADS-D,
Hospital Anxiety and Depression Scale-Depression.

duration on depression. The above results are presented in the

Supplementary material.

Discussion

Herein, we acquired three primary findings: (1) 40% of

patients with BC with CNP had depression, and the HADS-

D score was significantly linked to pain duration and VAS

(past). (2) Contrasted to the control group, the BC with CNP

group exhibited higher FC between the thalamus as well as

SI, correlating with the HADS-D score and pain duration. (3)

The thalamus-SI FC mediated the impact of pain duration

on depression.

Breast cancer is the highest frequent malignancy in women

globally and accounts for 25% of female cancer cases (35). CNP

and depression are the most common comorbidities in patients

with BC, significantly reducing their quality of life and ability

to return to society (7). Herein, the incidence of depression in

patients with BC was 40%, similar to the reported incidence

by previous studies. We also found that depression (HADS-D)

was positively correlated with pain duration and VAS (past),

consistent with previous studies (15, 16). However, previous

studies focused only on this phenomenon and unillustrated

their internal connection. Furthermore, we investigated the

association between depression and pain in BC patients with

CNP through brain function mechanisms.

The neuroimaging study of chronic pain has always focused

on the study of pain modulation effects, including pain-

associated brain areas and their pain regulation (36, 37). Since

the thalamus and PAG serve as the main nodes of the ascending

and descending pain regulation pathways, we performed FC

analysis using them as seeds. The primary outcome of the fMRI

analysis is that the FC between the thalamus and SI and IPL

were significantly increased contrasted to the control group. The

FC with cerebellum was significantly decreased. The thalamus
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FIGURE 2

Correlation among clinical measures.

TABLE 2 Clusters that exhibited significant seed-based (thalamus) resting-state functional connectivity di�erences between BC patients and

healthy controls.

Area Side Peak MNI coordinates (x, y, z) Cluster size T-value

IPL L −50 −40 44 30 4.88

SI R 33 −27 65 46 4.56

Cerebellum R −17 −84 −33 63 −5.03

BC, breast cancer; IPL, inferior parietal lobule; SI, postcentral gyrus.

is the key node of the ascending pain regulation mechanism,

transmitting the afferent nociceptive signal from the peripheral

receptor to the pain-associated brain region (38). The thalamus

plays a crucial role in initiating and maintaining neuropathic

pain, like trigeminal neuralgia (39) and chronic back pain (19),

and disruption of the thalamocortical network may act as a

potential neurobiological indicator of chronic pain (40–43).

Herein, the raised FC of thalamus-SI showed probable

function impairments in the ascending pain regulation

mechanism in CNP-affected patients with BC. The overloaded

input of spontaneous pain in the thalamocortical network

might strengthen the association between the thalamus and

SI (44), representing that patients with BC were in chronic

pain. Moreover, IPL, as a critical component of the default

mode network (DMN), is implicated in the brain modification

of chronic pain, such as chronic jaw pain (45), chronic

musculoskeletal pain (46), and low-back-related leg pain (47).

We found that the FC of IPL and the thalamus in the BC group

was elevated compared to the control group, suggesting that the

sensory monitoring activity can be affected in BC patients with

CNP (48, 49).

As the main node in descending pain regulation, PAG

is involved in many chronic pain disorders (50–53).

Unfortunately, our study undetected changes in the FC of

PAG with other brain regions compared with healthy control;

the insufficient sample size may be the cause.

We further found that HADS-D and pain duration positively

linked to FC between the thalamus and SI through linear

regression analysis. This indicated that the malfunction of

ascending pain regulation system was strongly linked to

CNP and depression. We agreed with prior studies that the

thalamus increased resting-state FC with the SI when the
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FIGURE 3

Seed-based functional connectivity di�erences between BC patients and healthy controls. Thalamus exhibited stronger resting-state functional
connectivity with postcentral gyrus (SI) and inferior parietal lobule (IPL), and weaker functional connectivity with the Cerebellum in BC patients
than that in the healthy controls.
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FIGURE 4

Correlation between thalamus based functional connectivity and clinical measures. Resting-state functional connectivity between thalamus and
SI was positively correlated with HADS-D and pain duration in BC patients.

FIGURE 5

Mediation analysis. (Left) The e�ect of pain duration on HADS-D was mediated by the Thalamus-SI functional connectivity. Path c is the total
e�ect of pain duration on HADS-D; path c’ is the direct e�ect of pain duration on HADS-D after controlling for the Thalamus-SI functional
connectivity; the product of a and b (ab) is the indirect e�ect of pain duration through the Thalamus-SI functional connectivity on HADS-D.
(Right) The e�ect of HADS-D on pain duration was not mediated by the Thalamus-SI functional connectivity. Path c is the total e�ect of
HADS-D on pain duration; path c’ is the direct e�ect of HADS-D on pain duration after controlling for the Thalamus-SI functional connectivity;
the product of a and b (ab) is the indirect e�ect of HADS-D through the Thalamus-SI functional connectivity on pain duration. HADS-D, Hospital
Anxiety and Depression Scale-Depression. *, p < 0.05.

intensity and duration of pain increased (22). To explore the

relationship among the factors, we performed a mediation

analysis of pain duration, HADS-D, and thalamic-SI FC.

Moreover, mediation analyses demonstrated that the thalamus-

SI FC mediated the impact of pain duration on HADS-

D. In contrast, the thalamus-SI FC unmediated the impact

of HADS-D on pain duration. A reciprocal correlation

existed between pain and depression in patients with chronic

pain (32). Chronic pain in patients with BC is a good

predictor of depression (54). However, they unexplained the

exact mechanism of this phenomenon. Our study explained

this phenomenon in terms of brain neural mechanisms,

deepening the understanding of CNP and depression in patients

with BC.

Accordingly, the present results demonstrated that patients

with BC had impairment in ascending pain modulation

pathways; pain duration can cause depression through the

thalamus-SI connection, which would suggest that even if

the relationship between pain and depression is reciprocal,

causative effects on one another could be achieved through

different neural systems. Indeed, the detailed neural mechanisms

responsible for the causative effects need further investigation.

Conclusion

The ascending pain regulation mechanisms exhibited

deficits strongly linked to chronic pain and depression in
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patients with BC. This research boosted our knowledge of

the pathophysiology of CNP in BC, helping to determine the

optimal therapy for the patients. The clinical treatment of early

pain in patients with BC should be emphasized to prevent the

development of CNP. If the patient has developed CNP, paying

attention to the depression and dealing with it in time while

treating the pain is necessary.

Limitations and implications

This study has some drawbacks. First, our investigation

of the acute association between clinical symptoms and

subcortical/cortical dysfunctions was hampered by the limited

sample size of individuals with various disease severity and

duration. Second, the thalamus has heterogeneous subregions,

limiting the illustration of other detailed mechanisms. Third,

this study is a complete analysis of the FC method in rs-

fMRI, excluding other indicators (amplitude of low-frequency

fluctuation and regional homogeneity); we will do further

research. Accordingly, we unselected the fMRI data of BC

patients with CNP after medication and unexplored the

functional differences of the brain after medication. In the

future, we will use fs-fMRI to observe brain function changes

after medication. Finally, we unexplored peripheral nerve

conduction, which may require further clarification using fMRI

of the spinal cord.
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