
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Christian Kosan,
Friedrich Schiller University
Jena, Germany

REVIEWED BY

Shiyu Mao,
Tongji University, China
Mo Zhang,
China Medical University, China
Wojciech Szlasa,
Wrocław Medical University, Poland

*CORRESPONDENCE

Ming-Kun Chen
chenmk1@smu.edu.cn
Shan-Chao Zhao
lulululu@smu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
B Cell Biology,
a section of the journal
Frontiers in Immunology

RECEIVED 17 May 2022
ACCEPTED 23 November 2022

PUBLISHED 08 December 2022

CITATION

Xie X, Dou C-X, Luo M-R, Zhang K,
Liu Y, Zhou J-W, Huang Z-P, Xue K-Y,
Liang H-Y, Ouyang A-R, Ma S-X,
Yang J-K, Zhou Q-Z, Guo W-B, Liu C-
D, Zhao S-C and Chen M-K (2022)
Plasma cell subtypes analyzed using
artificial intelligence algorithm for
predicting biochemical recurrence,
immune escape potential, and
immunotherapy response
of prostate cancer.
Front. Immunol. 13:946209.
doi: 10.3389/fimmu.2022.946209

COPYRIGHT

© 2022 Xie, Dou, Luo, Zhang, Liu, Zhou,
Huang, Xue, Liang, Ouyang, Ma, Yang,
Zhou, Guo, Liu, Zhao and Chen. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 08 December 2022

DOI 10.3389/fimmu.2022.946209
Plasma cell subtypes analyzed
using artificial intelligence
algorithm for predicting
biochemical recurrence,
immune escape potential, and
immunotherapy response of
prostate cancer

Xiao Xie1,2†, Chun-Xia Dou3†, Ming-Rui Luo4†, Ke Zhang2,6,
Yang Liu1,2, Jia-Wei Zhou1,2, Zhi-Peng Huang1,2,
Kang-Yi Xue1,2, Hao-Yu Liang1,2, Ao-Rong Ouyang1,2,
Sheng-Xiao Ma1,2, Jian-Kun Yang1,2, Qi-Zhao Zhou1,2,
Wen-Bing Guo1,2, Cun-Dong Liu1,2, Shan-Chao Zhao1,2,5*

and Ming-Kun Chen1,2,5*

1Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou,
China, 2The Third Clinical college, Southern Medical University, Guangzhou, China, 3College of
nursing, Jinan University, Guangzhou, China, 4State Key Laboratory of Oncology in South China,
Sun Yat-sen University Cancer Center, Guangzhou, China, 5Department of Urology, Nanfang
Hospital, Southern Medical University, Guangzhou, China, 6Department of Obstetrics and
Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
Background: Plasma cells as an important component of immune

microenvironment plays a crucial role in immune escape and are closely

related to immune therapy response. However, its role for prostate cancer is

rarely understood. In this study, we intend to investigate the value of a new

plasma cell molecular subtype for predicting the biochemical recurrence,

immune escape and immunotherapy response in prostate cancer.

Methods: Gene expression and clinicopathological data were collected from

481 prostate cancer patients in the Cancer Genome Atlas. Then, the immune

characteristics of the patients were analyzed based on plasma cell infiltration

fractions. The unsupervised clustering based machine learning algorithm was

used to identify the molecular subtypes of the plasma cell. And the

characteristic genes of plasma cell subtypes were screened out by three

types of machine learning models to establish an artificial neural network for

predicting plasma cell subtypes. Finally, the prediction artificial neural network

of plasma cell infiltration subtypes was validated in an independent cohort of

449 prostate cancer patients from the Gene Expression Omnibus.
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Results: The plasma cell fraction in prostate cancer was significantly decreased

in tumors with high T stage, high Gleason score and lymph node metastasis. In

addition, low plasma cell fraction patients had a higher risk of biochemical

recurrence. Based on the differential genes of plasma cells, plasma cell

infiltration status of PCa patients were divided into two independent

molecular subtypes(subtype 1 and subtype 2). Subtype 1 tends to be

immunosuppressive plasma cells infiltrating to the PCa region, with a higher

likelihood of biochemical recurrence, more active immune microenvironment,

and stronger immune escape potential, leading to a poor response to

immunotherapy. Subsequently, 10 characteristic genes of plasma cell

subtype were screened out by three machine learning algorithms. Finally, an

artificial neural network was constructed by those 10 genes to predict the

plasma cell subtype of new patients. This artificial neural network was validated

in an independent validation set, and the similar results were gained.

Conclusions: Plasma cell infiltration subtypes could provide a potent

prognostic predictor for prostate cancer and be an option for potential

responders to prostate cancer immunotherapy.
KEYWORDS

prostate cancer, plasma cell, artificial intelligence, immune escape, immunotherapy
Background

Prostate cancer (PCa) is one of the most common male

malignancies worldwide and the second leading cause of cancer-

related deaths in men (1). Patients with PCa benefit only modestly

from current treatments. Despite radical prostatectomy or

androgen deprivation therapy, tumor recurrence and progression

are still unavoidable in some patients (2, 3). In recent years, the

emerging immunotherapy has shown encouraging effects in a

series of cancers (4). The slow growth of PCa and the presence

of a variety of tumor-associated antigens as potential targets seem

to imply that immunotherapy could become a hope of treatment

for PCa (5). However, only a small proportion of PCa patients

benefit from immunotherapy, and clinical heterogeneity among

these patients remains difficult to explain (6).

Previous studies have shown that infiltrating immune cells

into tumors plays a crucial role in tumor occurrence and

development, and also has a huge impact on the effectiveness

of patient treatment (7). Highly infiltrating immunosuppressive
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cells such as M2 tumor-associated macrophages (M2-TAMs)

and regulatory T cells (Tregs) have been proved to be an

important reason for poor prognosis and ineffective treatment

in PCa patients (8–10). Some cells previously thought to have

anti-tumor effects, such as CD8+T cells, have also been shown to

promote lymph node metastasis of PCa (11). Therefore, analysis

of the infiltrating immune cells in PCa may help explain the poor

prognosis and treatment failure of patients. In recent years, with

the deepening of research on the humoral immune system, the

role of B cells in the tumor microenvironment has been

emphasized. Plasma cells, terminally differentiated B cells, act

as antibody “factories” for normal physiological functions and

can produce antibodies based on tumor-associated antigens to

resist tumors (12). Pan-cancer analysis has shown that plasma

cell-associated genes are one of the strongest positive prognostic

factors in tumors (13). In the study of malignant tumors such as

gastric cancer, metastatic melanoma, and non-small cell lung

cancer, increased levels of plasma cell infiltration predict better

prognosis and immunotherapy response of patients (14–16).

However, studies in cancers such as breast cancer, primary

melanoma, and cervical cancer have yielded opposite

conclusions (17–19). These contradictory results suggest that

plasma cells perform different functions in different malignant

tumors. Previous studies have suggested that IgA-secreting

plasma cell subtypes in PCa can block anti-tumor T cell

responses and exert immunosuppressive effects. Elimination of

such cells enhances the efficacy of immune-related therapies
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(20). The role and mechanism of plasma cells in PCa need to be

further elucidated. Therefore, it is urgent to explore the clinical

significance and biological function of plasma cells in PCa.

In this study, transcriptome analysis was performed on PCa

patients to assess their fractions of plasma cell infiltration. Based

on plasma cell characteristic genes, PCa patients were divided

into two subtypes with different clinical features, tumor

prognosis, and functional annotation. The differences in tumor

microenvironment, gene mutations, and immune escape ability

between the two subtypes were analyzed to further determine the

benefit of immunotherapy between the two subtypes. Finally, an

artificial neural network (ANN) to quickly distinguish the two

plasma cell subtypes in PCa patients was constructed by a variety

of artificial intelligence algorithms and validated in a combined

cohort consisting of multiple datasets. Our study aimed to

propose a novel plasma cell-based molecular subtyping to

provide a new option for individualized survival prediction

and treatment options for PCa patients.
Materials and methods

Patients data collection

The gene expression profiles of patients were obtained from

The Cancer Genome Atlas (TCGA) and the Gene Expression

Omnibus(GEO), which served as discovery cohort and validation

cohort, respectively. Patients with incomplete follow-up

information, normal and metastatic tissue samples were

excluded. Finally, the FPKM RNA-seq and clinical information of

481 PCa patients were collected from the TCGA database(https://

portal.gdc.cancer.gov/), gene expression data of 449 PCa patients

were collected from GSE70768 (21), GSE70769 (21), GSE116918

(22) in the GEO database(https://www.ncbi.nlm.nih.gov/geo/).

The platform used by the GEO queue is shown in the

Supplementary Table 1. The FPKM of the TCGA cohort was

converted to TPM according to the previous method of Bo Li

et al. (23). The previous approach was used to remove batch effects

andmerge theGEOcohorts (24, 25). For data standardization, both

TCGA and GEO cohorts were processed by log (x+1). In addition,

somatic mutation data based on the whole exon sequencing

platform was also downloaded from the TCGA database. The

demographic information and follow-up data of 930 PCa patients

are shown in Table 1.
Calculation of plasma cell relative
fractions based on gene expression

In this study, the CIBERSORT algorithm served to estimate

the relative fractions of immune cells in PCa patients. The

CIBERSORT algorithm is a linear support vector regression

deconvolution algorithm based on machine learning, which is
Frontiers in Immunology 03
better than the traditional deconvolution method for estimating

infiltrating immunity (26). The LM22 reference files were

obtained from the original paper, and TCGA and GEO data

were converted into a format that is suitable for CIBERSORT

algorithm analysis. The relative fractions of plasma cells and 21

other immune cells in PCa samples were obtained by the

CIBERSORT algorithm.
Tumor immune microenvironment
patterns of PCa

The ESTIMATE algorithm was used to evaluate stroma and

immune cell scores in tumor samples. After evaluating the immune

score (immune cell abundance) and stromal score (stromal cell

abundance), the ESTIMATE algorithm can further calculate the

ESTIMATE score (non-tumor cell abundance) and tumor purity

(27). In addition, 29 immune signature gene sets that reflect tumor

immune activity were obtained from the Molecular Signatures

Database (28) and quantified by single-sample Gene Set

Enrichment Analysis (ssGSEA). ConsensusClusterPlus (29) was

thenused for cluster analysis, K-means clustering algorithmwith1-

Spearman correlation distance based on the machine learning

algorithm, the empirical cumulative distribution function(CDF)

map, and clustering heat map were used to determine the optimal

clustering number. Patients with PCa were divided into different

cluster centers and named according to immunoactive subtypes.
Variation analysis between high and low
plasma cell fractions groups

According to the median of plasma cell fractions, PCa

patients were divided into high plasma cell group and low

plasma cell group. Limma was used for differential gene

analysis (30). Meet |logFC|>1 and FDR<0.01 genes were

differential genes (DEGs). For the enrichment of gene set

function analysis, the KEGG rest API (https://www.kegg.jp/

kegg/rest/keggapi.html) and org. Hs. Eg. Db (version 3.1.0)

were utilized to obtain the results of gene set enrichment by R

software package ClusterProfiler(Version 3.14.3). The protein-

protein interaction(PPI) network of 25 DEGs was constructed

from the STRING database (https://cn.string-db.org/).
Molecular subtypes of PCa based
on DEGs

Similar to the ssGSEA clustering mentioned above, the K-

means algorithm based on machine learning was used for the

unsupervised clustering of 25 DEGs, and the optimal clustering

number was determined by CDF map and clustering heat map.

The clinicopathological parameters in various clusters were
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compared to further explore the association between plasma cell

subtypes and clinical characteristics of PCa patients.

Furthermore, the clinical characteristics of different clusters

were compared to explore the association between plasma cell

subtypes and clinical characteristics of PCa patients.
Gene set variation analysis

The R software package GSVA (31) was used to calculate the

enrichment score of each sample in the Gene Set. The

c2.cp.kegg.v7.4.symbols.gmt gene set from the Molecular

Signatures Database (28) was downloaded to evaluate relevant

pathways and molecular mechanisms and got the enrichment

score of each sample in each gene set. Limma (30) was further

contributed to analyzing the differences in KEGG pathway

enrichment score between the two plasma cell subtypes. |log2FC|
Frontiers in Immunology 04
>0.15 and FDR<0.01 KEGG pathway was considered as a

significantly different molecular pathway.
Immune evasion score and prediction of
immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE)

Algorithm, developed based on tumor immune evasion

mechanism, can predict patient response to immunotherapy

through the interaction between tumor gene expression data

and T cell infiltration level. Multiple immune characteristics,

such as Immune checkpoint, MDSCs, CAFs, and TAMs, were

included, and their effectiveness was verified by large-scale

immunotherapy data (32, 33). TIDE scores in the python

programming environment were used for prediction in

this study.
TABLE 1 Demographics and clinicopathological features of PCa patients in the TCGA and GEO cohort.

Characteristics TCGA ( N = 481 ) GEO ( N = 449 ) Total ( N = 930 )

Age

<=60 216 (23.23%) 83 (8.92%) 299 (32.15%)

>60 265 (28.49%) 276 (29.68%) 541 (58.17%)

NA 0 (0%) 90 (9.68%) 90 (9.68%)

Gleason score

5 0 (0%) 2 (0.22%) 2 (0.22%)

6 45 (4.84%) 77 (8.28%) 122 (13.12%)

7 241 (25.91%) 239 (25.70%) 480 (51.61%)

8 58 (6.24%) 65 (6.99%) 123 (13.23%)

9 133 (14.30%) 64 (6.88%) 197 (21.18%)

10 4 (0.43%) 2 (0.22%) 6 (0.65%)

BCR state

0 415 (44.62%) 329 (35.38%) 744 (80.00%)

1 66 (7.10%) 120 (12.90%) 186 (20.00%)

BCR time

Mean±SD 981.69 ± 767.23 1833.28 ± 972.80 1392.83 ± 970.46

T stage

T0 0 (0%) 1 (0.11%) 1 (0.11%)

T1 0 (0%) 51 (5.48%) 51 (5.48%)

T2 182 (19.57%) 156 (16.77%) 338 (36.34%)

T3 282 (30.32%) 210 (22.58%) 492 (52.90%)

T4 10 (1.08%) 5 (0.54%) 15 (1.61%)

NA 7 (0.75%) 26 (2.80%) 33 (3.55%)

N stage

N0 333 (35.81%) —— 333 (35.81%)

N1 77 (8.28%) —— 77 (8.28%)

NA 71 (7.63%) 449 (48.28%) 520 (55.91%)

Progression

CR+PR 301 (32.37%) —— 301 (32.37%)

PD+SD 62 (6.67%) —— 62 (6.67%)

NA 118 (12.69%) 449 (48.28%) 567 (60.97%)
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Machine learning method to select
plasma cell subtype pivotal features

The Scikit-Learn (Sklearn), an open-source machine

learning library, supports both supervised and unsupervised

learning, applying to machine learning feature filtering and

ANN construction. It provides a variety of tools for model

fitting, data preprocessing, model selection, model evaluation,

and many other utilities (34). Firstly, 25 DEGs expression

matrices of 481 PCa patients in the TCGA cohort were

preprocessed by the StandardScaler function. Plasma cell

subtypes were used as labels, the 10-Fold cross-validation

method was adopted, and the area under the ROC curve

(AUC) was used as assessment criteria. Three representative

machine learning models (Random Forest, SVM, XGboost) were

used for recursive feature elimination to select plasma cell

subtype characteristic genes. The genes were visualized by a

Venn diagram after feature selection by the three machine

learning models, and the intersection genes were considered to

be pivotal features of plasma cell subtype prediction.
Construction of ANN for plasma cell
subtype prediction

Firstly, we meticulously designed an ANN with three fully

connected layers except for the input layer and output layer, and

the number of neurons in each layer was (64,8,64), respectively.

The widely used Relu function was selected as the activation

function (35), and the Adam optimizer was selected as the

optimizer (36). The initial learning rate was set as 0.01, and

the L2 penalty parameter was set as 0.0001. The online tool NN-

SVG (http://alexlenail.me/NN-SVG) was adopted to visualize

the network structure. The gene expression data were

preprocessed by the StandardScaler function. Finally, after the

ANN was trained iteratively, the prediction performance of our

ANN was evaluated through the ROC curve and the confusion

matrix of the verification set. At the same time, accuracy and

other model evaluation indexes were calculated according to the

confusion matrix. The TCGA queue trained ANN model file

(.pickle, Supplementary File ANNmodelpred.rar) was saved

through the Pickle module, which can be easily available to

predict plasma cell subtypes of unknown data.
Statistical analysis

Log-rank tests were used to estimate the association between

survival outcomes in different groups of PCa patients. The

Mann-Whitney test and Chi-square test were used to assess

differences between the continuous and categorical groups,

respectively. The correlation test was based on Pearson

analysis, P-value <0.05 and |R|> 0.3 was considered to be
Frontiers in Immunology 05
significantly correlated. SPSS 25.0 (SPSS Company in Chicago,

Illinois, USA) and R4.1.2 software were used for statistical

analysis. Double tail P-value<0.05 was considered statistically

significant. Report hazard ratios (HRs) and 95% confidence

intervals (CI) as necessary.
Results

Relationship of plasma cell fractions and
clinical features and tumor
microenvironment patterns

The overall flow chart of this study is shown in Figure 1.

First, the content of 22 immune cells in 481 patients with PCa

was calculated by the CIBERSORT algorithm, and then plasma

cells were inversely ordered to explore the association between

plasma cell fractions and clinical features (Figure 2A). Plasma

cell fractions were significantly increased in biochemical

recurrence-free (P<0.05), age<60 (P<0.05), N0 stage (P<0.05),

CP+RP (P<0.01), Gleason<=7 (P<0.001), and in both T stage

and ISUP stage, plasma cells in patients with high grade were

significantly lower than those in patients with low grade (P <

0.001, Figure 2B).

The ssGSEA algorithm was used to quantify the overall

characteristic level of immune activity in a single patient. Then, 29

immune activity characteristics of 481 patients with PCa were used

for unsupervised clustering by the K-means algorithm. The optimal

cluster number of CDF distributionmap and a consistent heat map

was 2 (Supplementary Figures 1A, B), that is, 481 patients could be

divided into the high immunoactivity group (N=161) and the low

immunoactivity group (N=320). The heatmapwas used to visualize

the immune characteristics (Figure 2C). Tumor purity, ESTIMATE

score, immune score, and stromal score were evaluated by the

ESTIMATE algorithm. There was a significant negative

correlation between plasma cell fractions and the ESTIMATE

score, immune and stromal score, which indicated that the

infiltration levels of immune and stromal cells decreased with the

increase of plasma cell fractions; there was a significant positive

correlation between plasma cell fractions and tumor purity

(Figure 2D). Then we compared the fractions of plasma cells in

the low immunoactivity group and found that the fractions of

plasma cells in the low immunoactivity group were significantly

higher than that in the high immunoactivity group (Supplementary

Figure 1C). In addition, we also explored the correlation between

plasma cells and other 20 types of immune cells (T cells CD4 naive

was 0 in all samples, which was removed below), and found that the

content ofmost immune cells was negatively correlatedwith plasma

cell fractions. T cells CD4 memory resting showed a significant

negative correlation with plasma cells (R=-0.48, P=9.3e-30). There

was also a negative correlation between Dendritic resting, T cell

regulatory, Macrophages M1, Macrophages M2, and plasma cells,

respectively (P<0.001, Supplementary Figure 1D).
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Plasma cell fraction and
DEGs identification

According to the median plasma cell fractions, 481 patients were

divided into the high plasma cell group and the low plasma cell group.

K-M survival analysis showed that the low plasma cell group had

significantly lower biochemical recurrence-free time than the high

plasma cell group (HR=1.77, p =0.02, Figure 3A). Combined with the

negative correlation between plasma cells and other immune cells
Frontiers in Immunology 06
mentioned above, itmay indicate that the immunemicroenvironment

in PCa is distinguished from those of these tumors. Therefore, we

further explore the molecular subtypes of plasma cells.

Differential expression analysis was conducted between the high

plasma cell group and the low plasma cell group, and 25 DEGs were

identified, amongwhich18geneswere significantlyup-regulatedand

7 genes were significantly down-regulated in the low plasma cell

group (Figures 3B, C). In addition, we analyzed the correlation

between 25 DEGs and 21 kinds of immune cell fractions, and
FIGURE 1

Workflow for analysis of plasma celle subtypes using artificial intelligence algorithms, (BRFS, Biochemical recurrence-free survival.
DEGs, Differentially expressed genes; GSVA, Gene set varation analysis).
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found that 25 DEGs were significantly correlated with plasma cell

fraction (Supplementary Figure 2A). Then, the KEGG and GO

enrichment analysis was performed for the differential genes, and

some pathways and biological pathwayswere visualized (Figure 3D).

The enriched KEGG pathway is mainly related to cell receptor

interactions, such as ECM-receptor interaction, Viral protein

interaction with cytokine and cytokine receptor, and Cytokine-

cytokine receptor interaction. The enrichment of the GO term is

mainly concentrated in the extracellular region, such as the

extracellular region and extracellular region part. KEGG and GO

enrichment analysis results were correlated with the biological

functions of plasma cells. Finally, we constructed a PPI network

diagram for 25 DEGs(Supplementary Figure 2B).

Different clinical and molecular
characteristics in the two plasma cell
molecular subtypes

The 25 DEGs were used for unsupervised clustering to identify

novel molecular subtypes. According to the CDF curve and
Frontiers in Immunology 07
consistent heat map, the optimal cluster is determined as 2

(Figures 4A, B). Therefore, all PCa patients were divided into two

groups, plasma cell subtype 1 (N=233) and plasma cell subtype 2

(N=248), respectively, and the gene expression and immune activity

of the two subtypes were visualized by a heat map (Figure 4C). We

then compared the clinical features of the two plasma cell subtypes,

and found that ISUP grading, Gleason score (between <=7 and >7),

disease progression, and pathological T and N stage were

significantly different (P<0.001), and there was also a significant

difference in the number of biochemical recurrences (P<0.05).

There was no significant difference between age and survival state

(Figure 4D). We compared plasma cell fractions between the two

subtypes, and plasma cell fractions of subtype 1 were significantly

lower than that of subtype 2 (P<0.001, Figure 4E). K-M survival

analysis showed that plasma cell subtype 1 had worse biochemical

recurrence-free survival than plasma cell subtype 2 (HR=1.86,

P<0.01, Figure 4F). Then, the ESTIMATE algorithm was used to

calculate the microenvironments of two plasma cell subtypes. There

were higher ESTIMATE scores, immune scores, and stromal scores,

however lower tumor purity in plasma cell subtype 1(all P<0.001,
A B

D
C

FIGURE 2

The clinical features and tumor microenvironment patterns associated with the plasma cell fraction in PCa patients. (A) The overview of the
association between plasma cell fraction and clinical features of patiens. (B) Violin plots of plasma cell fraction in individual samples of PCa
patiens, stratified by clinical features. (C) The immune subtypes of PCa patiens were categorized on the basis of the overall immune activity.
(D) Correlation analysis between plasma cell fraction and the tumor purity, stromal score, immune score and ESTIMATE score evaluated by
ESTIMATE algorithm. *P < 0.05, **P < 0.01, ***P < 0.001.
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Supplementary Figure 3A). In addition, we explored the

relationship between plasma cell subtypes and immunoactive, and

found that there were more high immunoactive groups in plasma

cell subtype 1, which may indicate that plasma cell subtype 1 has

higher immunoactivity (P<0.001, Supplementary Figure 3B).

Finally, we visualized the mutation landscape of the top 25 genes

with the largest number of mutations in PCa and performed a Chi-

square test on the frequency of mutations between the two groups

to explore differences in gene mutations among different subtypes

(Figure 4G). The mutation frequency of TP53, BRCA2, MUC7,

CNTNAP5, FLG, etc. in plasma cell subtype 1 was significantly

higher than that in plasma cell subtype 2, while the mutation

frequency of SPOP was significantly lower than that in plasma cell

subtype 2. In previous studies on PCa, TP53 and BRCA2mutations

have been recognized as adverse prognostic factors (37–40). There

was no significant correlation between SPOP mutation and

prognosis of PCa, but studies have shown that it can improve the

sensitivity of PCa to Abiraterone (41, 42).

Plasma cell molecular subtypes immune
escape and response rate
of immunotherapy

Previous studies have shown that immune cells can promote

tumor immune escape through cross-talk and change the
Frontiers in Immunology 08
proportion of immune cells in tumor microenvironment (43,

44). Therefore, the CIBERSORT algorithm was used to compare

the content of 20 other immune cells between the two subtypes.

The Dendritic cells resting, Macrophages M2, Macrophages M1,

Macrophages M0, Tregs, T cells CD4 memory, T cell CD4

memory resting and B cell memory were more abundant in

plasma cell subtype 1. Only Mast cells resting (except plasma

cells) were highly expressed in plasma cell subtype 2. (all P<0.05,

Figure 5A). Our previous studies of M2 macrophages have

shown that PCa patients with high M2 macrophage infiltration

are less sensitive to immunotherapy (10). This may suggest

higher immunosuppression and greater immune escape

potential in plasma cell subtype 1.

To further explore functional enrichment among plasma cell

subtypes, the GSVA was used to further explore the molecular

pathways and potential mechanisms between plasma cell

subtypes. A total of 41 differentially enriched molecular

pathways were identified, among which 27 were significantly

down-regulated and 14 were significantly up-regulated in

plasma cell subtype 1. The significantly enriched pathways

were visualized by a heat map (Figure 5B). The down-

regulated pathways in plasma cell subtype 1 are mainly related

to the metabolism of a variety of substances, such as

PROPANOATE_METABOLISM, FATTY_ACID_METABOLISM,

BUTANOATE_METABOLISM, etc. The significantly up-regulated
A

B

D

C

FIGURE 3

Survival analysis and differential expression between high and low plasma cell fraction groups. (A) The higher plasma cell fraction group had
better biochemical recurrence-free survival. (B) Volcano plots of DEGS between high and low plasma cell fraction groups. (C) The DEGs
heatmap showed the expression levels between two groups. Red and blue represented high and low expressions, respectively.
(D) The functional enrichment analyses of DEGs, KEEG enrichment analysis is on the left and GO enrichment analysis is on the right.
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pathways in plasma cell subtype 1 are related to cell cycle regulation

(CELL_CYCLE), the transmission of genetic information

(SPLICEOSOME, RNA_DEGRADATIO) and immune regulation

(ECM_RECEPTOR_INTERACTION, TGF_BETA_SIGNALING_

PATHWAY, T_CELL_RECEPTOR_SIGNALING_PATHWAY),

etc. Previous studies have described a potentially unique

immunosuppressive plasma cell subset unique to PCa that responds

to the TGFb pathway and inhibits CD8+T cell-mediated tumor

immunity (20, 45). In addition, the TGFb pathway has also been

confirmed by multiple studies that the TGFb pathway is related to the
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immune evasion mechanism of tumors, and tumor cells can use the

TGFb pathway to avoid immune monitoring of lymphocytes (46, 47).

Therefore, we inferred that plasma cell subtype 1 may be more

immunosuppressive plasma cells, and its immune evasion potential

may be stronger.

The TIDE algorithm was to evaluate the immune evasion

potential of 481 patients with PCa. A higher TIDE score means a

higher possibility of immune evasion. The TIDE score of plasma

cell subtype 1 was significantly higher than that of plasma cell

subtype 2 (P<0.001, Figure 5C). In addition, higher TIDE scores
A

B
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C

FIGURE 4

Two molecules subtypes of plasma cell with different clinical characteristics, biochemical recurrence probability, and mutant landscape.
(A) The CDF curves of the consensus score from k = 2 to 10. (B) The Consensus clustering matrix when the best K = 2. (C) The heatmap of the
expression patterns of 25 DEGs, with red indicating high expressions and blue indicating low expressions. (D) Comparison of clinical features
between two plasma cell subtypes. (E) Kaplan–Meir survival analysis exhibited significantly worse BCR-free survival probability in plasma cell
subtype 1. (F) Plasma cell fraction was higher in plasma cell subtype 1. (G) Waterfall plots showed the top 20 mutated between plasma cell
subtype. *P < 0.05, **P < 0.01, ***P < 0.001.
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were generally associated with poorer prognostic outcomes, which

were similar to previous biochemical recurrence-free survival

outcomes. We found that plasma cell type 2 patients had a

higher microsatellite instability(MSI) score (P<0.001), while

plasma cell subtype 1 had a higher T cell exclusion score

(P<0.001), but there was no significant difference in T cell

dysfunction between the two subtypes(Figure 5C). TIDE score

also predicted the likelihood of patients responding to

immunotherapy. The proportion of immunotherapy responders

in plasma cell subtype 1 was significantly lower than that in

plasma cell subtype 2 (25.8% vs. 50.00%, P<0.001, Figure 5D). For

tumor immunoactivity, the proportion of responders in the low

tumor immunoactivity group was significantly higher than that in

the high tumor immunoactivity group (44.4% vs. 26.1%, P<0.001,

Figure 5D). These results may indicate that plasma cell subtypes

can predict, to a certain extent, whether patients with PCa respond

to immunotherapy.
Characteristic genes for predicting
plasma cell molecular subtypes

Three representative machine learning algorithms were used

to screen DEGs to evaluate key genes for plasma cell subtype

prediction. 25 DEGs genes were recursively eliminated by
Frontiers in Immunology 10
Random Forest, XGboost, and SVM, respectively. Finally, 20,

16, and 12 characteristic genes were identified. The AUC-

characteristic curve suggested that the three machine learning

models performed superiorly in identifying plasma cell subtypes.

After 10 features, the average AUC of 10-fold cross-validation

was all greater than 0.95(Figure 6A). 10 key genes of plasma cell

subtypes were identified by three machine learning algorithms

using the Venn diagram (Figure 6B).
Construction and validation of ANN for
plasma cell subtype prediction

After feature gene screening, the 481 PCa patients in the

TCGA cohort were selected according to their plasma cell

subtypes, with stratified random sampling at 7:3 as the

training set (N=336) and verification set (N=145), and then

used the training set to train the ANN prediction model. The

network structure is visualized (Figure 6C). Inputting the above

10 key genes of plasma cell subtypes and labeling plasma cell

subtypes, the concentration of plasma cell subtypes would be

predicted and verified after training. After training, ROC curve

analysis showed that our ANN had superior performance in

predicting plasma cell subtypes. In the training set, the AUC of

plasma cell subtypes was 1.0000, while in the verification set, the
A B

DC

FIGURE 5

Analysis of immune escape potential and efficacy of immunotherapy between plasma cell subtypes. (A) Comparisons of the fraction of 20
immune cells in two plasma cell subtypes. (B) Heatmap illustrated the enrichment scores of 41 differentially enriched molecular pathways
evaluated by GSVA analysis between plasma cell subtype 1 and 2. Yellow and blue represented high and low enrichment scores, respectively.
(C) TIDE, Exclusion, Dysfunction and MSI score different plasma cell subtypes. (D) Comparisons of the proportions of nonresponders and
responder to immunotherapy among different classification methods. (Left: plasma cell subtype, Right: immune subtype). *P < 0.05, **P < 0.01,
***P < 0.001.
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FIGURE 6

Construction and validation of ANN for plasma cell subtype prediction. (A) The average AUC curves of feature screening were obtained by the
three machine learning algorithms (Randoms forest, SVM and XGboost) respectively under the 10-fold cross-validation, the dotted line
represents the best number of features. (B) Venn diagrams shows 10 characteristic genes of plasma cell subtypes shared by the three machine
learning models. (C) The ANN simulation diagram includes three hidden layers except the input&output layer, and the neurons in each layer are
(64,8,64), respectively. Regions larger than 12 neurons are omitted due to plotting limitations. (D) The ROC curves of the ANN in distinguishing
two subtypes in the train set and test set. (E) Confusion matrix and evaluation parameters in test set. (F) The GEO independent validatiob queue
was predicted using ANN, and the expression of 10 characteristics genes was visualized through heat maps. (G) Kaplan-Meier survival analysis
showed differences in biochemical recurrence-free probability among plasma cell subtypes in the GEO independently validated cohort.
(H) There were differences in TIDE scores between the tow plasma cell subtypes in the GEO cohort.
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AUC was 0.9617(Figure 6D). Further, we visualized the confusion

matrix of the verification set and evaluated the evaluation indexes

of ANN in the verification set. The accuracy of the verification set

is 0.9448, and other indexes are shown in the figure(Figure 6E).
Validation of the ANN in an
independent cohort

A multi-dataset combined cohort of 449 PATIENTS with

PCa was recruited from the GEO database, to validate the

clinical application value of plasma cell subtype predictive

ANN in different data types and patient populations. The gene

expression of 10 plasma cell subtypes from 449 patients was

extracted, and then used our trained ANN to predict the

subtypes of the patients. 449 patients were divided into 217

plasma cell subtype 1 and 232 plasma cell subtype 2, and gene

expression and plasma cell subtype were visualized by a heat

map (Figure 6F).KM analysis showed that the recurrence-free

survival rate of plasma cell subtype 1 was significantly lower than

that of plasma cell subtype 2 in the GEO combination cohort

(HR= 2.23, P<0.001, Figure 6G), was consistent with the TCGA

cohort. We also compared the clinical features of the two plasma

cell subtypes, which could not be compared in the ISUP stage

due to lacking primary/second Gleason. There was no difference

in age between the two plasma cell subtypes, while there were

more patients with high Gleason score, high T stage, and more

biochemical recurrence in plasma cell subtype 1 than in plasma

cell subtype 2 (all P<0.001, Supplementary Figure 4A). The

tumor microenvironment patterns in the GEO combination

cohort were evaluated and, similar to TCGA results,

significantly reduced ESTIMATE, immune and stromal scores

for plasma cell subtype 1 and significantly increased tumor

purity scores (all P<0.001, Supplementary Figure 4B). The

abundance of plasma cell subtype 1 immune and stromal cells

was lower than that of tumor cells. Meanwhile, the fractions of

plasma cells and 21 other immune cells calculated by

CIBERSORT algorithm were compared between the two

subtypes(Supplementary Figure 4C).

The TIDE scores of two plasma cell subtypes in the GEO

combined cohort were compared and found that TIDE scores of

plasma cell subtype 1 were significantly higher than those of

plasma cell subtype 2 (P<0.001, Figure 6H). In addition, plasma

cell subtype 1 had a higher exclusion score (P<0.001), the MSI

score was lower (P<0.001), but there was no significant

difference in dysfunction score between the two subtypes

(Supplementary Figure 4D). Plasma cell subtype 1 is also

insensitive to immunotherapy (P<0.001, Supplementary

Figure 4E), which was consistent with TCGA cohort results.

The risk values for biochemical recurrence of 10 characteristic

genes in TCGA and GEO cohorts and the AUC values used to

distinguish the two plasma cell subtypes were calculated as
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Table 2 and Supplementary Table 2. Overall, plasma cell

subtype 1 was associated with a worse prognosis, a greater

immune evasion potential, and a poorer response to

immunotherapy in the GEO combined cohort. All of these

findings suggest that the novel plasma cell molecular

classification we constructed by ANN is robust and can be

applied to different patient populations in different cohorts.
Discussion

Compared to other types of malignancies, PCa grows

slowly, which makes it an ideal candidate for effective

immunotherapy (5, 48). Therefore, immunotherapy for PCa

has received extensive attention, including checkpoint

inhibitors, cytokines, and therapeutic cancer vaccines (49).

Currently, anti-PD1/PDL1 and anti-CTLA4 monoclonal

antibodies have been tested in the treatment of patients with

mCRPC, but the trial results have been disappointing. Only a

limited number of patients benefited from immunotherapy,

and it is challenging to explain this heterogeneity. In previous

clinical studies, patients with PCa were not selectively recruited

by molecular omics, or by PD1/PDL1 or CTLA4 expression

alone (50–52). Due to the instability of immune checkpoint

expression in PCa, it is difficult to be a reliable biomarker for

immune checkpoint therapy (10, 53). Therefore, such

unselected treatment may lead to the failure of these

immunotherapy clinical trials. How to screen out patients

with PCa who are more responsive to immunotherapy has

become an issue that needs to be focused on in the future.

Based on the above problems, this study provides insight

into the relationship between plasma cells and immunotherapy

in PCa, and introduced two subtypes according to the

characteristic genes of plasma cells. The results showed that

although having a higher immune activity, plasma cell subtype

1 has a higher biochemical recurrence probability, higher

immune escape potential, and a poorer response to

immunotherapy In fact, in studies of other tumors, immune

cell activity in the tumor microenvironment has been found to

be mostly a positive prognostic factor, and immunoactive

patients may be more responsive to immunotherapy (54–56).

We found that even with higher immune activity in plasma cell

subtype 1, its immunotherapy efficacy was still poor. These

results suggest that immune escape may be promoted by a

unique mechanism in PCa plasma cells, thereby affecting the

efficacy of immunotherapy.

Whether plasma cells can directly mediate immune escape

in PCa has not been fully investigated, there is still some

evidence that plasma cells interact with the immune

microenvironment to induce tumor immune escape. On the

one hand, plasma cells can inhibit the activity of effector T cells

by releasing immunosuppressive cytokines such as IL-10 and
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IL-35, thereby weakening the tumor-killing effect of effector T

cells (12). On the other hand, plasma cells promote the

production of regulatory T cells (Tregs) by secreting TGF-b
(12),and promote the production of M2 macrophages (M2-

TAMs) by secreting GABA (57)These immunosuppressive

cells limit the infiltration of effector T cells into the tumor

area (58). Thus, even if the overall immune activity of the

tumor is strong, plasma cell-induced T cell anergy and

exclusion prevent the immune system from mounting an

effective anti-tumor response, inducing the immune escape of

the tumor. In addition, plasma cells can interact with Treg cells

to transform into immunosuppressive plasma cells (12).

Previous study in PCa have shown that the removal of

immunosuppressive plasma cells from TRAMP mice

receiving immunogenic chemotherapy is able to increase T-

cell infiltration in the tumor area, thereby improving the

efficacy of immunogenic chemotherapy (20). All the above

studies suggest that there is a correlation between plasma cells

and immune escape. Immunotherapy targeting plasma cells or

combining immunotherapy with anti-plasma cell therapy may

be the focus of future PCa research.

This study does, however, have some limitations. First of all,

this study used public database analysis of TCGA and GEO

cohort, lacking direct evidence to investigate the relationship

between plasma cell infiltration and the immunotherapy

response rate of PCa. So these findings need to be confirmed

by further experiments, which is what we are going to do next.

Secondly, ANN is often called the “black box” due to its internal

interpretability (59, 60). Currently, it is challenging to determine

how to weigh the internal features of a model. In addition, more

samples are also required to verify the ANN model. Finally, the

number of PCa patients currently receiving immunotherapy is

very limited, so the relationship between the plasma cell

molecular subtypes we introduced and immunotherapy

responsiveness still needs to be validated in future

immunotherapy cohorts.
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In conclusion, immunotherapy for PCa holds great promise,

and screening patients who may benefit from immunotherapy is

one of the important tasks. This study divided PCa patients into

two different subtypes based on the molecular characteristics of

plasma cells, and predicted the response of patients with

different subtypes to immunotherapy, providing a potential

method for screening immunotherapy-sensitive patients in the

future. An ANN for the prediction of plasma cell subtypes was

constructed in this study, which was convenient for the clinical

application of plasma cell subtypes.
Conclusions

Plasma cell infiltration subtypes could provide a potent

prognostic predictor for prostate cancer and be an option for

potential responders to prostate cancer immunotherapy.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: https://portal.gdc.

cancer.gov/, TCGA-PRAD;https://www.ncbi.nlm.nih.gov/geo/,

GSE70768; https://www.ncbi.nlm.nih.gov/geo/, GSE70769;

https://www.ncbi.nlm.nih.gov/geo/, GSE116918.
Author contributions

M-KC, S-CZ was responsible for managing the project,

supervising the research process and revising the manuscript.

XX, C-XD, and M-RL analyzed data from prostate cancer patients

and were major contributors to writing the manuscript. KZ, YL

and J-WZ provided methodology ideas and modified the paper in
TABLE 2 The 10 gense selected by multiple machine learning algorithms (TCGA cohort).

Variables PC subtype predition AUC (95%CI) HR (95%CI) P-value

ANPEP 0.85 (0.82-0.89) 0.89 (0.81-0.97) 5.77E-03

CD38 0.76 (0.72-0.81) 0.80 (0.70-0.91) 4.14E-04

COL1A1 0.80 (0.76-0.84) 1.61 (1.32-1.96) 2.58E-06

COL3A1 0.78 (0.74-0.82) 1.41 (1.15-1.73) 1.19E-03

COL8A1 0.83 (0.79-0.86) 1.42 (1.15-1.75) 8.65E-04

COMP 0.84 (0.80-0.88) 1.35 (1.18-1.56) 1.03E-05

SFRP2 0.80 (0.76-0.84) 1.36 (1.12-1.66) 2.26E-03

SFRP4 0.84 (0.80-0.87) 1.31 (1.12-1.55) 1.01E-03

THBS2 0.84 (0.80-0.87) 1.46 (1.23-1.75) 1.68E-05

VCAN 0.80 (0.76-0.84) 1.36 (1.13-1.65) 1.31E-03
front
iersin.org

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2022.946209
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2022.946209
detail. Z-PH, K-YX, H-YL, A-RO, S-XM assisted to complete

the data visualization and modified the image details. J-KY, Q-ZZ,

W-BG and C-DL discussed and guided the idea of the article.

All authors contributed to the article and approved the

submitted version.
Funding

This study was supported by the National Natural Science

Foundation of China (NSFC 81602248 to M-KC), the Natural

Science Foundation ofGuangdongProvince (No.2017A030313686

to M-KC) and the President Foundation of the Third Affliated

Hospital of Southern Medical University (Nos. YM2021010,

YM2021011 to M-KC & S-CZ).
Acknowledgments

We thank the TCGA and the GEO for data support, and the

SangerBox for data visualization.
Frontiers in Immunology 14
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.946209/full#supplementary-material
References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: Cancer J Clin
(2018) 68(1):7–30. doi: 10.3322/caac.21442

2. Cooperberg MR, Carroll PR. Trends in management for patients with
localized prostate cancer, 1990-2013. Jama. (2015) 314(1):80–2. doi: 10.1001/
jama.2015.6036

3. Desai K, McManus JM, Sharifi N. Hormonal therapy for prostate cancer.
Endoc Rev (2021) 42(3):354–73. doi: 10.1210/endrev/bnab002

4. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: The
beginning of the end of cancer? BMC Med (2016) 14:73. doi: 10.1186/s12916-
016-0623-5

5. Bilusic M, Madan RA, Gulley JL. Immunotherapy of prostate cancer: Facts
and hopes. Clin Cancer research: An Off J Am Assoc Cancer Res (2017) 23
(22):6764–70. doi: 10.1158/1078-0432.CCR-17-0019

6. Slovin SF. Immunotherapy for castration-resistant prostate cancer: has its
time arrived? Expert Opin Biol Ther (2020) 20(5):481–7. doi: 10.1080/
14712598.2020.1735345

7. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the
tumor microenvironment. Nat Immunol (2013) 14(10):1014–22. doi: 10.1038/
ni.2703

8. Erlandsson A, Carlsson J, Lundholm M, Fält A, Andersson SO, Andrén O,
et al. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate
(2019) 79(4):363–9. doi: 10.1002/pros.23742

9. Obradovic AZ, Dallos MC, Zahurak ML, Partin AW, Schaeffer EM, Ross AE,
et al. T-Cell infiltration and adaptive treg resistance in response to androgen
deprivation with or without vaccination in localized prostate cancer. Clin Cancer
research: an Off J Am Assoc Cancer Res (2020) 26(13):3182–92. doi: 10.1158/1078-
0432.CCR-19-3372

10. JiaWei Z, ChunXia D, CunDong L, Yang L, JianKun Y, HaiFeng D, et al. M2
subtype tumor associated macrophages (M2-TAMs) infiltration predicts poor
response rate of immune checkpoint inhibitors treatment for prostate cancer.
Ann Med (2021) 53(1):730–40. doi: 10.1080/07853890.2021.1924396

11. Petitprez F, Fossati N, Vano Y, Freschi M, Becht E, Lucianò R, et al. PD-L1
expression and CD8(+) T-cell infiltrate are associated with clinical progression in
patients with node-positive prostate cancer. Eur Urol focus (2019) 5(2):192–6. doi:
10.1016/j.euf.2017.05.013
12. Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov
DM. B cells, plasma cells and antibody repertoires in the tumour
microenvironment. Nat Rev Immunol (2020) 20(5):294–307. doi: 10.1038/
s41577-019-0257-x

13. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The
prognostic landscape of genes and infiltrating immune cells across human cancers.
Nat Med (2015) 21(8):938–45. doi: 10.1038/nm.3909

14. Patil NS, Nabet BY, Müller S, Koeppen H, Zou W, Giltnane J, et al.
Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell
lung cancer. Cancer Cell (2022) 40(3):289–300.e4. doi: 10.1016/j.ccell.2022.02.002

15. Fristedt R, Borg D, Hedner C, Berntsson J, Nodin B, Eberhard J, et al.
Prognostic impact of tumour-associated b cells and plasma cells in oesophageal and
gastric adenocarcinoma. J gastrointestinal Oncol (2016) 7(6):848–59. doi: 10.21037/
jgo.2016.11.07

16. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, et al.
Immunotype and immunohistologic characteristics of tumor-infiltrating immune
cells are associated with clinical outcome in metastatic melanoma. Cancer Res
(2012) 72(5):1070–80. doi: 10.1158/0008-5472.CAN-11-3218

17. Mohammed ZM, Going JJ, Edwards J, Elsberger B, McMillan DC. The
relationship between lymphocyte subsets and clinico-pathological determinants of
survival in patients with primary operable invasive ductal breast cancer. Br J canc
(2013) 109(6):1676–84. doi: 10.1038/bjc.2013.493

18. Bosisio FM, Wilmott JS, Volders N, Mercier M, Wouters J, Stas M, et al.
Plasma cells in primary melanoma. prognostic significance and possible role of IgA.
Modern pathol: an Off J United States Can Acad Pathol Inc (2016) 29(4):347–58.
doi: 10.1038/modpathol.2016.28

19. Lundgren S, Berntsson J, Nodin B, Micke P, Jirström K. Prognostic impact
of tumour-associated b cells and plasma cells in epithelial ovarian cancer. J Ovarian
Res (2016) 9:21. doi: 10.1186/s13048-016-0232-0

20. Shalapour S, Font-Burgada J, Di Caro G, Zhong Z, Sanchez-Lopez E, Dhar
D, et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic
chemotherapy. Nature. (2015) 521(7550):94–8. doi: 10.1038/nature14395

21. Ross-Adams H, Lamb AD, Dunning MJ, Halim S, Lindberg J, Massie CM,
et al. Integration of copy number and transcriptomics provides risk stratification in
prostate cancer: A discovery and validation cohort study. EBioMedicine. (2015) 2
(9):1133–44. doi: 10.1016/j.ebiom.2015.07.017
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.946209/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.946209/full#supplementary-material
https://doi.org/10.3322/caac.21442
https://doi.org/10.1001/jama.2015.6036
https://doi.org/10.1001/jama.2015.6036
https://doi.org/10.1210/endrev/bnab002
https://doi.org/10.1186/s12916-016-0623-5
https://doi.org/10.1186/s12916-016-0623-5
https://doi.org/10.1158/1078-0432.CCR-17-0019
https://doi.org/10.1080/14712598.2020.1735345
https://doi.org/10.1080/14712598.2020.1735345
https://doi.org/10.1038/ni.2703
https://doi.org/10.1038/ni.2703
https://doi.org/10.1002/pros.23742
https://doi.org/10.1158/1078-0432.CCR-19-3372
https://doi.org/10.1158/1078-0432.CCR-19-3372
https://doi.org/10.1080/07853890.2021.1924396
https://doi.org/10.1016/j.euf.2017.05.013
https://doi.org/10.1038/s41577-019-0257-x
https://doi.org/10.1038/s41577-019-0257-x
https://doi.org/10.1038/nm.3909
https://doi.org/10.1016/j.ccell.2022.02.002
https://doi.org/10.21037/jgo.2016.11.07
https://doi.org/10.21037/jgo.2016.11.07
https://doi.org/10.1158/0008-5472.CAN-11-3218
https://doi.org/10.1038/bjc.2013.493
https://doi.org/10.1038/modpathol.2016.28
https://doi.org/10.1186/s13048-016-0232-0
https://doi.org/10.1038/nature14395
https://doi.org/10.1016/j.ebiom.2015.07.017
https://doi.org/10.3389/fimmu.2022.946209
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2022.946209
22. Jain S, Lyons CA, Walker SM, McQuaid S, Hynes SO, Mitchell DM, et al.
Validation of a metastatic assay using biopsies to improve risk stratification in
patients with prostate cancer treated with radical radiation therapy. Ann oncol: Off J
Eur Soc Med Oncol (2018) 29(1):215–22. doi: 10.1093/annonc/mdx637

23. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene
expression estimation with read mapping uncertainty. Bioinformatics (2010) 26
(4):493–500. doi: 10.1093/bioinformatics/btp692

24. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray
expression data using empirical bayes methods. Biostatistics (2007) 8(1):118–27.
doi: 10.1093/biostatistics/kxj037

25. Taminau J, Meganck S, Lazar C, Steenhoff D, Coletta A, Molter C, et al.
Unlocking the potential of publicly available microarray data using inSilicoDb and
inSilicoMerging R/Bioconductor packages. BMC Bioinf (2012) 13:335.
doi: 10.1186/1471-2105-13-335

26. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

27. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-
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