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Introduction: Heat-clearing and detoxifying Chinese medicines have been

documented to have anti-Alzheimer’s disease (AD) activities according to

the accumulated clinical experience and pharmacological research results in

recent decades. In this study, Fibraurea recisa Pierre (FRP), the classic type of

Heat-clearing and detoxifying Chinese medicine, was selected as the object

of research.

Methods: 12 components with anti-AD activities were identified in FRP

by a variety of methods, including silica gel column chromatography,

multiple databases, and literature searches. Then, network pharmacology and

molecular docking were adopted to systematically study the potential anti-AD

mechanism of these compounds. Consequently, it was found that these 12

compounds could act on 235 anti-AD targets, of which AKT and other targets

were the core targets. Meanwhile, among these 235 targets, 71 targets were

identified to be significantly correlated with the pathology of amyloid beta (Aβ)

and Tau.

Results and discussion: In view of the analysis results of the network of

active ingredients and targets, it was observed that palmatine, berberine,

and other alkaloids in FRP were the key active ingredients for the

treatment of AD. Further, Kyoto encyclopedia of genes and genomes

(KEGG) pathway enrichment analysis revealed that the neuroactive ligand-

receptor interaction pathway and PI3K-Akt signaling pathway were the most

significant signaling pathways for FRP to play an anti-AD role. Findings in

our study suggest that multiple primary active ingredients in FRP can play
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a multitarget anti-AD effect by regulating key physiological processes such as

neurotransmitter transmission and anti-inflammation. Besides, key ingredients

such as palmatine and berberine in FRP are expected to be excellent leading

compounds of multitarget anti-AD drugs.

KEYWORDS

Alzheimer’s disease, Fibraurea recisa Pierre, alkaloids, network pharmacology, AD
pathology, heat-clearing and detoxifying traditional Chinese medicine

Introduction

Alzheimer’s disease (AD) is a degenerative
neurodegenerative disease that is progressive, complex,
multifactorial, and incurable (Liu et al., 2013). According
to statistics, people over the age of 65 are more likely to
develop AD (Kim et al., 2020). These patients required careful
treatment. Unfortunately, long-term treatment results are
often disappointing, and healthcare providers and patients
must bear high costs. According to the AD 2021 Facts and
Figures report, a total of $355 billion is estimated to be
spent in 2021 on care for older people with dementia in
the US, and the COVID-19 pandemic has posed economic
hardships (Alzheimer’s Association, 2021). AD patients with
mild-to-moderate cognitive deficits remain most dependent
on acetylcholinesterase inhibitors (AChEIs) as primary
therapy (Lu et al., 2011; Zimmermann, 2013). These drugs are
neurotransmitter regulators that can only temporarily relieve
symptoms but cannot stop or reverse the progression of AD
(Salomone et al., 2012). Long-term use of AChEIs has several
shortcomings, including toxic side effects, patient intolerance,
and high costs (Inglis, 2002). Therefore, there is a profound
unmet need for AD therapy, and a novel strategy is urgently
needed for the discovery of anti-AD drugs (Haake et al., 2020).

There has been much evidence indicating that multitarget
drug therapy is more effective than one class of drugs for
treating complex diseases such as malignancies (Cheng
et al., 2019; Di et al., 2019). Developing highly active
single-target anti-AD drugs based on classical targets
has repeatedly failed to conquer AD. As a result, the
construction of rationally formulated and efficacious anti-
AD combinations or the development of multitargeted anti-AD
drug molecules may be our new hope for conquering this

Abbreviations: AD, Alzheimer’s disease; OB, oral bioavailability; DL, drug
likeness; PPI, protein-protein interaction; MW, molecular weight; HBAs,
hydrogen bond acceptor; HBD, hydrogen bond donor; LogP, Log of the
octanol/water partition coefficient; LopS, Log of the aqueous solubility;
Rbon, rotatable bonds; BBB, blood–brain barrier; TPSA, topological
polar surface area; SAscore, synthetic accessibility score; CC, cellular
component; MF, molecular function; BP, biological process; KEGG, Kyoto
encyclopedia of genes and genomes; HPLC, high-performance liquid
chromatography; MCODE, molecular complex detection; Aβ, amyloid
beta.

complex disease (Yang W. T. et al., 2017; Oset-Gasque and
Marco-Contelles, 2018). Although pharmacologists have
made some impressive progress in these areas, there are
still several pressing challenges to overcome (Rossi et al.,
2021). For example, under drug safety, how to design anti-
AD compounds to exert synergistic anti-AD effects and
choose lead compounds more efficiently and quickly should
be investigated.

To solve these problems, we focused on traditional Chinese
medicine (TCM). Classical Chinese medicine has been proven
to be safe and effective over many years of clinical use (Cordell
and Colvard, 2012). According to modern pharmacological
research, TCM contains not only a wide range of active
ingredients but also a number of important small molecules
with multiple functions. Consequently, TCM is expected to be
a key entry point for developing a multitargeted therapeutic
approach to AD (Islam et al., 2022). With years of clinical
experience accrued, Professor Wang Yongyan proposed the
“Kidney deficiency phlegm stasis –toxin brewing- collaterals
disease” theory (Zhang and Wang, 2015). Based on this
mechanism, using heat-clearing and detoxifying traditional
Chinese medicine (HDTCM) to retard AD pathological
progression is a wise choice (Shi et al., 2019). Since then,
multiple research groups have confirmed that HDTCM can
improve memorial and cognitive functions in AD mouse models
and AD patients (Durairajan et al., 2017; Sun et al., 2018).
Modern pharmacology shows that HDTCM contains a variety
of potential anti-AD ingredients, and their mechanism of
action involves multiple targets and pathways (Han et al., 2016;
Park et al., 2017; Zhou et al., 2019; Wang Z. et al., 2020;
Zhang et al., 2021a; Chen et al., 2022). In addition, several
small molecules (such as forsythoside A, madecassic acid, and
rhynchophylline) isolated from HDTCM sources were found
to have anti-AD effects (Yan X. et al., 2017; Fu et al., 2021;
Wong et al., 2021). Thus, HDTCM is a very promising and
viable research direction for developing therapeutic regimens
that target multiple aspects of AD. Hence, an in-depth study on
the anti-AD properties of HDTCM is particularly effective for
understanding the mechanism of AD pathogenesis, discovering
AD therapeutic targets, and exploring novel candidates as potent
drug candidates for AD.

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2022.1052249
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-1052249 December 2, 2022 Time: 14:17 # 3

Wang et al. 10.3389/fnagi.2022.1052249

Fibraurea Recisa Pierre (FRP) is a well-known HDTCM that
is widely distributed in China, Vietnam, Laos, and Myanmar
(Chen R. S. et al., 2015). According to the “Compendium
of Materia Medica,” a famous Chinese pharmaceutical book
written by Li Shizhen, “FRP is produced in the south of
China, it looks like Fang Ji. Slang people often take this herb.
Even if they eat poisonous food, they will not get sick.” In
the present era, various pharmaceutical dosage forms of the
crude alkaloid of FRP are available commercially in China,
including tablets, injectables, and capsules. They have been
widely used in the treatment of various diseases, such as
gynecological inflammation, enteritis, and other diseases, and
achieved successful results. The crude alkaloids of FRP have
significant anti-AD effects on AD model rats, which may
be due to some of the active compounds it contains (Xing
et al., 2018; Zhang et al., 2020). For example, berberine and
palmatine have been reported can exert various pharmacological
activities, such as anti-inflammatory, chondroprotective, and
neuroprotective properties (Cai et al., 2016; Singh et al., 2019;
Jia et al., 2021; Ma et al., 2021). In addition, FRP contains
other kinds of compounds, such as beta-sitosterol and oleanolic
acid. These compounds were reported to play potential anti-
AD roles via anti-inflammatory, and antioxidant effects (Song
et al., 2016; Muhammad et al., 2017). Thus, FRP seems to
be a promising agent for the treatment of AD. However, the
possible mechanism involving FRP remains largely unknown
and requires further elucidation.

Network pharmacology has proven effective in explaining
the mechanisms of TCM, which has complicated components
and multiple targets (Hopkins, 2007; Li et al., 2007, 2011).
Additionally, it could serve as the basis for the development
of novel drugs (Lai et al., 2020). In this context, we first
systematically analyze the key components and mechanisms
of action of FRP, a classical HDTCM, by utilizing network
pharmacology and molecular docking techniques. Based on the
Alzdata database, there were 71 targets associated with tau and
aβ pathologies. The research framework is shown in Figure 1.
It is hoped that this study not only could offer guidance for
the design of compounded anti-AD therapeutic regimens but
also may provide a research basis for the development of novel
multitarget anti-AD small molecules.

Materials and methods

Collection of main ingredients
Fibraurea recisa Pierre

TCSMP (Ru et al., 2014): A relatively classical systemic
pharmacology database and analysis platform for Chinese
herbal medicines, collecting more than 500 Chinese herbal
medicines with approximately 30,000 compounds, which is a
more commonly used database for Chinese herbal medicine
components. It has formed a more unified and systematic
model by integrating pharmacodynamics, pharmacokinetics,

and network and systemic analysis, thus providing scholars
to study and analyze the interaction between Chinese herbal
medicines and the organism at the systemic level and
providing new directions for future target discovery, new drug
development, and therapeutic strategies, and it is an important
source for us to find data related to the active ingredients of FRP.

Uniprot (The UniProt Consortium, 2018) is the most
extensive and informative protein database, which is composed
of three sub-databases: Swiss Prot, TrEMBL, and PIR-PSD. The
database currently includes a lot of protein and its function
information from the literature. These data were mainly derived
from the whole gene protein sequence obtained after genome
sequencing of various species.

Fibraurea recisa Pierre (FRP) was purchased from Su
Li Herbal Materials Company (Guangxi, China), which was
authenticated by the Department of Pharmacy of Jinggangshan
University by Professor Zhaochang Liang. Several major
ingredients of FRP were separated and identified by using
methods reported in the literature (Zhang et al., 2008; He et al.,
2017). Other ingredients of FRP were retrieved by searching
the relevant literature in PubMed,1 ZhiWang,2 WanFang,3 and
WeiPu4 with “Huang Teng” and “Fibraurea recisa Pierre” as
keywords. In addition, quality-control components of FRP
in Chinese Pharmacopeia 2020 Edition were also considered.
Then, all these ingredients were merged and analyzed to get the
main ingredients of FRP, which may play critical roles in AD
therapy most probably. Subsequently, these ingredients of FRP
were retrieved and searched in TCMSP,5 and the relevant data
of its main key components were supplemented. By combining
with the common screening criteria for ingredient data in
network pharmacology (the screening conditions were set as
OB ≥ 30% and DL ≥ 0.18), the main ingredients and potential
action targets of FRP could be obtained. Specifically, a few
ingredients with low OB or DL were chosen as candidate
ingredients because of their high bioactivity according to the
literature. Meanwhile, the UniProt database6 was used to
convert the gene name corresponding to each target name and
organize the records.

Prediction of the physicochemical
properties of the main ingredients of
the Chinese herbal medicine Fibraurea
recisa Pierre

PubChem (Kim et al., 2016): A database containing the
introduction of physical and chemical properties of a large

1 https://www.ncbi.nlm.nih.gov (accessed May 16, 2022).

2 https://cnki.net (accessed May 14, 2022).

3 https://www.wanfangdata.com.cn/ (accessed May 15, 2022).

4 http://www.cqvip.com/ (accessed May 16, 2022).

5 https://old.tcmsp-e.com/ (accessed May 16, 2022).

6 https://www.uniprot.org/ (accessed May 16, 2022).
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FIGURE 1

Flowchart of the study.

number of compounds, these informations can be acquired by
searching the molecule name, the molecular formula, and the
molecular structure.

ADMETlab 2.0 (Su et al., 2007): A website for predicting
the physicochemical properties of compounds, the ADME
properties, and the toxicity correlations.

The common names of the main ingredients of FRP were
retrieved from PubChem (see text footnote 1), and all their 2D
structures were drawn by ChemDraw 15.0. Then, the SMILES
strings of each main ingredients were obtained from PubChem
(see text footnote 1) and imported into the ADMETlab 2.07 to
predict the relevant physicochemical properties.

Screening the potential targets of the
main active ingredients of Fibraurea
recisa Pierre

SwissTargetPrediction (Daina et al., 2019): A database with
updated data and new features for efficient prediction of protein
targets of small molecules.

7 https://admetmesh.scbdd.com/ (accessed May 16, 2022).

Search Server (SEA) (Keiser et al., 2007): A database that can
be used to rapidly search large compound databases and to build
cross-target similarity maps.

Swiss Target Prediction8 and SEA Search Server9 were
employed to identify the ingredient-related target proteins
according to the determined main active ingredients.

Information collection and processing
of disease targets

Online Mendelian Inheritance Database of Humans
(OMIM) (Amberger and Hamosh, 2017): A comprehensive
and authoritative human genetic database, which can provide
information on approximately 15,000 genes, focusing on
heritable or inherited genetic diseases and the molecular
relationship between genetic variants and their dominant
expression.

8 http://www.swisstargetprediction.ch/index.php (accessed May 17,
2022).

9 https://sea.bkslab.org/ (accessed May 17, 2022).
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Drugbank (Wishart et al., 2008): A database for searching
new drug targets, comparing drug structures, studying drug
mechanisms, and exploring novel drugs.

TTD (Wang Y. et al., 2020): A database providing
information on protein or nucleic acid targets of therapeutic
value, including information on target-associated diseases,
mediated biological pathways, etc.

PharmGKB (Pharmacogenetics and Pharmacogenomics
Knowledge Base) (Whirl-Carrillo et al., 2021): A comprehensive
resource that curates knowledge about the impact of genetic
variation on drug response for clinicians and researchers.

Genecards database (Rebhan et al., 1998): A comprehensive
medical database that provides rich biomedical data on
genes and their products, including proteomic, genomic, and
functional information on all known and predicted human
genes, both genetic and functional.

Microbiology letter platform: An online platform for
scientific data analysis and visualization.

STRING (Szklarczyk et al., 2017): A database for searching
known protein-protein interactions (PPIs) and predicting PPIs,
which allows people to predict potential PPIs.

Cytoscape (Shannon et al., 2003): A powerful software
package, which can be used to visualize and analyzed biological
networks, including pathways, PPIs, and protein-protein
similarity networks. Besides, through third-party software
extensions, the core functionality of Cytoscape could be
expanded greatly.

CytoNCA (Tang et al., 2015): A plug-in Cytoscape, which
is used for centralized analysis and evaluation of protein
interaction network.

Molecular Complex Detection (MOCDE): A plug-in
Cytoscape, which is used to identify sub-modules in the PPI
network with biological significance.

By searching “Alzheimer’s disease” and “anti-Alzheimer’s
disease” from OMIM,10 TTD,11 Drugbank,12 PharmGKB,13 and
Genecards14 databases, the relevant targets can be obtained.
Then, the final targets for the treatment of AD were collected
after further processing and removing all duplicates targets. The
targets corresponding to the main ingredients of Chinese herbal
medicine, FRP, and the treatment of AD were used to obtain
the intersection targets using the Microbiology letter platform.15

The intersection data were entered into the STRING database,16

the data were exported in TSV format, and the PPI relationship
network was constructed using Cytoscape, thus revealing the
visualized network structure map. Then, the core targets were

10 https://omim.org/ (accessed May 18, 2022).

11 http://db.idrblab.net/ (accessed May 18, 2022).

12 https://go.drugbank.com/ (accessed May 19, 2022).

13 https://www.pharmgkb.org/ (accessed May 19, 2022).

14 https://www.genecards.org/ (accessed May 19, 2022).

15 http://www.bioinformatics.com.cn/ (accessed May 20, 2022).

16 https://cn.string-db.org/ (accessed June 1, 2022).

screened using its plug-in CytoNCA, and the common anti-AD
target gene clusters and pathway-related target genes of FRP
were obtained using MOCDE.

Construction of the
drug-ingredient-target visualization
network diagram

The collated data of the main ingredients and their potential
targets of FRP were imported into Cytoscape (1 June 2022)
to construct the drug-ingredient-target visualization network
diagram. In the process of constructing the drug-ingredient-
target visualization network diagram of FRP for AD, each
target is constituted as a corresponding node, and in the layout
options, a tool-analyzed Network is selected to obtain the degree
of each data point. The larger the value of degree, the higher the
participation of the node, and the stronger the credibility.

Functional annotation of core targets
and construction of pathway-target
visualization maps

DAVID database (Huang da et al., 2009): A database now
provides a comprehensive set of functional annotation tools for
investigators to understand the biological meaning behind a
large list of genes.

Gene Ontology (GO) is a classification system used to
describe gene characteristics, gene product characteristics, and
their main functions to describe three specific genes.

Biological process (BP) is used to describe the BP in which
genes are involved, such as the regulation of growth factors.

Cellular component (CC) is used to describe the
location of the gene product in the cell, e.g., in the
mitochondria and nucleus.

Molecular function (MF) is used to describe the function
of a single gene product and the function of multiple genes
acting together.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000): A database that is used to analyze
the role of gene products in cellular metabolic pathways
systematically and identify the metabolic pathways altered in the
experiment.

The intersection target data were imported into the DAVID
database,17 and GO and KEGG enrichment analyses (Chen J.
et al., 2015) were performed on the intersection targets. Then
the enrichment of BP, CC, MF, and KEGG pathway data was
obtained. After filtering out the signaling pathway associated
with AD in KEGG data, Cytoscape was then used to visualize
the pathway-target map.

17 https://david.ncifcrf.gov/ (accessed June 10, 2022).
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Analysis of targets related to
Alzheimer’s disease pathology

Alzdata (Xu et al., 2018) consisted of high-throughput
omic data (e.g., Genomics, Transcriptomes, Proteomics, and
Functional genomics), and high-confident functional data (e.g.,
neuroimaging screening, population-based longitudinal studies,
and transgenic mouse phenotyping). The obtained human target
proteins were input into the KEGG pathway database.

To evaluate the correlations between the target proteins
of FRP against AD and AD pathology (Aβ and tau), their
human gene symbols were entered and analyzed by using the
AlzData database.18 The results were collected and entered
into an Excel sheet. Subsequently, GO and KEGG pathway
enrichment analyses were performed by using the DAVID
tool. In addition, by using “AlzData’s” “Differential Expression”
module, the normalized expression of targets of FRP against AD
in control and AD groups of the GEO dataset were analyzed.

Molecular docking

AutoDock (Morris and Lim-Wilby, 2008): A molecular
simulation software, which was used to identify the molecular
mechanism of interaction between the protein and the ligand
most frequently.

RCSB PDB (Burley et al., 2021): A powerful new tool for
exploring 3D structures of biological macromolecules for basic
and applied research and education in fundamental biology,
biomedicine, biotechnology, bioengineering, and energy
sciences.

To reveal the binding modes and the strength between
active ingredients and their protein targets, molecular docking
simulation was performed using AutoDock 4.2. We collected the
2D structures of the main ingredients of FRP by PubChem,19

and then converted them to 3D and performed energy
minimization. Next, the PDB formats of the core proteins
corresponding to the core targets were downloaded from
the RCSB PDB20 database. Next, water molecules and small
molecule ligands were removed from the protein, hydrogen
was added, and the active pockets in the 3D structure of
the protein were identified by AutoDock Tools. Finally, the
prepared protein models and ligand structures were used for
molecular docking in the AutoDock Vina software (version
1.2.3, The Scripps Research Institute, San Diego, CA, USA).
After performing the molecular docking simulation, the ligands
were ranked by their docking scores, the higher the absolute
value of the docking score indicates the stronger ability of the
main ingredients to bind to the predicted important target
proteins, and vice versa.

18 http://www.alzdata.org/ (accessed June 11, 2022).

19 https://pubchem.ncbi.nlm.nih.gov/ (accessed June 13, 2022).

20 https://www.rcsb.org/

Results and discussion

Results of the collection of the main
ingredients of Fibraurea recisa Pierre
and disease targets

Five major chemical ingredients including berberine,
palmatine, β-sitosterol, sitogluside, and jatrorrhizine were
extracted from FRP by column chromatography and
recrystallization. Their structures were confirmed via 1H
NMR (Supplementary Figures 1–5), which is consistent with
those reported in the literature (He et al., 2017; Wimmerová
et al., 2017). Another 7 main ingredients of FRP were
finally selected by using multiple online databases, including
TCMSP, ZhiWang, WanFang, WeiPu, PubMed, and Chinese
Pharmacopeia 2020 Edition. Their chemical structures were
obtained from the PubChem database, as shown in Figure 2.

The ADME properties of the main
ingredients of Fibraurea recisa Pierre

The ADME-related properties of the main ingredients
of FRP were evaluated in depth using the online tool
ADMETlab 2.0, and all of them conformed to Lipinski’s
five laws (n ≤ 1), including the topological acute surface
area (TPSA) and solubility (LogS) indexes. These results
indicated that the main ingredients of FRP possessed
good permeability across the cell membrane, as shown in
Supplementary Table 1.

Screening of targets of the main
ingredients of Fibraurea recisa Pierre in
Alzheimer’s disease

A total of 595 relevant targets for FRP active ingredients
were obtained from the SwissTargetPrediction database and SEA
Search Server. Then, 2386 AD-related targets were obtained
from OMIM, Drugbank, Genecards, TTD, and PharmGKB
databases after performing duplicate removal. Subsequently, the
potential targets of the active ingredient and AD-related disease
targets were input into the online tool, and 235 potentially
relevant targets for the treatment of AD were obtained for
further research (Figure 3).

Construction and analysis of the
protein-protein interaction network

The intersection targets were entered into the String
database. The organism was set to Homo sapiens, and the
escaped nodes were hidden to finally obtain the data in TSV
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FIGURE 2

Structures of the main ingredients from Fibraurea recisa Pierre.

format, which was imported into Cytoscape 3.9.1 for processing.
The result was presented below in Figure 4.

Pathway-related target genes

A total of 235 target proteins of FRP against AD were
classified by Panther (Mi et al., 2007),21 and the results were
summarized as follows. A total of 58 pathway-target gene

21 http://pantherdb.org/ (accessed June 15, 2020).

FIGURE 3

The intersection of FRP and AD targets.

clusters were obtained according to their cellular functions. The
top 6 pathway-target gene clusters were the following (Figure 5):
G-protein coupled receptors, transmembrane signal receptors,
C4 zinc finger nuclear receptors, oxygenases, metalloprotease,
and ligand-gated ion channels.

Screening results of core targets

To explore the relationship between potential predicted
targets of the major components of FRP and AD disease
targets, two screens were performed in Cytoscape using the
CytoNCA plugin to obtain the final core targets with a median
of twofold, as shown in Figure 6. The FRP in the figure shows
the final targets after the two screens. The key targets screened
in Figure 6A were ranked according to the degree values and
histograms were plotted, as shown in Figure 6B. Based on these
results, AKT1, TNF, STAT3, JUN, and EGFR were closely related
to other targets in the PPI network, and presumably, they were
identified as the most likely to be important potential targets
against AD.

Common target clusters of main
anti-Alzheimer’s disease ingredients

Network analysis of the anti-AD PPI network of the main
ingredients of FRP by MCODE (k-core = 2) showed that these
clusters may be relevant to AD treatment. As shown in Figure 7,
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FIGURE 4

Protein-protein interaction (PPI) network diagram.

cluster 1 contains 42 nodes and 86 edges with a score of 33.463,
seeded by AKT1, which have been confirmed to play a vital role
in anti-AD pathobiology, including regulation of intracellular
reduction-oxidation balance, activation of autophagy, anti-
inflammatory actions and neuroprotection, etc. (Figure 7A);
cluster 2 contains 18 nodes and 89 edges with a score of
10.471, seeded by SLC6A3, which is associated with learning
and memory (Figure 7B); cluster 3 contains 30 nodes and 126
edges with a score of 8.690, seeded by MMP1, which is associated
with anti-inflammation (Figure 7C); cluster 4 contains 6 nodes
and 13 edges with a score of 5.200, seeded by PIK3CG, which
is associated with atheromatosis (Figure 7D); cluster 5 contains
4 nodes and 6 edges with a score of 4.000 points (Figure 7E);
cluster 6 contains 13 nodes and 21 edges with a score of 3.500,
seeded by AKT1; and cluster 7 contains 4 nodes and 5 edges with

a score of 3.330, seeded by AKT1. Cluster 8 contains 3 nodes
and 3 edges with a score of 3.000; Cluster 9 contains 9 nodes
and 12 edges with a score of 3.000, seeded by AKT1. Cluster 10
contains 3 nodes and 3 edges with a score of 3.000, seeded by
AKT1. Cluster 11 contains 7 nodes and 9 edges with a score of
3.000, seeded by the node AKT1. A list of the respective MCODE
scores is shown in Figure 7F.

Construction of Fibraurea recisa
Pierre- main ingredients-target
visualization map

To explore the mechanism of action of FRP for the treatment
of AD, 235 drug-disease intersection gene targets and 12
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FIGURE 5

(A–F) Top 6 pathway-target gene clusters.

main ingredients in FRP were used to construct the major
ingredient target AD target network. As shown in Figure 8,
all of these compounds were associated with multiple targets,
and 1,086 component-target associations existed between the
12 compounds and 235 targets. The average number of
targets per compound was 18.58, and the average composition
degree per target was 1.82. These results clearly support that
the anti-AD mechanism of FRP has multi-components and
multi-targets characteristics. As shown in Figure 8, Palmatine
(degree = 156) has the highest number of targets, followed
by columbamine (degree = 143), jatrorrhizine (degree = 109),
berberine (degree = 109), corydalmine (degree = 100),
tetrahydropalmatine (degree = 99), β-sitosterol (degree = 71)
and oleanolic acid (degree = 77). The above results suggest that
alkaloids from FRP are most likely to be the key components
of AD therapy, besides β-sitosterol and oleanolic acid may also
have multitarget anti-AD potential.

Gene ontology and Kyoto
encyclopedia of genes and genomes
enrichment analysis

Gene Ontology enrichment analysis and KEGG pathway
enrichment analysis were performed using David on the
intersecting targets, and 235 MFs entries were screened out,
the 20 closely related MFs are shown in Figure 9A, Including
(GO:0005515) protein binding, (GO:0042802) identical protein
binding, (GO:0005524) ATP binding, (GO:0042803) protein

homodimerization activity, (GO:0019899) enzyme binding,
(GO:0004672) protein kinase activity, (GO:0004674) protein
serine/threonine kinase activity, (GO:0008270) zinc ion binding,
(GO:0019901) protein kinase binding al. These results further
confirm that the main ingredients in FRP can exert anti-AD
effects by acting on multiple targets and biological functions.

Gene Ontology enrichment analysis got 1,264 entries, of
which 947 were BP entries, 111 were CC entries, and 206
were MF entries. As shown in Figure 9B, the common targets
of main ingredients and AD in FRP are mainly enriched in
signal transduction, positive regulation of transcription from
RNA polymerase II promoter, protein phosphorylation, negative
regulation of the apoptotic process, response to the drug,
positive regulation of gene expression, positive regulation of
cell proliferation, response to xenobiotic stimulus, positive
regulation of transcription, DNA-templated, positive regulation
of MAPK cascade. For example, the signal transduction
pathway involves 56 target genes, of which 8 are related to
target genes, namely 1L1B, AKT1, MAPK1, CREB1, EGFR,
CD4, STAT3, and SRC MFs are mainly enriched in protein
binding, identical protein binding, ATP binding, protein
homodimerization activity, enzyme binding, protein kinase
activity, protein serine/threonine kinase activity, zinc ion
binding, protein kinase binding, G-protein coupled receptor
activity, etc.; Cellular composition is mainly enriched in the
plasma membrane, cytosol, cytoplasm, nucleus, an integral
component of membrane, integral component of the plasma
membrane, nucleoplasm, membrane, extracellular exosome,
extracellular region, etc.
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FIGURE 6

Screening of core targets. (A) Shows the process of secondary median screening, and the dark green part indicates the core target genes
obtained from the screening. The core targets after the secondary screening were arranged in the order of the degree values from the largest to
smallest, and the bar graph was drawn to obtain (B).

To further evaluate the functions of these overlapping
target genes, 235 drug-disease intersection gene targets were
filtered through the KEGG pathway. Pathway enrichment
analysis revealed that these genes were enriched in 170 signaling
pathways, and the top 20 signaling pathways most closely related
to AD were the following (Supplementary Table 2): AD-related
pathways include neuroactive ligand-receptor interaction,
PI3K-Akt signaling pathway, calcium signaling pathway, cAMP
signaling pathway, MAPK signaling pathway, Ras signaling
pathway, serotonergic synapse, pathways of neurodegeneration
multiple diseases, Rap1 signaling pathway, AD and AGE-RAGE
signaling pathway in diabetic complications. To identify
biological target-related signaling pathways associated with
anti-AD, we used DAVID to identify enriched signaling
pathways of 235 drug-disease intersection gene targets.
The important pathways involved in the KEGG pathway
were neuroactive ligand-receptor interaction (hsa04080),
PI3K-Akt signaling pathway (hsa04151), calcium signaling
pathway (hsa04020), cAMP signaling pathway (hsa04024),

MAPK signaling pathway (hsa04010), Ras signaling pathway
(hsa04014), serotonergic synapse (hsa04726), and pathways
of neurodegeneration–multiple diseases (hsa05022), Rap1
signaling pathway (hsa04015) and Alzheimer’s disease
(hsa05010). The KEGG pathway enrichment analysis is
listed in Supplementary Table 2. The most important enriched
pathways were the neuroactive ligand-receptor interaction
pathway (hsa04080, P-value = 1.78E-22) and the PI3K-Akt
signaling pathway (hsa04151, P-value = 7.33816E-15), which
are related to human diseases and are mainly associated with
Figure 9C.

“Pathway-vital target” network model
and analysis

The network of main components and their related targets
of Chinese herbal medicine FRP is shown in Figure 10,
containing 182 nodes and the top 20 KEGG pathways
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FIGURE 7

(A–E) Discovery of clusters 1–5 using MCODE, which identifies densely connected regions. The seed nodes of each cluster are indicated in red
font. (F) Comparison of MCODE scores for different clusters.

associated with 235 targets and 553 edges. In particular,
the PI3K-Akt signaling pathway (hsa04151) shows a higher
number of connections (degree = 38), which includes the
target genes VEGFA, MAPK3, AKT1, MAPK1, CREB1, EGFR,
ADORA2A, MTOR, and PIK3CG, et al. Neuroactive ligand-
receptor interaction (hsa04080) has the highest number of
connections (degree = 51), which includes the target genes,
namely, ADORA2A, THRB, CHRM1, CHRM4, CHRM5,
HTR2B, HTR2C, ADRA1D, HTR2A, ADRA1B, HTR4, and
NR3C1, et al.

Bioinformatics analysis of alkaloid
targets associated with amyloid beta
and tau pathology

To further validate the relationship between the potential
targets of the Chinese herbal medicine FRP and the potential
mechanisms of AD (Aβ and Tau), the intersecting genes were
entered into the AlzDate database. Among these targets, 71 were
associated with Aβ, Tau, Aβ, and Tau (Figure 11A), specifically,

PIK3CD, CDC42, PDE4D, HTR4, ADRA1B, ARG1, PTGS1,
PRF1, ADRA2A, CD81, CRYAB, BACE1, CDK2, MDM2,
ALDH2, CYP19A1, NOS2, CSNK1D, PRKACA, CSNK2A1,
PLCG1, CBS, and MIF were significantly associated with
Aβ pathology, EPHB2, LCK, JUN, ZAP70, DPP4, HTR2B,
MAPK10, HTR1A, VEGFA, HTR1B, CFTR, CHRM2, GBA2,
GSTP1, MMP3, HTR3A, CD4, VDR, MAPK3, and CHEK2
were significantly associated with Tau pathology. Significantly,
CNR2, HDAC1, MCL1, XDH, IL1B, TGFBR2, GSK3B, CASP6,
HPGD, ADRB2, CSF1R, PIK3CG, TGFBR1, PTGES, MAPK8,
ADRB1, NR1H3, IRAK4, P2RX7, ALOX5AP, PYGL, MMP2,
STAT3, ICAM1, TGM2, TSPO, AR, and BTK equals Aβ and Tau
pathology. At the same time, 71 target genes were imported into
the STRING database for processing, and the processed data
were imported into Cytoscape, which was arranged according to
the size of nodes. A total of 67 nodes and 334 edges were found.
JUN, VEGFA, IL1B, CD4, STAT3, MAPK3, MMP2, ICAM1,
CDC42, MAPK8, MDM2, LCK, MCL1, and HDAC1 were
identified as the core targets sorted by degree (Figure 11B),
which also confirmed the multitargeting of FRP against AD.
According to KEGG pathway analysis, the cAMP signaling
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FIGURE 8

Fibraurea recisa Pierre (FRP)-active ingredient-target visualization. Green is the gene with a degree of 3, yellow is the gene with a degree of 4,
pink is the gene with a degree of 5–8, blue is the main ingredients with a degree of 46–156, and dark blue is the traditional Chinese medicine
FRP.

pathway (hsa04024), MAPK signaling pathway (hsa04010),
Neuroactive ligand-receptor interaction (hsa04080), T-cell
receptor signaling pathway (hsa04660), Relaxin signaling
pathway (hsa04926), Calcium signaling pathway (hsa04020),
Ras signaling pathway (hsa04014), PI3K-Akt signaling pathway
(hsa04151), Neurotrophin signaling pathway (hsa04722) are
highly enriched (Figure 11C). MAPK10, BACE1, GSK3B,
MAPK8, CSNK2A1, NOS2, IL1B, PIK3CD, and MAPK3
were enriched in the AD pathway (hsa05010). David further
analyzed 71 target genes, the prediction of biological processes

(BP), including protein phosphorylation (GO:0006468),
positive regulation of cell proliferation (GO:0008284),
peptidyl-serine phosphorylation (GO:0018105), Positive
regulation of gene expression (GO:0010628), negative
regulation of apoptotic process (GO:0043066), response to
lipopolysaccharide (GO:0032496), positive regulation of MAPK
cascade (GO:0043410), positive regulation of MAP kinase
activity (GO:0043406) (Figure 11D). In particular, protein
phosphorylation (GO:0006468) shows the highest target
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FIGURE 9

(A) MF enrichment bubble diagram, (B) GO enrichment bar graph, (C) KEGG pathway enrichment analysis.

connectivity, including the core target genes MAPK3 and
PIK3CG.

Molecular docking

Ten targets (AKT1, TNF, SRC, EGFR, JUN, VEGFA, CND1,
MAPK3, MAPK1, and CREB1) were chosen according to the
results of the PPI network as the core targets of FRP for the
treatment of AD. Therefore, molecular docking was performed
by AutoDock software to simulate the interaction between
the main ingredients of FRP with these 10 core anti-AD
target proteins. The coordinates and box size for molecular
docking were depicted in Supplementary Table 3. Then, the
docking results were made into a heatmap as shown below
(Figure 12). Of those compounds, berberine exhibits the highest
binding energy to the binding pocket of core target proteins.
Meanwhile, other alkaloids, such as columbamine, roemerine,
and palmatine show a slightly weaker binding affinity with core
target proteins. In addition, oleanolic acid and β-sitogluside
also have good affinity to the target proteins. Furthermore, the
molecular simulation was used to verify the binding ability
of the alkaloid compounds to the classical therapeutic target
(AChE) and explore their accurate binding modes. As shown
in Figure 13, palmatine was docked into the PAS site of AChE

(PDB ID = 4EY7) through hydrogen bonding, van der Waals
interaction, PI donor hydrogen bonding, Pi-Pi Stacked, and
Pi-Pi T-shaped, based on the molecular docking studies, more
rational design and structural modification can be performed
on the palmatine in the future research, thus enhancing its
anti-AD effect. And berberine was docked into the PAS site of
AChE (PDB ID = 4EY7) through Pi-Cation, Pi-Sulfer, and Pi-Pi
Stacked.

Discussion

According to the theory of Chinese medicine, AD is
considered a multitargeted systemic disease, which is consistent
with the contemporary view of modern Western medicine
coincidentally (Rollo et al., 2016). Several clinical trials have
shown that HDTCM can improve cognition in AD patients.
FRP belongs to a kind of classical HDTCM with obvious anti-
inflammatory activity and antioxidant activity. In this study,
by utilizing network pharmacology and molecular docking, we
revealed the potential therapeutic targets of FRP for treating
AD. Meanwhile, the key active components of FRP for anti-AD
activity were identified.

Although network pharmacology has become a useful tool
to lend insight into the mechanisms of TCM. Even so, there
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FIGURE 10

Passage-target visualization diagram. Pink nodes are pathways, and green nodes are related target genes.

are still some problems to overcome. Based on the newly
bibliometric analysis results of network pharmacology in TCM,
determining the key ingredients in TCM (Miao et al., 2022) just
based solely on data from limited databases is not sufficient,
which may impact the quality of follow-up research. Researchers
believe that this phenomenon occurred because the public
databases do not reflect the difference in the composition and
content of TCM compounds. Meanwhile, it is necessary to focus
on basis of TCM’s properties, and In-depth research on the
key components’ pharmacological activity is urgently needed.
According to the previous literature, we isolated and identified
5 ingredients of FRP by silica gel TLC and recrystallization
(Zhang et al., 2008). Additionally, the other 7 ingredients
were chosen after a systematic search from multiple aspects.
Finally, a total of 12 ingredients from FRP were selected for
further investigation. From the compound-target-disease target
network, 235 potential targets were identified. Of these, 16

potential targets were chosen as core targets based on the degree
values in the PPI network. These core targets might play critical
roles in the anti-AD processes by FRP, and they are also expected
to become novel therapeutic targets for multitargeted treatment
most likely. Meanwhile, 6 kinds of alkaloids (palmatine,
columbamine, jatrorrhizine, tetrahydropalmatine, and romaine)
were speculated to play significant roles in the prevention of AD
progression. Based on the ADMET lab 2.0’s prediction results, all
these alkaloids meet Lipinski’s rule of five with no violations. In
addition, Total Polar Surface Area (TPSA) Studies have shown
that all these alkaloids characterize significant permeability in
the cellular plasma membrane.

Based on literature reports, nitrogen-containing
heterocyclic substrates often have high therapeutic potential
to treat neurodegenerative diseases, especially AD. In this
study, palmatine (degree = 156) showed the highest number of
anti-AD targets, but the current study on its anti-AD properties
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FIGURE 11

(A) Bar graph showing target genes with tau and Aβ information. (B) Bioinformatics analysis of FRP targets associated with tau and Aβ pathology.
(C) Tau and Aβ-related targets of the KEGG pathway. (D) Enrichment analysis identified bubble maps associated with the top 20 biological
processes (BP).

is limited. Per the existing literature, palmatine could attenuate
LPS-induced inflammation by inhibiting ERK1/2, P38, and
Akt/NF-kB signaling pathways (Ma et al., 2021). Besides, by
decreasing its anti-inflammatory and antioxidative effects,
palmatine could exert its neuroprotective action in the rat
model of brain I/R injury (Tang et al., 2021). In addition,
autophagy could also be promoted by palmatine through
activation of the AMPK/mTOR signaling pathway that may
contribute to its antioxidant and neuroprotective activity (Lin
et al., 2022). Additionally, previous studies have shown that
palmatine could possess significant AChE inhibitory activity
in vitro (Chaves et al., 2020; Song et al., 2021). These findings
suggested that palmatine is highly possible to be a promising
leading compound for AD treatment. Moreover, palmatine was
the most abundant alkaloid of FRP, which means we don’t have
to worry about palmatine being insufficient for widely used and
in-depth development.

The existing literature shows that berberine has attracted
much research, due to its multiple pharmacology activities and
favorable safety profile (Ai et al., 2021; Fang et al., 2022). In
recent years, more targets for the anti-AD effect of berberine
have been continuously discovered (Wong et al., 2020; Ye

et al., 2021). Meanwhile, only a small number of studies have
been documented on the anti-AD effect of columbamine, and
corydalmine (Ingkaninan et al., 2006; Li et al., 2019). Thus, using
these alkaloids for AD treatment could be explored deeply in
future research. Besides, several research groups have evaluated
the effects of palmatine, berberine, and their combination on
AChE. As a result, the combination of palmatine and berberine
exerted stronger activity on AChE activity in vitro enzymatic
activity assay (Balkrishna et al., 2019). In addition, we have
carried out further studies on the main ingredients of FRP. Even
though these ingredients have been shown potential anti-AD
biological activities. However, many of them still have some
shortcomings to overcome (e.g., poor bioavailability, limited
CNS penetration) (Cui et al., 2015; Fan et al., 2019). Several
studies have reported that modifying molecular structures
rationally or using nanotechnology to improve the drug delivery
system may increase their water solubility and bioavailability
(Xu et al., 2020).

Therefore, to design innovative anti-AD drugs more
efficiently and reasonably, it is essential to clarify the target and
molecular mechanism of these main ingredients of FRP (Baig
et al., 2016; Aarthy et al., 2017). Besides, this work was also
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FIGURE 12

Binding energy thermogram of active ingredients of FRP with target proteins.

beneficial to the design of newer anti-AD combination therapies.
Therefore, it is necessary to reveal the core anti-AD targets and
critical signaling pathways by FRP. According to the results of
our study, FRP can treat AD by regulating multitarget with
multi-components. The PPI Network of the active compound
targets against AD was analyzed by MCODE to obtain 7 clusters.
These clusters might play important roles in the anti-AD effect
of FRP. Moreover, to investigate FRP’s potential mechanism of
action on anti-AD, the DAVID database was utilized to perform
enrichment GO and KEGG pathway enrichment analysis. The
results showed that Neuroactive ligand-receptor interaction
(degree = 51), PI3K-Akt signaling pathway (degree = 38),
Calcium signaling pathway (degree = 37), and cAMP signaling
pathway (degree = 35) were the top 4 significantly enriched
pathways. Therein, Neuroactive ligand-receptor interaction
(hsa04151), Calcium signaling pathway (hsa04020), and cAMP
signaling pathway (hsa04024) are frequently associated with
neurogenesis transmission. Several targets (ADORA2A, HTR4,
DRD1, et al.) are involved in all these 4 pathways. According
to recent studies, elevated expression of ADORA2A was found
in the brain tissue of AD mouse models and AD patients
(Ferreira et al., 2015). After treatment with the selective A2AR

antagonist in the triple transgenic mouse model, the level of
VGluT1 expression could be upregulated, and the number of
synaptic A2AR in the hippocampus (HP) increase was observed,
meanwhile, the cognition of the mouse was improved (Temido-
Ferreira et al., 2020). These results indicated that ADORA2A
might be a promising therapeutic target for AD (Silva et al.,
2018). Besides, the PI3K-Akt signaling pathway (degree = 41)
has the most associations with targets. Previous studies have
suggested that this signaling pathway is one of the most vital
signaling pathways associated with inflammation, immunity,
and apoptosis in the human body (Sun et al., 2021; Merighi
et al., 2022). The results of our study indicate that the major
components of FRP can take effect on multiple targets of this
signaling pathway (e.g., AKT1, EGFR, IGF1R, et al.). Among
these predicted targets, 4 targets were classified as core targets
including AKT1 (degree = 16), EGFR (degree = 8), VEGFA
(degree = 7), and CREB1 (degree = 4). According to their degree
values in the PPI network. Akt is an attractive therapeutic target
for AD. Previous studies have shown that the PI3K activation
could activate AKT by phosphorylating it at Thr308 and Ser473,
following that, activated AKT phosphorylated GSK-3β (Hu
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FIGURE 13

The protein-ligand of the docking simulation: (A) Palmatine and 4EY7 (3D); (B) Palmatine and 4EY7 (2D); (C) Berberine and 4EY7 (3D);
(D) Berberine and 4EY7 (2D).

et al., 2020), which inhibits glycogen synthase kinase-3β (GSK-
3β) (Ma et al., 2008; Weako et al., 2021). Based on the in vivo
experiment in the ICV-STZ rat model of AD, modulation of the
PI3K/Akt/GSK3β signaling pathway could diminish oxidative
stress, neuro-inflammation, and apoptosis, Moreover, amyloid
plaque number and phosphorylated tau expression were marked
decrement (Nishizaki, 2018). Besides, it has been reported
that the intra-hippocampal administration of Aβ1−42 to adult
rats could disrupt the reduction-oxidation (redox) balance
and significantly affect neurotransmitter dysfunction, synaptic
dysfunction, and cognitive dysfunction (Yamini et al., 2022).
When rapamycin was administered to the Aβ1−42-treated rats,
Akt1 could be activated, which further increased the expression
levels of synaptic markers and neurotransmitter markers.
Meanwhile, autophagy could be activated by rapamycin via
PI3K/mTOR signaling pathway, and thus, protects hippocampal
neurons from degeneration by decreasing the levels of
prooxidants (Kotagale et al., 2020). These results not only
indicated that autophagy might be sufficient to reverse the redox
imbalance induced by Aβ1−42, but also reveal the crucial role of
Akt1 and PI3K in neuroprotection. In addition, we have noticed
a very recent bioinformatics analysis by Singh et al. (2017).
By using the publicly available GEO database, they analyzed
the miRNA/mRNA expression profiles of AD patients and
controls in the Asian population (ID: GSE131617, GSE36980,

GSE139384, and GSE120584). Go enrichment analysis and
KEGG pathway analysis were performed on differentially
expressed genes in the four brain regions. Results revealed
that these genes in the Frontal Cortex (FC), Temporal Cortex
(TC), and HP were enriched in the biological pathophysiology
relevant to neurotransmitters with receptors. Furthermore, the
maximum number of core differential genes were observed
in HP areas, and these genes were mostly enriched in the
neuroactive ligand-receptor interaction pathway. Interestingly,
this pathway has been identified as an important signaling
pathway in the treatment of AD by FRP as previously
shown. Besides, the genes in EC were enriched in immunity,
inflammation, apoptosis, and other signaling pathways. As the
antecedent show, FRP can exert anti-inflammatory through
multiple signaling pathways. To a certain extent, these results
demonstrate that FRP has a high potential for the treatment
of AD. As is well-known, phosphorylated tau tangles and
amyloid-β plaques are the key pathological feature of AD. In
further studies, we examined the relationship between FRP
targets and these two pathologies (Aβ and tau). Up to 71
out of 235 overlapping targets showed significant correlations
with Aβ, tau, or Aβ and tau. These targets were enriched
in several signaling pathways, such as the cAMP signaling
pathway, MAPK signaling pathway, and neuroactive ligand-
receptor interaction pathway. Coincidentally, according to the
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existing research, these three BP may play important roles in the
pathogenesis and maintenance of AD.

According to the discussions above, our network
pharmacology analysis predicted that the main ingredients
of FRP have multiple potential anti-AD properties,
including neuroprotective, anti-inflammatory, and anti-
neuroinflammation properties that may make it useful for
establishing multitargets anti-AD therapy. To further verify the
results of network pharmacology, the interactions between the
key ingredients and core targets were analyzed by molecular
docking. The docking score results demonstrated that all these
compounds have moderate to strong binding affinity for these
potential targets. Among these 12 compounds, the highest
docking score was achieved by berberine. Other protoberberine
alkaloids in FRP, such as palmatine, jatrorrhizine, and
columbamine could also show a moderate binding affinity with
core target proteins. Existing research suggests that all these
alkaloids could possess various biological activities, including
anti-oxidants, anti-inflammatory, and neuroprotective, which
may be beneficial for the treatment of AD (Wang et al., 2017;
Yan X. et al., 2017; Li et al., 2019; Long et al., 2019; Zhong et al.,
2021). Besides, oleanolic acid exhibited high binding to most of
the core targets. Although this compound was found to possess
a variety of biological activities, such as anti-inflammatory,
antioxidant, and neuroprotection (Zhang et al., 2021b; Zeruo
et al., 2022). Due to its poor pharmacokinetic parameters, its
clinical application has been limited (Gudoityte et al., 2021).
Another kind of steroidal compound, sitogluside, also showed
good docking scores. However, very few previous studies
have examined its anti-AD properties. Therefore, it is perhaps
deserved to be investigated in future research. In recent years,
molecular docking technology has become a powerful tool for
rational drug design. According to the descending order of
degree values of the key ingredients in the “ingredients-targets”
network and their molecular docking scores. The top-ranked
active ingredients (palmatine and berberine) have been selected
out as the most potent anti-AD lead compound. Analysis results
of their molecular structures indicated that the modification
of these two alkaloids could be exerted at multiple sites, which
may probably improve their bioavailability and biological
activity (Shan et al., 2011; Yan B. et al., 2017; Liang et al.,
2021; Castellano et al., 2022). Notably, the rational structural
modifications of AChE inhibitors were still the primary route
to the discovery of novel One-molecule-multi-target anti-AD
drugs at this stage (Rossi et al., 2021; Sang et al., 2022; Turgutalp
et al., 2022). Since these two alkaloids’ high potential in vitro
acetylcholinesterase inhibitory activity had been verified by
other researchers (Jia et al., 2021; Tang et al., 2021; Miao et al.,
2022). Molecular docking analysis was used to predict the
binding mode between these two compounds and AChE. The
docking results were not only further confirming their AChE
inhibition mechanism but also provided a basis for the rational
design of multi-target anti-AD drugs.

In the further studies, we noted that many other herbal
medicines (Coptis chinensis Franch, Phellodendron amurense,
and Berberis sargentiana Schneid, et al.) also reportedly contain
some of the same alkaloids compared with FRP (Wang et al.,
2009; Yang Y. et al., 2017; Meng et al., 2018; Adefegha
et al., 2021). According to our network pharmacology analysis,
palmatine was identified as the most effective anti-AD active
component among these alkaloids. Since the palmatine content
of these herbal medicines are far less than that of FRP, it is
reasonable to believe that FRP could exert more potent anti-AD
activity than any of them.

Conclusion

In this study, we successfully investigated the key active
components and molecular mechanisms of FRP implicated in
the treatment of AD by network pharmacology analyses and
molecular docking. This research identified 12 ingredients of
FRP treatment of AD by targeting 235 targets via multiple
pathways, which were concentrated on the neuroactive ligand-
receptor interaction, PI3K-Akt, calcium signaling, and cAMP
signaling pathways. Meanwhile, 16 core targets were identified
by PPI network analysis. According to the extraction experiment
and molecular docking results, alkaloids of FRP, such as
palmatine and berberine, were not only the most abundant
components in FRP but also had the best anti-AD activity.
Moreover, these components showed promising enzyme activity
against AChE, which currently remains the foremost therapeutic
target for AD. In conclusion, the results of this study not
only further verified that FRP in AD treatment has the
characteristics of “multiple components, multiple targets, and
multiple pathways” through network pharmacology but also
identified possible leading compounds with potential multi anti-
AD activity. Moreover, our research opens the door for the
potential application of HDTCM to multitargeted AD therapy.
Additionally, future in vivo and in vitro experiments are needed
to be performed to verify the results of the present study.
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