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Background: Neutrophil extracellular traps (NETs) are specialized structures

formed by neutrophils that were initially found to be important in killing

pathogenic bacteria during infection. With the development of related

research, the relationship between NETs and diseases such as sepsis, cancer,

and systemic lupus erythematosus has received close attention. However,

there is a lack of reports that comprehensively and objectively present the

current status of NETs-related studies. Therefore, this study aims to visually

analyze the current status and trends of NETs-related research by means of

bibliometrics and knowledge mapping.

Methods: NETs-related articles and reviews were retrieved using the Web of

Science core collection subject search, and bibliometric analysis was performed in

Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio).

Results: A total of 4866 publications from 2004 to 2022 were included in the

bibliometric analysis. The number of publications shows an increasing trend from

year to year. Collaborative network analysis shows that the United States and

Germany are themost influential countries in this field, with the highest number of

publications and citations. The journal with the most publications is Frontiers in

Immunology. Brinkmann Volker is an authoritative author in this field, and his

publication “Neutrophil extracellular traps kill bacteria” is themost frequently cited.

The literature and keyword analysis shows that the relationship between NETs and

diseases (hematological diseases, sepsis, cancer, etc.) and cell death (apoptosis,

necroptosis, pyroptosis, etc.) is a popular research topic. Currently, NETs and

SARS-CoV-2-related studies are at the forefront of the field.

Conclusion: This study is the first to visualize the research in NETs-related

fields using bibliometric methods, revealing the trends and frontiers of NETs

research. This study will provide valuable references for scholars to find

research focus questions and partners.
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Introduction

Neutrophils are the most abundant leukocytes in the human

blood and play an essential role in the body’s resistance to infections

caused by various pathogenic microorganisms (1). In addition to

the clearance of pathogens by phagocytosis (2) and degranulation

(3), neutrophil extracellular traps (NETs), first reported in 2004, are

considered another mechanism of neutrophil antibacterial activity

(4). NETs are reticular structures produced by neutrophils and are

composed mainly of DNA and protein components (histones,

granzymes and peptides) (4, 5). The generation of NETs is

usually accompanied by a specific cell death form named

NETosis (6). In the presence of NETs stimulants such as phorbol

myristate acetate (PMA), protein kinase C is first activated, which

promotes activation of reduced nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase complexes which in turn produces

reactive oxygen species (ROS) (7, 8). Hydrogen peroxide, a type of

ROS, is believed to mediate the dissociation of “azurosomes”,

protein complexes formed in the membranes of azurophil

granules and involving 8 different types of enzymes (9).

Subsequently, the serine proteases (neutrophil elastase -NE,

cathepsin G and azurocidin) and myeloperoxidase (MPO) in

azurosomes are released into the cytosole and migrated to the

nucleus where, together with Peptidyl-arginine deiminase 4

(PAD4), they promote citrullination of histones, ultimately

leading to chromatin decondensation (10–12). Under the

promotion of ROS, the nuclear membrane is gradually damaged

and separated, and chromatin is released extracellularly through the

membrane pores (13). Eventually, the cell membrane is cleaved, and

NETs-related substances are released from the cytoplasm to the

extracellular compartment (8). This type of NETs formation is

called suicidal NETosis (14). Notably, NETs release may also

proceed without neutrophil’s cell death (14). The formed NETs

can trap and immobilize invading pathogens, including bacteria,

viruses, and fungi (4). The NETs component contains antimicrobial

proteins such as calprotectin, thereby leading to the killing of the

trapped pathogens (15). Therefore, NETs formation is a new innate

immune response (4). In addition, although NETs are beneficial for

pathogen clearance, they have adverse effects on the organism (16,

17). Much evidence suggests that excess NETs are strongly

associated with the development and progression of various

diseases, including hematologic disorders (18), sepsis (19),

systemic lupus erythematosus (SLE) (20), and tumors (21).

Bibliometric analysis is a method that uses mathematical and

statistical methods to review and analyze studies in a specific

field of research over a specific period, both qualitatively and

quantitatively (22). This method focuses on countries,

institutions, journals, authors, and keywords related to

research in a specific field, providing readers with an objective

view of trends and frontiers in the field (23, 24). Bibliometric

analysis has been used in many research areas, including innate

immunity (25), pyroptosis (26), ferroptosis (27), and other areas
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closely related to NETs. Despite the rapid development of NETs-

related research in the last two decades, there is still a lack of

bibliometric analyses related to the field of NETs. Therefore, this

study aims to analyze the overall situation of NETs-related

research and identify the research trends and frontier hotspots

in the past two decades by using two bibliometric software

programs, VOSviewer and CiteSpace, which may provide a

reference for researchers to understand the corresponding

fields and find collaborations.
Materials and methods

Data sources

The data for the metrological analysis of this study were

obtained from the Web of Science Core Collection (WOSCC), a

comprehensive, standardized database widely used in academia

(28). In WOSCC, TS stands for Topic Sentence. The search

formula used in this study was set to “TS= (neutrophils OR

neutrophil) AND TS= (“NETs” OR “neutrophil extracellular

traps” OR “neutrophil extracellular trap” OR “netosis”). The

search period was limited to January 1, 2004 to July 10, 2022.

Only “Article” and “Review” were selected as article types, and

the language was limited to English, resulting in 4866 articles.

The results were exported as plain text files in txt and CSV

formats, according to the above formula for searching on

WOSCC. The search was completed on July 10, 2022, to

prevent data bias due to database updates.
Data analysis and visualization

CiteSpace, developed by Chaomei Chen, is currently the

most widely used software for bibliometric analysis (29). We

used CiteSpace 6.1. R2 Advanced visualization to analyze

country distribution and collaboration, the dual-map overlay

of journals, institutional distribution, subject area distribution,

keyword timeline graphs, reference collaboration and literature

bursts. VOSviewer was developed by Nees Jan van Eck et al. and

is mainly used for bibliometric network graph analysis (30). We

used VOSviewer 1.6.18 to visually analyze country distribution,

institution distribution, author distribution and collaboration

and keyword collaboration. The clustering, wich relies on the

similarity matrix and VOS mapping technique, was completed

automatically and the corresponding labels were then added by

the authors according to the content. In addition, we used

Bibliometrix (R-Tool of R-Studio) (31) to visually analyze the

country distribution, references and keywords, and Microsoft

Excel 365 to show the publication and citation trends of the

literature over the years. Finally, we used MATLAB [R2018a

(9.4.0.813654)] software to predict the number of NETs-related
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publications. All raw data used in this study were obtained from

public databases and therefore did not require ethical review.
Results

Annual publications and citation trends

Figure 1A shows the annual publication volume and annual

citation frequency of related articles from 2004 to 2022. In general,

the number of NETs-related annual publications shows an

increasing trend, with a decrease in 2008 and an increase in all

other years. The year with the highest number of publications is

2021, with 377 articles. Overall, the annual citation frequency of

NETs-related literature showed an increasing trend, with a more

moderate increase in 2009-2010, 2015-2016, and 2017-2018. The

2021 literature had the highest annual citation frequency of

14,213, with the highest increase of 20.78% for all years.

Figure 1B shows the logistic, linear, and general prediction

model curves of article volume fitted by MATLAB software.

The left panel shows the fitted curves for NETs-related article
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volume from 2004 to 2022 and the predicted curves for article

volume from 2022 to 2050. The red curve y1 has a good fit (R2 =

0.9804), and the purple dashed line is the 95% prediction bounds

for y1. The curves y2, y3, y4, and y5 all have R^2 values above

0.98, indicating a good fit. The results show that the expected peak

annual publication volume of NETs-related research in the future

may be approximately 800, and the peak time may be after 2050.

The right panel shows the predicted curve of NETs-related

publication volume in 2022. The results show that NETs-related

research articles may exceed 425 in 2022.
Distributions of countries/regions

Currently, there are 99 countries/regions participating in the

study of NETs, mainly concentrated in the NorthernHemisphere. It

is worth noting that the links between countries/regions are mainly

concentrated between North America and Europe, North America,

and East Asia, with strong links between Oceania and North

America and Europe (Figure 2A). Table 1 shows the top

10 countries/regions in terms of number of publications, the
A

B

FIGURE 1

Description of NETs-related publication volume and citation frequency and forecast of publication volume. (A) The number of NETs-related
publications and citation frequency for each year from 2004 to 2022, with the overall increasing trend of NETs-related publications and citation
frequency reaching the maximum in 2021 (2022 data only until July 10). The number of publications fluctuates between 50-377, with a maximum
value in 2021 and an average of more than 240 in the last decade (2012 to 2021). An overall upward trend in citation frequency is observed. (B) The
left panel shows the forecast of NETs-related publications from 2022 to 2050, and the right panel shows the forecast of publications in 2022. y1 is
the logistic growth model, y2, y3, y4, y5 is the linear model, and y6 is the general model. R^2 is the coefficient of the model. The larger the R^2
(close to 1), the better the fitted regression equation is. “Pred bnds” represents the predicted upper and lower bounds.
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corresponding frequency of citations and centrality. The

betweenness centrality of countries/regions measures

the importance of the position of the countries/regions in the

network. The USA published the most documents (1555),

followed by China (738) and Germany (714). The USA has the

highest citation frequency (93856), followed by Germany (49879).

The citation frequency of all other countries/regions is less

than 20,000.

Figures 2B and Supplementary Figure 1 show the

international cooperation of the top 20 countries by

publication volume. The results of the global collaboration

network analysis show that countries and regions are roughly

divided into 10 clusters in VOSviewer according to the closeness

of collaboration, which are represented by different colors

(Figure 2B). Each node in CiteSpace represents a country/

region, and the radius of the node increases with its

contribution to NETs research (Supplementary Figure 1). The

connections between nodes indicate the collaborative
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relationship between individual countries and regions, and the

thickness of the links is positively correlated with the depth of

collaboration. The betweenness centrality of a node indicates its

strength of association with other nodes, which is proportional

to the size of the surrounding purple ring. The larger the purple

circle, the larger the value of betweenness centrality. The USA

and Germany are the main research centers of NETs and have

close cooperation with several countries, such as England,

Canada, China, and Australia.
Distribution by institutions

Table 2 and Supplementary Table 1 shows the top 10

institutions in terms of number of publications, frequency of

citations and the corresponding centrality. The institution with

the highest number of publications is Harvard Medical School

(127), followed by the University of Michigan (119). The top ten
A

B

FIGURE 2

Analysis of NETs-related country/region. (A) Countries/regions involved in NETs-related research. The links between countries/regions indicate
their collaborations and connections. (B) Analysis of collaborative network visualization of countries/regions in VOSviewer. The figure shows the
countries/regions with more than 1 number of documents. The nodes of different colors represent the countries/regions with different clusters,
and the size of the nodes indicates their node sizes.
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institutions in terms of number of publications are from the

United States with five, followed by Sweden with two. The most

frequently cited institution is the Max Planck Institute for

Molecular Biomedicine (17982), followed by Harvard

University (12087) and the University of Michigan (10752).

The top 10 most cited institutions are from the United States

with 7, followed by Germany with 2. Notably, The University of

Amsterdam (0.33), The Beatson Institute for Cancer Research

(0.31), The Baylor College of Medicine (0.29), The University

Medical Center Mainz (0.27), and several other institutions show

high centrality, which implies that these institutions occupy a

significant position in research in the field of NETs.

The analysis by research institutions aims to understand the

global distribution of NETs-related research and provide

opportunities for cooperation. In VOSviewer, institutional

cooperation is divided into 8 closely related blocks (Figure 3A).

Figure 3B shows the ratio of institutional publications to total

publications in the past five years, generated by dividing the

number of NET-related publications in each institution over the

past five years by their total number of publications from 2004 to

2022. Figure 3B shows the ratio of institutional publications to

total publications in the past five years. The color bias towards

yellow means a higher ratio, indicating that these institutions are
Frontiers in Immunology 05
emerging forces in the field of NETs; the color bias towards purple

means a lower ratio, indicating that these institutions have

relatively a little research in the field of NETs in recent years.

The results show that the number of studies conducted by

Harvard Med Sch, Shanghai Jiao Tong University, Harbin

Medical University and other institutions has increased

significantly in the past five years. In contrast, Boston Children’s

Hospital, University of California San Diego, Max Plank Institute

for Infection Biology and other institutions have conducted

relatively few studies in the past five years. In CiteSpace, the

University of Michigan is the most productive institution in the

institutional cooperation network, but its centrality is low. In

contrast, institutions such as the University of Amsterdam,

University of California San Diego, and Karolinska Institution

have higher centrality, indicating that they have extensive

collaborations with academic institutions around the world

(Supplementary Figure 2).
Distribution of authors

Co-cited authorship analysis refers to the literature of two

authors being cited by a third author simultaneously. A higher
TABLE 1 Top 10 countries/regions in terms of number of publications, the corresponding frequency of citations and centrality.

Rank Countries/regions publications Citations Centrality

1 USA 1555 93856 0.24

2 China 738 15214 0.05

3 Germany 714 49879 0.26

4 England 342 19846 0.18

5 Italy 280 12031 0.10

6 Japan 271 8594 0.04

7 Canada 249 19170 0.16

8 Sweden 224 12781 0.12

9 Netherlands 220 10669 0.10

10 France 216 12552 0.08
fro
TABLE 2 Top 10 institutions in terms of number of articles issued and the corresponding centrality.

Rank Institution Publication Centrality

1 Harvard Medical School 127 0.02

2 University of Michigan 119 0.07

3 Karolinska Institute 83 0.13

4 Lund University 73 0.03

5 Harvard University 68 0.10

6 University of Toronto 67 0.09

7 University of Amsterdam 64 0.33

8 University of California, San Diego 60 0.12

9 Shanghai Jiao Tong University 57 0.02

10 Boston Children’s Hospital 52 0.05
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co-citation frequency indicates closer academic interest and

research density (32). The analysis of the authors with the

highest number of publications and co-citation frequencies in

NETs-related research can visually reflect the research strength

of the authors and NETs-related research hotspots. Table 3 and

Supplementary Table 2 shows the top 10 authors in the

number of publications, frequency of co-citations, the

corresponding institutions and the corresponding total link

strength. The author with the highest number of publications is

Kaplan Mariana J. (National Institutes of Health, USA) (67),

followed by Herrmann Martin (University Hospital Erlangen,

Germany) (51), Knight Jason S. (University of Michigan, USA)

(49) and Maren von Köckritz-Blickwede (University

ofVeterinary Medicine,Germany) (47). The most frequently
Frontiers in Immunology 06
co-cited author is Brinkmann Volker (Max Planck Institute,

Germany) (4008), followed by Tobias A. Fuchs (New York

University, USA) (2621) and Venizelos Papayannopoulos (The

Francis Crick Institute, UK) (1690). It is worth noting that

Brinkmann Volker has a high influence in this field in terms of

both citations and co-citations.

The collaborations of the authors of NETs-related literature

are shown in VOSviewer (Figure 4A), which provides

information for finding research partners and industry

authorities. Herrmann Martin and Kaplan Marina J. are at the

center of the collaborative network. Herrmann Martin is

associated with Von Koeckritz-Blickwede Maren, Knight Jason

S., Abrams Simon T. and Fuchs Tobia A. are actively

collaborating, while Kaplan Marina J. is in close collaboration
A

B

FIGURE 3

Analysis of NETs-related institution. (A) Analysis of collaborative network visualization of institutions in VOSviewer. The figure shows the
institutions with more than 5 documents. The nodes of different colors represent the institutions of different clusters, and the size of the nodes
indicates the frequency of their occurrence. (B) Analysis of the number of articles published by institutions in recent years. The recent 5 years
heat value of each institution is obtained by dividing the number of publications in recent 5 year by the total number of publications.
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with Knight Jason S., Wagner Denisa D., Boettcher Michael and

Fuchs Tobia A. The co-cited authorship network map shows

that the research focus of the authors of NETs-related literature

is highly homogeneous (Figure 4B). The authors are mainly

divided into 4 clusters: Brinkmann V, Fuchs Ta, etc. (green);

Martinod K, Clark Sr, Von Bruhl Ml, etc. (red); Knight Js,

Kessenbrock K, Lande R, etc. (blue); Cools- Lartigue J, Demers

M, et al. (yellow).
Distribution of journals

We used the bibliometric online analysis platform to identify

journals with high publication volume and impact in NETs-

related fields. The journal’s impact factor (IF) and Journal

Citation Reports (JCR) quartile reflect the journal’s influence.

The journals with the top 25% (including 25%) of IF are in JCR

quartile 1(Q1), and top 25%-50% (including 50%) of IF are in

JCR quartile 2(Q2). Table 4 and Supplementary Table 3 shows

the top 10 journals in the number of articles, frequency of co-

citation, corresponding IF (JCR2021) and JCR quartile. The

journal with the highest number of publications is Frontiers in

Immunology (8.786, Q1) (388), followed by the International

Journal of Molecular Sciences (6.208, Q1) (129), PLOS One

(3.752, Q2) (109), and Scientific Reports (4.996, Q2) (109).

Among the top ten journals in terms of the number of

publications, five journals are distributed in the Q1 JCR, and

eight have the IF above 5. The most frequently co-cited journals

are Blood (25.476, Q1) (14576) and Journal of Immunology

(5.446, Q2) (13208). Among the top 10 journals in co-citation

frequency, eight journals are distributed in Q1 JCR and six

journals have an IF over 10. It is worth noting that 4 of the top 10

journals in terms of publication volume are also among the top

10 journals in terms of co-citation frequency, including Frontiers

in Immunology, Plos One, Journal of Immunology and Blood,

indicating a strong influence of these journals.

The visualization in VOSviewer shows the journals in

which NETs-related literature was published and the
Frontiers in Immunology 07
relationships between them (Figure 5A). The clustering is

based on the similarity of the journals and is divided into 5

categories overall: the blue cluster has studies focused on

autoimmunity (Journal of Autoimmunity, Rheumatology,

etc.); the green cluster has studies focused on immunity

(Frontiers in Immunology, Infection And Immunity, etc.);

yellow clusters are focused on clinical research and treatment

as well as blood-related fields (Journal of Clinical Medicine,

Thrombosis Research, etc.); red clusters are focused on

critical care medicine (Shock, Critical Care, Journal of

Surgical Research, etc.); and the studies in the purple

cluster are mainly in the field of cell biology (Cells, etc.).

Based on the co-cited frequency, these journals are classified

into 4 clusters that tend to have similar research directions

(Figure 5B). The red cluster is focused on hematology-related

areas (Blood, Journal of Thrombosis and Hemostasis, etc.);

the green cluster is focused on immunity (Frontiers in

Immunology, Journal of Innate Immunity, etc.); the blue

cluster is mainly in the field of biochemistry and molecular

bio logy (Journal of Cel l Bio logy , Cel l Death and

Differentiation, etc.); and the yellow cluster is mainly in the

field of autoimmunity (Annals of The Rheumatic Diseases,

Autoimmunity Reviews, etc.).

We used knowledge flow analysis to explore the evolution of

knowledge citations and co-citation between citing and cited

journals (33). The dual-map overlay of journals shows the topic

distribution, changes in citation trajectories, and shifts in

research centers across academic journals (Figure 5C) (33, 34).

The labels on the left of the dual map represent citing journals,

and the labels on the right represent cited journals. A colored

curve of citation connections originating from the citing map

and pointing to the cited map shows the context of the citation

(33). Citing journals are mainly from MOLECULAR,

BIOLOGY, IMMUNOLOGY, MEDICINE, MEDICAL, and

CLINICAL, called research frontiers. The cited journals are

mainly from MOLECULAR, BIOLOGY, GENETICS,

HEALTH, NURSING, MEDICINE, DERMATOLOGY,

DENTISTRY, and SURGERY, called the knowledge base.
TABLE 3 Top 10 authors in terms of number of publications, the corresponding institutions and total link strength.

Rank Author Publications Institutions Total link Strength

1 Kaplan, Mariana J. 67 National Institutes of Health (USA) 247

2 Herrmann, Martin 51 University Hospital Erlangen (Germany) 361

3 Knight, Jason S. 49 University of Michigan (USA) 257

4 Von Koeckritz-Blickwede, Maren 47 University of Veterinary Medicine (Germany) 149

5 Nizet, Victor 41 University of Rhode Island College of Pharmacy (USA) 112

6 Wagner, Denisa D. 36 Boston Children’s Hospital (USA) 136

7 Hermosilla, Carlos 32 Justus Liebig University (Germany) 129

8 Taubert, Anja 32 Justus Liebig University (Germany) 134

9 Nakazawa, Daigo 31 Hokkaido University (Japan) 166

10 Ritis, Konstantinos 31 Democritus University of Thrace (Greece) 191
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A

B

FIGURE 4

Analysis of NETs-related author. (A) Collaborative network visualization of authors in VOSviewer. The figure shows the authors with more than 8
documents. The nodes in different colors represent the authors in different clusters, and the size of the nodes indicates the frequency of their
occurrence. (B) Analysis of collaborative network visualization of authors’ citations in VOSviewer. The size of the nodes indicates the frequency
of their occurrence.
TABLE 4 Top 10 journals in terms of number of publications, corresponding IF (JCR 2021) and JCR quartile.

Rank Journal Publications IF (JCR2021) JCR quartile

1 Frontiers In Immunology 388 8.786 Q1

2 International Journal of Molecular Sciences 129 6.208 Q1

3 Plos One 109 3.752 Q2

4 Scientific Reports 109 4.996 Q2

5 Journal of Immunology 76 5.446 Q2

6 Journal of Leukocyte Biology 66 6.011 Q2

7 Cells 63 7.666 Q2

8 Blood 62 25.476 Q1

9 Thrombosis And Haemostasis 48 6.681 Q1

10 Journal of Thrombosis And Haemostasis 45 16.036 Q1
Frontiers in Immuno
logy 0
8
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Keyword analysis

As an overview of the core content of the article, keywords

can be used to analyze the frontiers of NETs research. Table 5

shows the top 20 keywords by frequency. The most frequently
Frontiers in Immunology 09
occurring keyword is “nets” (1711), followed by “neutrophils”

(1002). In addition, “inflammation” (1314) and “netosis” (691)

are frequent keywords, indicating that their corresponding fields

are popular in NETs-related research. A co-occurrence network

diagram of keywords is visualized in VOSviewer (Figure 6A).
A

B

C

FIGURE 5

Analysis of NETs-related journal. (A) Analysis of collaborative network visualization of journals in VOSviewer. The figure shows the journals with
more than 10 documents. The nodes in different colors represent the journals in different clusters, and the size of the nodes indicates the
frequency of their occurrence. (B) Analysis of collaborative network visualization of journals’ citations in VOSviewer. The size of the nodes
indicates the frequency of their occurrence. (C) The dual-map overlay of journals. Citing journals are on the left, cited journals are on the right,
and colored paths indicate citation relationships.
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The connecting lines between different keywords indicate that

they have co-occurrence relationships. The keywords are

clustered according to the research direction and roughly

divided into 5 categories: keywords in the blue cluster are

related to physiological or pathological phenomena

(phagocytosis, degranulation, etc.) and are intracellular and

extracellular substance related (MPO, biofilm, etc.). The

keywords in the green cluster are related to inflammation

(inflammation, macrophages, immune cells, etc.). Keywords in

the red cluster are related to cardiovascular (thrombosis, platelet,

etc.) and critical medicine (COVID-19, sepsis, etc.). The

keywords in the purple cluster are related to cell death (cell

death, apoptosis, etc.). The keywords in the yellow cluster are

related to autoimmunity (autoimmunity, autoantibodies, etc.).

The light blue cluster (cytokines, lipopolysaccharide, etc.), and

the orange cluster (atherosclerosis, etc.) are linked to several

clusters, indicating that they are cross-cutting areas in each

research direction.

In CiteSpace, the timeline graph shows the most frequently

occurring keywords for each cluster over time (Figure 6B). The

earliest and largest cluster is #0 (thrombosis). In this field, the

earliest keywords include beta-2 glycoprotein I (beta2GPI) and

thrombin generation, while ischemia reperfusion injury, ischemic

stroke and coronary artery disease are the latest research targets.

Another large cluster that emerged earlier is #1 (autoimmune

diseases). In this field, keywords such as microscopic polyangiitis,

interferon and monocytes are the research frontiers. It is worth
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noting that 3 of the 7 clusters are still in progress, namely, #1

(autoimmune diseases), #2 (staphylococcus aureus) and #6 (toll-

like receptors), indicating that relevant research in this field is

ongoing. In addition, #7 (SARS-COV-2) is the latest cluster; the

main keywords are coronavirus and insulin resistance, which is a

frontier hotspot of NETs-related research. The details of Figure 6B

are provided in the Supplementary Table 4.

Figure 7A shows the keywords’ annual popularity (number

of citations in the year/total citations in the year) from 2005 to

2022. Keywords such as phagocytosis and antimicrobial peptide

have had relatively low annual popularity in recent years. In

contrast, the annual popularity of keywords such as stroke,

citrullinated histone, cytokines storm, and COVID-19 have

been relatively high in recent years, suggesting that these

keywords represent emerging frontier areas. Figure 7B shows

the popularity correlation of keywords, where keywords with

high popularity in similar periods are clustered into different

clusters marked with different colors. The results show that there

are 7 clusters: the pink cluster (histone, ROS, NADPH oxidase

oxide, etc.), purple cluster (DNase, virulence factor, neutrophils,

etc.), orange cluster (TLR, dendritic cell, phagocytosis, etc.), blue

cluster (COVID-19, cytokine storm, fibrosis, etc.), green cluster

(bacteria, DNA, necrosis, etc.), yellow cluster [autophagy, cell-

free DNA, cell death, etc.)], and red cluster (venous thrombosis,

lupus nephritis, extracellular DNA, etc.). This indicates that

keywords within the same cluster have higher popularity in

the same period.
TABLE 5 Top 20 keywords in terms of frequency of occurrence and the corresponding total link strength.

Rank Keyword Occurrences Total link strength

1 nets 1711 3369

2 neutrophils 1002 2374

3 inflammation 517 1314

4 netosis 266 692

5 platelet 234 616

6 innate immunity 224 537

7 covid-19 200 460

8 thrombosis 197 575

9 sepsis 183 493

10 macrophages 119 356

11 systemic lupus erythematosus 101 243

12 reactive oxygen species 99 248

13 autoimmunity 96 254

14 infection 96 278

15 histone 95 249

16 atherosclerosis 93 290

17 cancer 93 286

18 pad4 90 246

19 mpo 89 216

20 apoptosis 88 248
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Highly cited reference analysis

Table 6 shows the top ten articles in terms of citation frequency

and average annual citation frequency. The most frequently cited

article is “Neutrophil extracellular traps kill bacteria” (Brinkmann

V, et al., 2004) (5334), which focuses on the composition of NETs

and their bacteriostatic effect in experimental dysentery and

spontaneous human appendicitis (4). Notably, this was the first

paper in the field, discovering NETs, which justifies its very high

number of citations. Next, “the novel cell death program leads to

neutrophil extracellular traps” (Fuchs, Tobias A., et al., 2007)

(1925), which describes a process of NETs formation: the nucleus

is deformed, and chromatin is homogenized after stimulation of

neutrophil NET components is mixed, followed by NADPH

oxidase and ROS-mediated cell death accompanied by cell

membrane rupture, which releases NETs to exert antimicrobial
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effects (8). The most frequently cited article on an annual basis is

“Molecular mechanisms of cell death: recommendations of the

Nomenclature Committee on Cell Death 2018” (Galluzzi Lorenzo,

et al., 2018) (354.2). This article suggests defining Netotic cell death

as ROS -dependent, regulated cell death confined to hematopoietic-

derived cells and closely associated with NETs release (35). The

second most frequently cited annual average is “Neutrophil

extracellular traps kill bacteria” (280.7).

Article co-citation analysis analyzes the relationship between

articles by analyzing the co-citation frequency of the articles

(36). The relationship between studies is presented in CiteSpace,

and the authors and years of the bursting articles with increased

citation frequency are indicated in the figure (Figures 8A, B).

The clustering is based on the degree of association between the

literature and was divided into 19 categories, which are indicated

by different colors. The category with the highest number of
A

B

FIGURE 6

Analysis of NETs-related keyword. (A) Collaborative network visualization of keywords in VOSviewer. The figure shows the keywords with more
than 15 occurrences. The nodes of different colors represent the keywords of different clusters, and the size of nodes indicates their frequency.
(B) Timeline view of keywords. Each horizontal line represents a cluster. The smaller the number is, the larger the cluster, with #0 being the
largest cluster. Nodes size reflects co-citation frequency, and the links between nodes indicate co-citation relationships. Nodes occurrence year
is the time when they were first co-cited.
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published articles is #0, and the most common keyword in these

articles is oxidative stress. In terms of timeline, the earliest

research areas in the NETs field are three separate research

clusters: #13 (polysaccharide capsule), #15 (gynecological

diseases), and #17 (male reproductive system diseases), which

together are developed into #14 (Group a Streptococcus), #7
Frontiers in Immunology 12
(macrophage extracellular traps), and #19 (posttranslational

modifications) . Furthermore, #16 (insect) and #12

(polyinosinic-polycytidylic acid) are later independent research

clusters; #16 developed mainly into clusters #10, #19 and #12

developed into clusters #7 and #0. After 2009, clusters #0

(oxidative stress) and #2 (rheumatic diseases) are closely
A

B

FIGURE 7

Heatmap analysis of NETs-related keywords. (A) Annual heatmap from 2004 to 2022. The annual heat value of each keyword is obtained by
dividing the number of citations in that year by the total number of citations in that year. (B) Keyword relevance heatmap. Keywords with high
popularity in similar time periods are clustered into one category and marked with different colors.
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related and then developed into three relatively discrete clusters,

#1 (bleeding disorders), #6 (sepsis), and #4 (cell death).

Subsequently, the closeness of the linkages between the studied

areas further declined, and several relatively independent

clusters emerged, including #5 (cancer), #11 (blood−brain

barrier), #9 (respiratory diseases), and #3 (SARS-CoV-2).

Notably, cluster #8 (platelets) originated separately from the

study of Aslam R et al. (2006) in cluster #19 and eventually

developed into a more independent line of research in areas such

as cluster #1 (bleeding disorders).

Figure 9A shows the relationship of the top twenty articles by

citation frequency. The results show that “Neutrophil extracellular

traps kill bacteria” published by Brinkmann V et al. in 2004 (4)

received the most citations from other articles. Subsequently, 2010

(5 articles) and 2013 (6 articles) had the most highly cited articles,

and these articles served as a link between the previous phase and

the next phase. Ultimately, most of the articles are cited in

“Neutrophil extracellular traps in immunity and disease” by

Papayannopoulos V et al., 2018 (37). Figure 9B shows the top

25 references with the strongest citation bursts. The first two

citation bursts occurred in 2007. They are titled “Novel cell death

program leads to neutrophil extracellular traps” (8) and “Platelet

TLR4 activates neutrophil extracellular traps to ensnare bacteria in

septic blood” (38). It is worth noting that “Novel cell death

program leads to neutrophil extracellular traps” is the paper

with the strongest burst (Strength = 98.61), published by Tobias

A Fuchs et al. in the Journal of Cell Biology in 2007, and its burst
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duration lasts until 2012. “Neutrophil extracellular traps in

immunity and disease” by Venizelos Papayannopoulos,

published in Nature Reviews Immunology, also had a high

burst (Strength = 92.22). The results show that 2011 had the

highest number of new citation bursts (7 times), followed by 2013

(5 times), which indicates that the high-burst papers in these two

years caused a related research boom. There are two citation

bursts with research directions for COVID-19 until 2020 (39, 40),

which shows that NETs-related research is ongoing.
Subject area analysis

CiteSpace analysis shows the citation relationship of NETs-

related literature by subject area (Supplementary Figure 3). The

literature related to the discipline “IMMUNOLOGY” has the

highest number of citations, followed by “BIOCHEMISTRY &

MO L E CU L A R B I O LOGY ” , “ C E L L B I O LOG Y

“BIOCHEMISTRY & MOLECULAR BIOLOGY”, “CELL

BIOLOGY”, “MICROBIOLOGY” and “MICROBIOLOGY”.

“BIOCHEMISTRY & APPLIED MICROBIOLOGY” ,

“RADIOLOGY, NUCLEAR MEDICINE & MEDICAL

IMAGING”, and “NEUROSCIENCES”, “ENDOCRINOLOGY

& METABOLISM” , “ONCOLOGY” , “ONCOLOGY” .

“BIOCHEMISTRY & MOLECULAR BIOLOGY”, “CELL

BIOLOGY”, “MICROBIOLOGY”, “RESPIRATORY SYSTEM”

and “CRITICAL CARE MEDICINE” are marked by purple
TABLE 6 Top 10 highly cited references.

Rank Article Title Source Title Authors Year Cited DOI

1 Neutrophil extracellular traps kill bacteria SCIENCE Brinkmann, V,et
al.

2004 5334 10.1126/
science.1092385

2 Novel cell death program leads to neutrophil
extracellular traps

JOURNAL OF CELL BIOLOGY Fuchs, Tobias A.,
et al.

2007 1925 10.1083/
jcb.200606027

3 Molecular mechanisms of cell death:
recommendations of the Nomenclature Committee
on Cell Death 2018

CELL DEATH AND DIFFERENTIATION Galluzzi, Lorenzo,
et al.

2018 1771 10.1038/s41418-
017-0012-4

4 Molecular definitions of cell death subroutines:
recommendations of the Nomenclature Committee
on Cell Death 2012

CELL DEATH AND DIFFERENTIATION Galluzzi, Lorenzo,
et al.

2012 1713 10.1038/
cdd.2011.96

5 Platelet TLR4 activates neutrophil extracellular traps
to ensnare bacteria in septic blood

NATURE MEDICINE Clark, Stephen R.,
et al.

2007 1411 10.1038/nm1565

6 Extracellular DNA traps promote thrombosis PROCEEDINGS OF THE NATIONAL
ACADEMY OF SCIENCES OF THE UNITED
STATES OF AMERICA

Fuchs, Tobias A.,
et al.

2010 1349 10.1073/
pnas.1005743107

7 The acute respiratory distress syndrome JOURNAL OF CLINICAL INVESTIGATION Matthay, Michael
A.,et al.

2012 1127 10.1172/
JCI60331

8 Neutrophil elastase and myeloperoxidase regulate
the formation of neutrophil extracellular traps

JOURNAL OF CELL BIOLOGY Papayannopoulos,
Venizelos,et al.

2010 1069 10.1083/
jcb.201006052

9 Monocytes, neutrophils, and platelets cooperate to
initiate and propagate venous thrombosis in mice in
vivo

JOURNAL OF EXPERIMENTAL MEDICINE von Bruehl,
Marie-Luise,et al.

2012 1047 10.1084/
jem.20112322

10 Netting neutrophils in autoimmune small-vessel
vasculitis

NATURE MEDICINE Kessenbrock, Kai,
et al.

2009 1027 10.1038/
nm.1959
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circles, indicating that these disciplines have a greater influence

in this field. The influence of these disciplines in this field is

indicated by the purple circles around these disciplines.
Discussion

CiteSpace 6.1. R2 Advanced, VOSviewer 1.6.18, and R-

bibliometrix were used to analyze the data of 4866 articles on

neutrophil extracellular traps between 2004 and 2022 from the

Web of Science and to evaluate the spatial and temporal

distributions, author contributions, core articles, research

hotspots and frontiers of the field based on these data.
General distribution

The analysis in this study is based on 4866 NETs-related

articles from 1117 institutions with 22,373 authors in the
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WOSCC database from January 1, 2004, to July 10, 2022. The

rapid increase in the number of articles indicates that NETs is

attracting increasing attention. Brinkmann Volker et al. first

reported the term “Neutrophil extracellular traps, NETs” in

2004, which began NETs-related research. The number of

studies related to NETs has steadily increased over the past

decade or so, with approximately three times as many

publications in 2021 as in 2011.

In the country/region analysis, the two most important

indicators are the number of publications and betweenness

centrality. High centrality (>=0.10) means that these countries/

regions act as “bridges” in the global collaborative network. As

shown in Tables 1, 2 and Figures 2, 3, the USA and Germany are

the central countries for research in the NETs field. The United

States has the highest number of publications and citation

frequency, while Germany has the third highest number of

publications and the second highest citation frequency. Five of

the top ten institutions in terms of number of publications are

from the United States; seven of the top ten institutions in terms
A

B

FIGURE 8

Analysis of NETs-related reference. (A) Analysis of the network of references in CiteSpace. Node size is proportional to the number of times the
article is co-cited. (B) Clustering of references based on similarity between references, including #0 oxidative stress, #1 bleeding disorders, #2
rheumatic diseases, #4 cell death, #5 cancer, #9 respiratory diseases, #12 polyinosinic-polycytidic acid, #15 gynecological diseases, #16
insects, and #17 male reproductive system disease.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1025861
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wan et al. 10.3389/fimmu.2022.1025861
of citation frequency are from the United States and two are

from Germany, with Max Planck Institute for Infection Biology

from Germany having a much higher citation frequency than

other institutions. Germany’s centrality of 0.26 is the highest

among all countries, followed by the USA with a centrality of

0.24, indicating its dominant position in global NETs research

collaboration. In addition, countries such as the UK, China,

Canada, and Switzerland are widely involved in NETs research

and collaboration.

As seen in Table 3 and Figure 4, Brinkmann Volker’s co-

citation frequency ranks first and far exceeds that of other

scholars, which indicates his outstanding influence in NETs-

related fields. Brinkmann Volker is from Max Planck Institute

for Infection Biology, Germany. In 2004, Brinkmann Volker

et al. published the article “Neutrophil Extracellular Trap Kills

Bacteria” in Science, which described for the first time an

extracellular scaffold structure with DNA that can trap and kill

pathogens and named it “Neutrophil extracellular traps, NETs”;

it has been cited 5,334 times and is the most frequently cited

article in this field. It is worth mentioning that this work was

carried out under the guidance of Arturo Zychlinsky, who is the
Frontiers in Immunology 15
corresponding author of this article. KaplanMariana, J. is the top

author in terms of the number of articles published and ranked

third in citation frequency. Notably, Galluzzi Lorenzo’s team’s

“Molecular mechanisms of cell death: recommendations of the

Nomenclature Committee on Cell Death 2018” and “Molecular

definitions of cell death subroutines: recommendations of the

Nomenclature Committee on Cell Death 2012” ranked third in

citation frequency and first in average annual citation frequency.

The citation frequency of “Molecular definitions of cell death

subroutines: recommendations of the Nomenclature Committee

on Cell Death 2012” ranked fourth and also has a significant

influence in related fields.

As shown in Table 4 and Figure 5, Frontiers in Immunology

is not only the journal with the highest number of publications

but also one of the top 5 journals in terms of co-citation

frequency. Blood received the highest number of co-citations

and the second highest citation frequency, mainly due to the

high number of relevant and highly cited articles published in

the journal. Notably, among the top 10 journals in terms of co-

citation frequency, there are 3 journals related to

IMMUNOLOGY (J Immunol, Front Immunol, J Exp Med),
A

B

FIGURE 9

(A) Association between the top 20 citation bursts. (B) The top 25 references with the strongest citation bursts.
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excluding MULTIDISCIPLINARY SCIENCES. Two journals are

related to BIOCHEMISTRY & MOLECULAR BIOLOGY-

related journals (NATURE MEDICINE, J Biol Chem), and J

Clin Invest is associated with MEDICINE, RESEARCH &

EXPERIMENTAL, which is consistent with the dual-map

analysis in Figure 5C.
Hotspots and frontiers

Keyword analysis helps to understand the field frontier and

hot content of NETs. In existing studies, the main keywords

include “nets”, “neutrophils”, “inflammation”, “netosis”,

“platelet”, “innate immunity”, “COVID-19”, “thrombosis”, and

“sepsis” (Table 5), which are mainly related to NET formation

and release and NETs-related diseases, suggesting that these

keywords are popular topics for NETs. The co-occurrence

network diagram shows that in past research, high-frequency

keywords showed several popular research directions, including

HEMATOLOGY (thrombosis, platelet, myocardial infarction,

e t c . ) , IMMUNOLOGY ( immuni ty , au to immuni ty ,

immunosuppression, etc.), CELL DEATH (apoptosis,

necroptosis, pyroptosis, etc.), and INFLAMMATION (sepsis,

COVID-19, etc.). Correspondingly, the timeline diagram

analysis shows that #0 (thrombosis), #1 (autoimmune

diseases), #2 (staphylococcus aureus), and #3 (net formation)

are all larger clusters, indicating that they have higher heat.

Figure 7 shows that in recent years, INFLAMMATION,

HEMATOLOGY, IMMUNOLOGY, and CELL DEATH

remain hot research fields, and the keywords in each field

represent hot new research directions. The heat of the

emerging THERAPY field continues to increase, mainly

including keywords such as immunotherapy and prognosis. It

is worth noting that, similar to the interdisciplinary content of

IMMUNOLOGY and HEMATOLOGY, the popularity of

IMMUNOTHROMBOSIS continues to increase, indicating

that interdisciplinary research has strong potential

for popularity.

Neutrophil extracellular traps and diseases
The link between NETs and disease has received increasing

attention. As shown in Figure 8A, the earliest popular research

on NETs-related diseases mainly focused on cardiovascular

diseases (#1 bleeding disorder, #2 rheumatic diseases), among

which the important role of NETs in the process of thrombosis

attracted much attention (41). “Extracellular DNA traps

promote thrombosis” published by Tobias A Fuchs et al.

elaborated the role of NETs in thrombosis from the

perspective of platelet adhesion, activation, and aggregation

(18). NETs can also promote thrombus formation by

promoting thrombin generation (42) and activating

thrombosis-related molecules (43). In addition, NETs play an

important role in atherogenesis (44). In recent years, the
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relationship between NETs and sepsis, cancer, respiratory

diseases, and other diseases has attracted increasing attention

(45–48). Although NETs can clear pathogens from the body,

there is evidence that excessive NETs in sepsis can exacerbate

tissue damage (37), which may be related to elevated neutrophil-

derived circulating free DNA (used to assess sepsis-related organ

function) obstacles (49). Notably, the promotion of disseminated

intravascular coagulation and thrombosis by NETs is also one of

the mechanisms of sepsis development (50, 51). The relationship

of NETs to cancer was first elucidated by Sivan Berger-Achituv

et al., who found that intratumoral NETs in Ewing sarcoma were

associated with poorer prognosis (52). NETs were subsequently

shown to promote tumor development in many cancers, such as

pancreatic (53), breast (54), and bowel cancer (55). Evidence

suggests that tumor cells promote the release of NETs from

neutrophils through stimulation, such as secretion of IL-8/

CXCL8 and CXCR1/CXCR2 agonists, which provides an

explanation for the link between NETs and cancer (56–58).

Research on the relationship between NETs and lung diseases is

a new hot spot in recent years, among which acute lung injury

(ALI) and acute respiratory distress syndrome (ADRS) are very

popular (59, 60). NETs were shown to be increased in ARDS,

and this was closely associated with diminished macrophage

phagocytosis (59). One possible explanation is that the increased

NETs in ALI/ARDS affects the progression of ARDS by

activating the pyroptosis of lung macrophages through

inflammatory pathways (61). The relationship between NETs

and cystic fibrosis (CF) lung disease is also receiving attention

(62). In CF lung disease, although neutrophils can infiltrate and

control chronic infections in the airways, there is evidence that

NETs contribute to exacerbation of lung tissue damage, and the

complete etiology is still not clear (63). In addition, with the

outbreak of COVID-19 in 2020, research on NETs and severe

acute respiratory syndrome coronavirus (SARS-CoV-2) has

become the latest hot spot. Although NETs and NETosis can

control the severity of viral infections (64), studies have shown

that the persistence of NETs during respiratory viral infections

can lead to tissue damage (65). In COVID-19, elevated levels of

NETs may not only be associated with more severe ALI and

ARDS (66–68) but may also lead to coagulation disorders (69).

The mechanism of the increase in NET content in COVID-19 is

still unclear; it may be related to SARS-CoV-2-mediated

downregulation of cytokine storms (CSs) and angiotensin-

converting enzyme 2 (ACE2), thereby inhibiting neutrophil

infiltration (66, 70). In addition, there is evidence that ROS

generated by SARS-CoV-2 infection can promote the generation

of NETs (71).

Due to the negative impact of excessive NETs in many

diseases, detection of NETs as biomarkers of disease and targeted

reduction of NETs to treat related diseases have also become

recent hotspots (13). In colorectal and breast cancer patients,

measurement of NET-associated products including citH3 and

MPO in the blood cfDNA is more specific than cfDNA alone
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(72, 73). Thalin et al. observed that high levels of citH3 in plasma

are an important indicator of short-term mortality in some

cancer patients (74). Further clinical studies are needed to clarify

the link between the level of NETs and poor cancer/disease

prognosis. Many studies have also tried different attempts to

attenuate NETs formation for treating inflammatory diseases.

Looney et al. proved that pretreatment with a non-steroidal anti-

inflammatory drug aspirin could reduce endotoxin-induced

acute lung injury by reducing the production of NETs (75).

Lapponi et al. also demonstrated that aspirin could inhibit the

inflammatory transcriptional regulator NF-kB that promotes

NETosis (76). Diabetes is associated with an excess release of

NETs and enhanced NETosis (77). Menegazzo et al. studied the

effect of metformin, a drug commonly used to treat diabetes, on

NETosis and found that compared with placebo, metformin

significantly reduced NETs levels in vitro (78). Further studies

found that metformin prevented membrane translocation of

PKC-bII and activation of NOX in neutrophils, thereby altering

the pathological changes in nuclear dynamics and DNA release

(78). Notably, Khan et al. screened 126 compounds, which

belong to 39 classes commonly used for treating cancer,

blood cell disorders, and other diseases, for NETosis

modulating ability, and suggested anthracyclines along with

dexamethasone as therapeutic candidates for suppressing

unwanted NETosis in NETs overexpressing diseases (79). At

present, the development of drugs to treat related diseases by

targeting the formation or removal of NETs mainly focuses on

basic research, and more clinical studies are needed to clarify the

clinical effects of these drugs. In the future, developing specific

and effective drugs to treat NETs-related diseases by targeting

NETs formation is still a research hotspot in this field (13,

80, 81).

Neutrophil extracellular traps and cell death
As shown in Figure 8, the link between NETs and cell death

is one of the emerging hotspots in recent years. To date, studies

related to NETs and cell death have focused on the fields of

NETosis, apoptosis, necroptosis, autophagy, and pyroptosis (82,

83). NETosis-related research started later and is considered a

novel cell death mode differentiated from apoptosis and necrosis

(82). Brinkmann Volker et al. are the first to discover that

phorbol 12-myristate 13-acetate (PMA)-mediated release of

NETs is accompanied by the neutrophil suicide, which was

named “NETosis” (4). Studies have shown that a variety of

molecular substances are involved in the regulation of NETosis

(84). For example, NADPH oxidase, reactive oxygen species

(ROS), was shown to be crucial in NETosis, promoting the

formation and release of NETs (7, 10). Conversely, the exposure

of neutrophils with the inhibitor of PAD4 citrullinating histones

is associated with impaired NETosis and reduced release of

NETs (11). It is worth mentioning that the release of NETs is not

always accompanied by cell death, and living neutrophils can
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release components of NETs (14). In terms of apoptosis,

evidence suggests that the formation of NETs does not occur

in the process of apoptosis (8, 85), but some studies suggest that

the disturbance of apoptosis and the removal of apoptotic cells

may affect the release of NETs (86). Interestingly, Nades

Palaniyar et al. discovered a novel form of cell death in which

apoptosis and NETosis occur simultaneously in the same

neutrophil (87). Under the condition of high doses of UV

irradiation, they found that the activation of neutrophil

apoptosis pathway was accompanied by the release of NETs,

which they named “ApoNETosis” (88). In addition, if apoptotic

neutrophils are not cleared by phagocytes in time, secondary

necrotic/pyroptotic cell death may occur under the action of

gasdermin family proteins (89). It has been suggested that this

necrotic/pyroptotic may lead to the release of NETs (86), but

further research is needed. There is no clear conclusion as to

whether necroptosis is involved in the release of NETs. Mary

Speir et al. found that receptor-interacting serine/threonine-

protein kinase 1 (RIPK1) kinase-dependent necroptosis can

promote plasma membrane degradation and DNA release by

recruiting mixed lineage kinase domains such as pseudokinase

(MLKL), which may favor the release of NETs (90). By contrast,

Elaine F Kenny et al. induced neutrophil necroptosis by agonists

such as TNF-a and Z-VAD-FMK and found no increase in the

release of NETs (91). The relationship between NETs and

autophagy is also controversial. On the one hand, in animal

experiments, the lack of WDFY3 (WD Repeat and FYVE

Domain Containing 3), a master regulator of selective

autophagy, inhibits the generation of NETs (92). Eleni

Frangou et al. found that patients with active SLE have

enhanced levels of neutrophil autophagy, which leads to

increased release of NETs (93). On the other hand, deletion of

the autophagosome-forming gene autophagy-related 5 (ATG5)

did not affect the ability of mouse neutrophils to form NETs

(94). In addition, some signaling pathways play important roles

in NETs and autophagy. For example, Asako Itakura et al. found

that inhibition of the mammalian target of rapamycin (mTOR)

enhanced autophagosome formation and accelerated the release

of NETs, suggesting that the mTOR pathway may play a role in

the release of NETs by regulating autophagic activity (95).

Gasdermin D (GSDMD) plays an important role in pyroptosis

(96). Many studies have shown that GSDMD can form

functional pores within the cell membrane to disrupt the

integrity of the membrane, leading to the occurrence of

pyroptosis (97, 98). GSDMD is also crucial in NETs and

pyroptosis (99). For example, Kaiwen W Chen et al. found

that GSDMD-induced neutrophil death promotes the release of

NETs under noncanonical (caspase-4/11) inflammasome

signaling (100). Similarly, Gabriel Sollberger et al .

demonstrated that the formation of NETs and the release of

chromatin structures are dependent on GSDMD, which plays an

important role in NETosis (101).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1025861
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wan et al. 10.3389/fimmu.2022.1025861
Limitations

This study is the first to use bibliometric visualization to

analyze NETs-related research in the past 20 years. However,

this study inevitably has certain limitations. First, the data used

in this study are only from the WOSCC database and do not

include data from other databases, such as PubMed, Cochrane

Library, and Google Scholar. Despite the comprehensiveness

and reliability of the WOSCC, data from the WOSCC database

may have certain missing articles. Second, only English-language

literature was included in this study, which may lead to biased

results. Finally, the data in this study may be inconsistent in

various aspects; for example, the same institution may have used

different names at different time periods.
Conclusions

In this study, we used bibliometric analysis to review the

trends, hot spots, and frontiers of NETs-related research in the last

two decades. Frontiers In Immunology, Blood, etc., are influential

journals in this field, and Brinkmann Volker is the authoritative

author in this field. HEMATOLOGY, IMMUNOLOGY, and

CELL DEATH are hot topics in this field, and the relationship

between NETs and SARS-CoV-2 may be a direction for future

research. Our study illustrates basic scientific knowledge and

various interrelationships about extra neutrophil traps and

provides important clues about research trends and frontiers.

We hope this study will help researchers better grasp current

general trends in the field.
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