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Coronal seismology by slow
waves in non-adiabatic
conditions

Dmitrii Y. Kolotkov*

Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry,
United Kingdom

Slow magnetoacoustic waves represent an important tool for probing the

solar coronal plasma. The majority of seismological methods with slow waves

are based on a weakly non-adiabatic approach, which assumes the coronal

energy transport has only weak effects on the wave dynamics. Despite it

significantly simplifies the application of coronal seismology by slow waves,

this assumption omits a number of important and confidently observed effects

and thus puts strong limitations on the reliability of seismological estimations.

We quantitatively assess the applicability of the weak thermal conduction

theory to coronal seismology by slow waves. We numerically model the

linear standing slow wave in a 1D coronal loop, with field-aligned thermal

conduction κ‖ as a free parameter and no restrictions on its efficiency. The

time variations of the perturbed plasma parameters, obtained numerically with

full conductivity, are treated as potential observables and analysed with the

standard data processing techniques. The slowwave oscillation period is found

to increase with κ‖ by about 30%, indicating the corresponding modification in

the effective wave speed, which is missing from the weak conduction theory.

Phase shifts between plasma temperature and density perturbations are found

to be well consistent with the approximate weakly conductive solution for

all considered values of κ‖. In contrast, the comparison of the numerically

obtained ratio of temperature and density perturbation amplitudes with the

weak theory revealed relative errors up to 30–40%. We use these parameters

to measure the effective adiabatic index of the coronal plasma directly as the

ratio of the effective slow wave speed to the standard sound speed and in the

polytropic assumption, which is found to be justified in a weakly conductive

regime only, with relative errors up to 14% otherwise. The damping of the

initial perturbation is found to be of a non-exponential form during the first

cycle of oscillation, which could be considered as an indirect signature of

entropy waves in the corona, also not described by weak conduction theory.

The performed analysis and obtained results offer a more robust scheme

of coronal seismology by slow waves, with reasonable simplifications and

without the loss of accuracy.
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1 Introduction

The outermost layer of the solar atmosphere, the corona,
consists of a fully ionised and strongly magnetised plasma,
which is able to respond periodically or quasi-periodically
to any impulsive perturbation. The interest in studying
coronal waves and oscillations is connected with their
possible role in the enigmatic coronal heating problem
(Van Doorsselaere et al., 2020) and with a promising and
sometimes unique opportunity to probe the coronal plasma
parameters with the method of magnetohydrodynamic (MHD)
seismology (Nakariakov and Kolotkov, 2020). In particular,
fast magnetoacoustic wave modes, directly observed in the
corona as e.g., kink oscillations of coronal loops or fast-
propagating quasi-periodic wave trains, are extensively used
for probing the coronal magnetic field strength and twist,
density stratification, and cross-field fine structuring (see
e.g., Nakariakov et al., 2021; Li et al., 2020; Shen et al., 2022,
for the most recent comprehensive reviews). The slow mode
of magnetoacoustic waves, which appear in standing (e.g.,
Wang et al., 2021), propagating (e.g., Banerjee et al., 2021), and
sloshing (e.g., Nakariakov et al., 2019) forms, has in turn been
found sensitive to both the magnetic and thermodynamic
properties of the coronal plasma, which makes it a powerful
seismological tool too.

The seismological applications of slow waves in the
corona span from probing the absolute value of the
magnetic field in active regions (e.g., Wang et al., 2007;
Jess et al., 2016) and the magnetic field direction
(Marsh et al., 2009) to estimating the effective adiabatic index
of the coronal plasma (e.g., Van Doorsselaere et al., 2011;
Wang et al., 2015; Krishna Prasad et al., 2018), its effective
energy transport coefficients (Wang et al., 2015, 2018), multi-
thermal nature of coronal loops (e.g., King et al., 2003;
Krishna Prasad et al., 2017), and even properties of the coronal
heating function (Reale et al., 2019; Kolotkov et al., 2020).
Moreover, a similarity between the properties of the
phenomenon of quasi-periodic pulsations, observed in
solar and stellar flare lightcurves and attributed to the
modulation of the flare emission by slow waves, allowed for
revealing new solar-stellar analogies (Cho et al., 2016) and
stimulated the development of the theory of slow waves in
stellar coronal conditions (e.g., Reale et al., 2018; Lim et al., 
2022).

The majority of seismological estimations with slow waves
have been carried out under the assumption of weak non-
adiabaticity of the coronal plasma, i.e., assuming the energy
exchange and energy transfer processes (such as thermal
conduction, compressive viscosity, optically thin radiation,
etc.) are weak and slow in comparison with the oscillation
period of a slow wave as its characteristic timescale. Under
this assumption, the seismological analysis with slow waves

gets substantially simplified. However, it cannot properly
account for such important observable effects as rapid damping
of slow waves, with the damping time being about the
oscillation period (see e.g., Nakariakov et al., 2019, for the most
recent multi-instrumental statistical survey), apparently linear
scaling between the slow wave damping time and oscillation
period (see e.g., Cho et al., 2016; Mandal et al., 2016), strong
modification of a slow wave speed and effective adiabatic
index of the corona (see e.g., Krishna Prasad et al., 2018, who
detected the effective adiabatic index to vary from about 5/3
to 1), large phase shifts between the plasma temperature and
density perturbed by slow waves (Kupriyanova et al., 2019),
and yet undetected effects such as coupling of the slow and
entropy wave modes (Zavershinskii et al., 2021). Furthermore,
the transport coefficients of those non-adiabatic processes
are often considered as free parameters in the corona,
and their deviation from the classical values prescribed
by Spitzer (1962) and Braginskii (1965) due to essentially
dynamic and turbulent nature of the coronal plasma remains
a subject to intensive studies. In particular, the parametric
study of the dynamics of slow waves in coronal loops
with suppressed field-aligned thermal conduction and of
their diagnostic potential was performed recently by Wang
and Ofman (2019). Likewise, the question of “anomalous
transport” remains open in other astrophysical plasma
environments too (see e.g., Muñoz et al., 2017, for the
discussion of this topic in the Earth’s magnetospheric plasma
context).

In this work, we delineate the applicability of a weak thermal
conduction theory of slow waves to coronal seismology. For this,
we numerically model the linear evolution of a standing slow
oscillation in a hot coronal loop (alike those observed with the
SUMER instrument onboard the SOHO spacecraft or in “hot”
channels of SDO/AIA) with full conductivity, and compare the
model outcomes to those obtained in a weakly conductive limit.
In particular, we focus on the measurements of the phase shift
and relative amplitude ratio between density and temperature
perturbations and their use for probing the effective adiabatic
index of the coronal plasma. The applicability of a polytropic
assumption for estimating the effective adiabatic index is also
discussed. The paper is structured as follows. In Section 2, we
describe the numerical model and plasma loop parameters. In
Section 3, we present the analysis of oscillatory variations of
plasma loop density and temperature, caused by the standing
slowwave, and the comparison of those in the numerical solution
with full conductivity and in an approximate weakly conductive
limit. The application of the obtained oscillation parameters to
probing the effective adiabatic index of the coronal plasma, in
the polytropic assumption and as ratio of the effective wave
speed to the standard sound speed, is demonstrated in Section 4.
The discussion of the obtained results and conclusions are
summarised in Section 5.
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FIGURE 1
Left: The form of the initial perturbation of the plasma velocity, Vz0 = 0.1Cs cos(2πz/λ), applied to the loop model described in Section 2. Right:
Variations of the slow wave-perturbed plasma velocity, density, and temperature in red, blue, and green, measured at z = 0.1λ and for κ‖ = 10κSp,
normalised to Cs, ρ0, and T0, respectively. Cs = √γkBT0/m is the adiabatic sound speed; λ is the wavelength (prescribed by the loop length, L, as
λ = 2L); P0 is the adiabatic acoustic oscillation period, 2L/Cs. The grey lines illustrate the numerical error estimate for the velocity perturbation.

2 Governing equations and
modelling

Wemodel the dynamics of a standing slowwave in a low-beta
coronal plasma in the infinite magnetic field approximation (see
Section 2.3 of Wang et al., 2021, and references therein), using
the following set of linearised governing equations,

ρ0
∂Vz

∂t
= −

∂p
∂z
, (1)

∂ρ
∂t
+ ρ0

∂Vz

∂z
= 0, (2)

p =
kB
m
(ρ0T+T0ρ) , (3)

∂T
∂t
− (γ− 1)

T0

ρ0

∂ρ
∂t
=

κ‖
ρ0CV

∂2T
∂z2
. (4)

In Eqs 1–4, the direction of the wave propagation along the
z-axis is prescribed by the infinitely stiff (not perturbed by the
wave) magnetic field; Vz , p, ρ, and T represent perturbations
of the plasma velocity, pressure, density, and temperature,
respectively; the subscripts “0” correspond to the values of
those variables at t = 0; m, γ, and kB are the mean particle
mass, standard adiabatic index 5/3, and Boltzmann constant,
respectively; CV = (γ− 1)

−1 kB/m is the standard specific heat
capacity; and the coefficient of thermal conduction along the field
κ‖ is treated as a free parameter in this study. The effects of other
non-ideal processes, such as compressive viscosity, optically thin
radiation, heating, and the wave-induced misbalance between
them, are omitted, with the field-aligned thermal conduction
considered as the main wave damping mechanism (e.g., Ofman
andWang, 2002; De Moortel andHood, 2003, 2004; Reale, 2016;
Kolotkov et al., 2019).

The presence of a dissipative term on the right-hand
side of energy Eq. 4 makes the model essentially non-
adiabatic and may lead to the appearance of the phase
shift Δφ between the temperature and density perturbations
and modify the ratio of their instantaneous relative
amplitudes AT and Aρ, respectively (see e.g., a series of
works by Owen et al., 2009; Van Doorsselaere et al., 2011;
Wang et al., 2015;Krishna Prasad et al., 2018; Prasad et al., 2022).
In a weakly conductive limit, i.e., assuming the damping time
by thermal conduction is much longer than the oscillation
period and the wave speed remains equal to the standard sound
speed Cs = √γkBT0/m, the parameters Δφ and AT/Aρ have been
previously derived as

tan Δφ ≈
2π (γ− 1)κ‖m

kBC
2
sP0ρ0
, (5)

AT

Aρ
≈ (γ− 1)cos Δφ, (6)

where P0 = 2L/Cs is oscillation period in the ideal adiabatic case,
with L being the loop length.

In this work, we solve Eqs 1–4 numerically in the
mathematical environment Maple 2020.2, using the built-
in function pdsolve. It implements a second order (in space
and time) centred, implicit finite difference scheme1, with
timestep 0.02P0 and spacestep 0.02λ (λ = 2L) providing the
numerical accuracy up to 0.2% of the equilibrium plasma
parameters during the first five oscillation cycles (estimated
with the errorest keyword of the pdsolve command) for the
initial perturbation amplitude of 10%. We do not apply the
assumption of weak conductivity and vary the field-aligned

1 https://www.maplesoft.com/support/help/Maple/
view.aspx?path=pdsolve/numeric.
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thermal conduction coefficient κ‖ from 0.01 to 10 of the standard
Spitzer value κSp = 10

−11T5/2
0 Wm−1 K−1.The considered interval

of κ‖ is motivated by previous observational findings. In
particular, Wang et al. (2021) (see Section 8.1) demonstrated
that to account for the coronal polytropic index measured
by Van Doorsselaere et al. (2011), the thermal conductivity
needs to be enhanced by an order of magnitude. The following
values of the equilibrium plasma parameters are considered:
ρ0 = 3× 10–12 kg m−3 and T0 = 6.3 MK (both uniform along
the loop), L = 180Mm, m = 0.6× 1.67× 10–27 kg, typical
for coronal loops hosting SUMER oscillations. We excite the
fundamental harmonic of a standing slow wave by perturbing
the plasma velocity with a harmonic function with maximum
at z = 0 and the wavelength equal to double the loop length,
λ = 2L, and apply rigid-wall boundary conditions at z = ±0.25λ
mimicking the effective slow wave reflection from the transition
region and dense chromosphere (e.g., Nakariakov et al., 2004).
The form of the initial perturbation and an example of time
variations of the plasma velocity, density, and temperature,
obtained numerically for e.g. κ‖ = 10κSp, are shown in Figure 1.
All oscillatory signals used in the further analysis are taken at
z = 0.1λ.

3 Temperature/density phase shifts
and amplitudes

We begin the analysis of the numerically modelled standing
slow wave with obtaining the dependence of the oscillation
period P on the thermal conduction coefficient κ‖. It is estimated
through the fast Fourier transform applied to the plasma velocity
perturbations for several different values of κ‖ (see e.g., the red
line in Figure 1, right panel) and is presented in the left panel
of Figure 2. As one can see, the oscillation period increases by
about 30% with κ‖, from the ideal adiabatic value P0 determined
by the standard sound speed Cs, to a new value in the isothermal
regime (achieved for high κ‖), determined by the isothermal
sound speed Cs/√γ. Throughout this work, the loop length L
(and therefore the wavelength λ) is kept constant. In other words,
in the strongly conductive regime, the effective slow wave speed
gets significantly modified, which leads to the corresponding
modification in the wave travel time along the loop, i.e.,
the oscillation period. This empirical result is consistent with
previous analytical estimations by e.g., Duckenfield et al. (2021).

The phase shifts between density and temperature
perturbations are estimated from our numerical solution
through the cross-correlation analysis. More specifically, we
obtain the time lag Δt for which the cross-correlation between
density and temperature oscillations is the highest. With this,
the phase shift Δφ is obtained as Δφ = (Δt/P) × 360° for each
considered value of κ‖, using the dependence of the oscillation
period P on κ‖ obtained above. Thus, the dependence of Δφ on

κ‖, revealed empirically, is shown in the left panel of Figure 3
in red. It is seen to vary from 0° in the ideal adiabatic case to
about 80° in the strongly conductive regime with high κ‖ (cf.
Prasad et al., 2022).

For estimating the ratio between temperature and density
perturbation amplitudes, we obtain the instantaneous amplitudes
AT(t) and Aρ(t) as oscillation envelopes by exponential fitting
and with the use of the Hilbert transform (see Reale et al., 2019,
for apparently the first use of the Hilbert transform for coronal
seismology by slow waves). The edge effects of the Hilbert
transform are mitigated by mirroring the signals with respect
to the vertical axis and smoothing the resulting oscillation
envelopes over a half of the oscillation period. The examples of
AT and Aρ for κ‖ = κSp, obtained with the Hilbert transform
and their best-fits by decaying exponential functions, are shown
in the left panel of Figure 4. It shows, in particular, that actual
temperature and density perturbation amplitudes do not obey
the exponential law during the first cycle of oscillation, which we
attribute to the simultaneous development and rapid decay of the
entropy mode (Murawski et al., 2011; Zavershinskii et al., 2021).
Thus, associating this mismatch with a possible signature of the
slow wave coupling with entropy waves, the ratio AT/Aρ in slow
waves is estimated via the exponentially decaying instantaneous
amplitudes obtained by fitting (the right panel of Figure 4).More
specifically, the red dashed lines in the right panel of Figure 4
show exponentially decaying AT(t) vs. exponentially decaying
Aρ(t) for three different values of κ‖. As the slow wave damping
rate is the same in perturbations of all plasma parameters, the
ratio of exponentially decayingAT(t) andAρ(t) is independent of
time. In other words, it may be characterised by the y-intercept of
the red dashed lines shown in the right panel of Figure 4 (indeed,
if AT = const× Aρ, then log(AT) = log(const) + log(Aρ)). The
dependence of the obtained values ofAT/Aρ on κ‖ is shown in the
right panel of Figure 3 in red. It varies from 2/3 (≡ γ− 1) in the
ideal adiabatic regime to almost zero in the isothermal regime for
high κ‖, in which temperature gradients are effectively smoothed
out by thermal conduction. We also note that the use of a
non-exponential damping envelope may lead to underestimated
values of AT/Aρ in slow waves.

In addition, this analysis allows us to estimate the conductive
damping rate of standing slow waves and the characteristic
thermal conduction time scale τcond = ρ0CVλ

2/κ‖ for various
values of the conduction coefficient κ‖ (the right panel in
Figure 2). For this, we consider the ratio of the imaginary
part of the angular oscillation frequency ωi (estimated as
the reciprocal of the exponential damping time) to the real
part ωr = 2π/P. The obtained non-monotonic behaviour of
ωi/ωr is consistent with the previous analytical estimations
by e.g., De Moortel and Hood (2003), with the highest
value of about 0.15, detected for κ‖ ≈ 2κSp, being consistent
with the observed rapid damping of SUMER oscillations
with quality factors (i.e., ratio of the oscillation damping
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FIGURE 2
Left: Slow-wave oscillation period, P, estimated empirically via the fast Fourier transform of the numerical solution for the plasma velocity
perturbation, vs. the coefficient of the field-aligned thermal conduction normalised to the standard Spitzer value. The horizontal dashed and
dot-dashed lines show the period values in the ideal adiabatic and isothermal limits, obtained with the standard adiabatic and isothermal sound
speeds, Cs and Cs/√γ, respectively. Right: Dependence of the ratio of the imaginary part ωi = 1/τD to the real part ωr = 2π/P of the slow-wave
angular frequency ω on the field-aligned thermal conduction coefficient (green), with τD being the oscillation exponential damping time
estimated empirically from the numerical solution. The dark blue line in the right panel shows the dimensionless parameter ωrτcond, with
τcond = ρ0CVλ

2/κ‖ being the characteristic time scale of thermal conduction.

FIGURE 3
The phase shift (left) and relative amplitude ratio (right) between plasma temperature and density perturbations by the standing slow wave,
obtained from the analysis of the numerical solution of Eqs 1–4 with full thermal conductivity as described in Section 3 (in red) and from the
approximate analytical solutions Eqs 5–6 in a weakly conductive limit (in blue). The grey curve in the right panel shows the relative error
between the estimations of the temperature and density relative amplitude ratio, shown in red and blue.

time to period) of about unity (e.g., Nakariakov et al., 2019;
Wang et al., 2021). The right panel of Figure 2 also shows
the dimensionless parameter ωrτcond that can be used for a
quantitative discrimination betweenweak and strong conductive
limits. Thus, ωrτcond ≫ 1 and ωi/ωr ∝ 1/ωrτcond in the weak
limit, and ωrτcond ≪ 1 and ωi/ωr ≈ ωrτcond in the strong limit
(see e.g., Krishna Prasad et al., 2014; Duckenfield et al., 2021).
For κ‖ ≈ 2κSp consistent with observations, ωrτcond is about 1

by an order of magnitude, so that neither of those limits is fully
justified.

We now compare the dependences of Δφ and AT/Aρ on κ‖
obtained from the analysis of our numerical solution to those
prescribed by approximate solutionsEqs 5, 6, derived in aweakly
conductive limit (see the red and blue lines in Figure 3). For both
Δφ andAT/Aρ, the approximate and numerical solutions seem to
perfectly agree for low values of κ‖, i.e., in the weakly conductive
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FIGURE 4
The time profiles of the temperature and density perturbations by a standing slow wave, obtained numerically from Eqs 1–4 at z = 0.1λ, for
κ‖ = κSp, and normalised to T0 and ρ0, respectively (left). The envelopes of the temperature and density perturbations are obtained with the
Hilbert transform (grey solid) and by exponential fitting (red dashed). The vertical dotted lines in the left panels indicate the apparent transition
time from a non-exponential to exponential damping. The right panel shows examples of the amplitude ratios for several values of κ‖ (shown in
the inlet), estimated with the Hilbert transform (grey diamonds) and by exponential fitting (red dashed). Mind the logarithmic scale in the right
panel.

regime. For higher κ‖, the phase shifts Δφ, estimated in the
fully conductive and weakly conductive regimes, remain well
consistent with each other, with a relative error being below a few
percent which is practically indistinguishable in observations. In
contrast, the amplitude ratioAT/Aρ is found to differ significantly
from its weakly conductive estimation for κ‖ ≳ κSp. The relative
error of this offset is seen to be about 5% for κ‖ = κSp and reaches
30–40% for higher κ‖.

4 Effective adiabatic index

In this section, we demonstrate the application of the
obtained wave parameters to probing the effective adiabatic
index of the coronal plasma, γeff, and assess the suitability of a
commonly used polytropic assumption for it.

Following e.g.,Wang et al. (2018) andZavershinskii et al. (2019),
we define γeff as a measure of the deviation of the observed
phase speed Vp of slow waves affected by non-adiabatic effects
(the field-aligned thermal conduction in our model) from the
standard sound speed Cs, i.e.

γeff = γ(
Vp

Cs
)
2

. (7)

In the solar corona, the standard sound speed can be
estimated as Cs[km/s] ≈ 152√T0[MK]. On the other hand, as
the wavelength of the discussed standing slow wave is prescribed
by the loop length and thus remains constant, we can use
the dependence of the oscillation period P on κ‖ obtained in
Section 3 (see Figure 2) as a proxy (observable parameter) of the
slow wave phase speed Vp. With this, the definition of γeff Eq. 7

can be re-written as

γeff = γ(
P0
P
)
2
, (8)

with P0 being the slow wave oscillation period in the ideal
adiabatic case. The dependence of γeff estimated by Eq. 8 on
the field-aligned thermal conduction coefficient κ‖ is shown in
the left panel of Figure 5 in red, using the dependence of the
oscillation period P on κ‖ shown in Figure 2. As expected, the
obtained values of γeff decrease with κ‖ from 5/3 to 1 in the ideal
adiabatic and isothermal regimes, respectively.

In the polytropic assumption, i.e. assuming the plasma
density and pressure perturbations to be connected through a
power-law as p∝ ργeff , γeff can be estimated through the ratio of
the instantaneous relative amplitudes AT and Aρ of temperature
and density perturbations (Van Doorsselaere et al., 2011) as

γeff ≈
AT

Aρ
+ 1. (9)

Despite being not strictly consistent with the observed
non-zero phase difference between temperature and density
perturbations, this assumption is widely used for probing the
effective adiabatic index of the corona with both standing
(e.g., Wang et al., 2015; Reale et al., 2019) and propagating (e.g.,
Van Doorsselaere et al., 2011; Krishna Prasad et al., 2018) slow
waves.

The dependence of γeff Eq. 9 on κ‖, using AT/Aρ estimated
empirically in Section 3 (the red line in Figure 3, right panel),
is shown in the left panel on Figure 5 in blue. Its comparison
with γeff Eq. 8, as ratio of the effective wave speed to the standard
sound speed (i.e., ratio of the slow wave period in adiabatic
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FIGURE 5
The dependence of the effective adiabatic index γeff of the coronal plasma on the field-aligned thermal conduction coefficient κ‖ (left),
estimated numerically as ratio of the effective slow wave speed to the standard sound speed (red), see Eqs 7, 8, and under the polytropic
assumption (blue) with Eq. 9. The horizontal dashed and dot-dashed lines indicate the values of γeff in the ideal adiabatic case (5/3) for low κ‖
and in the isothermal regime (1) for high κ‖, respectively. The right panel shows the relative error between the estimations of γeff, shown in red
and blue in the left panel.

case to the observed period), justifies the use of the polytropic
assumption in a weakly conductive regime (for κ‖ ≲ κSp and γeff
being between approximately 1.5 and 5/3) and reveals the relative
errors (the right panel of Figure 5) comparable to those detected
in observations for κ‖ > κSp, that reach the maximum of 14%
for κ‖ ≈ 3κSp. Even in the isothermal regime with high κ‖, the
mismatch between γeff Eq. 8 and its polytropic approximation
Eq. 9 remains above 5% (e.g., for κ‖ = 6κSp, γeff is about 1.0 by
Eq. 8 and is about 1.1 by Eq. 9).

5 Discussion and conclusion

The applicability of a weakly non-adiabatic because of finite
thermal conduction along the field and polytropic assumptions
to coronal seismology with slow waves has been studied in
this work. We numerically modelled a 1D evolution of the
fundamental harmonic of a standing slow wave in a strongly
magnetised coronal plasma loop, with the field-aligned thermal
conduction as the dominant wave damping mechanism and the
conduction coefficient κ‖ as a free parameter. In the model,
no restrictions on the effectiveness of thermal conduction were
imposed. The time profiles of the plasma velocity, density,
and temperature perturbations have been treated as effective
observables to which the standard data analysis techniques, such
as the fast Fourier transform and cross-correlation analysis, and
more advancedHilbert transform, were applied.The outcomes of
this analysis have been compared to the approximate analytical
solutions. The main results of this work can be summarised as:

• The finite thermal conductivity along the field modifies
the effective speed of slow waves, which leads to the
modification of the observed oscillation period by up
to 30% from the value estimated in the ideal regime
and used in the weakly conductive limit. Accounting
for additional non-adiabatic effects, such as e.g., the
wave-induced misbalance between coronal heating and
cooling processes (Kolotkov et al., 2021), may make this
modification even stronger.
• The dependences of the phase shift Δφ between the loop’s
temperature and density perturbations on the thermal
conductivity κ‖, estimated in the strongly and weakly
conductive cases, arewell consistentwith each other for both
low and high values of κ‖. The obtained ratio of temperature
and density relative amplitudes AT/Aρ, in contrast, agrees
with the weak conduction theory for κ‖ ≲ κSp only. For
higher κ‖, the mismatch can reach up to 30–40%, which
clearly requires accounting for higher-order non-adiabatic
effects.
• From the practical point of view, the previous finding allows
one to reduce the analytical solutions for Δφ and AT/Aρ
obtained with full conductivity (see e.g., Eqs. (51) and (52)
in Wang et al., 2021), which are essentially coupled through
two unknowns κ‖ and γeff and therefore cannot be used
independently, to Eq. 5 for Δφ and

AT

Aρ
=
(γ− 1)cos Δφ

1− 2πγdχ(γ/γeff)
, (10)
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where d ≡ (γ− 1)κ‖m/γkBC
2
sP0ρ0, χ ≡ ωi/ωr , and γeff is given

by Eq. 7. As such, Eqs 5 and 10 are de-coupled with respect
to κ‖ and γeff (the right-hand side of Eq. 5 has κ‖ only),
which would significantly simplify their future seismological
applications without the loss of accuracy.

• The polytropic assumption Eq. 9 can be used for probing
the effective adiabatic index of the coronal plasma, γeff, in
the weakly conductive regime only, i.e., with κ‖ ≲ κSp and
small deviations of γeff from the adiabatic value 5/3. For
κ‖ > κSp or if γeff is deemed to differ from 5/3 by more
than 10%, it should be estimated either as a ratio of the
observed slow wave oscillation period (phase speed) to the
period expected in the ideal adiabatic case (standard sound
speed) or via the ratio of relative amplitudes AT/Aρ using
Eq. 10. Otherwise, the relative errors may reach up to 14%
(cf. 7% uncertainty in the estimation of γeff, detected by
Krishna Prasad et al., 2018, for example).
• As an additional side result of this work, a non-exponential
damping of slow waves during approximately the first
cycle of oscillation was detected with the use of the
Hilbert transform. Similarly to the transition time from
a Gaussian to exponential damping of coronal kink
oscillations by mode coupling with torsional Alfvén waves
(e.g., Pascoe et al., 2017), the revealed non-exponential
damping of slow waves can be used as an indirect signature
of the entropy mode evolution with yet unexploited
seismological potential. In particular, this non-exponential
damping of slowwaves is seen to bemore pronounced in the
perturbation of plasma temperature and for lower values of
κ‖ in our analysis, the reason for which is to be understood.

This work establishes an important ground for the
application of the method of coronal seismology by slow waves
in strongly non-adiabatic conditions. Moreover, the performed
analysis can be readily generalised for additional non-adiabatic
effects, such as compressive viscosity, optically thin radiation
and enigmatic coronal heating, and used for validation of the
corresponding theories (e.g., Prasad et al., 2022) without the
need to deploy full-scale viscous 3D MHD simulations (e.g.,
Ofman andWang, 2022) or dedicated MHD spectral codes (e.g.,
Claes et al., 2020).
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