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As a class of secondary metabolites or toxins produced by fungi, aflatoxins can

poison humans and animals; among them, aflatoxin B1 (AFB1) is the most

dangerous one owing to its carcinogenic and mutagenic properties that

increase risks for hepatocellular carcinoma in humans; hence, adsorbents

such as smectites are commonly included in poultry feed to mitigate their

effects. In this study, chitosan was crosslinked with sodium dodecyl sulfate

(SDS) to form an insoluble polymer complex that is stable at the relevant

physiological pH levels. The characterization via Fourier transforms infrared

spectroscopy revealed the interaction between the sulfate groups of the SDS

and the amine group of chitosan (1,016 and 819 cm−1); this result was further

confirmed by the X-ray diffraction patterns with a change in the crystalline

structure of the chitosan-insoluble complex (2θ = 4.76°, 7°, and 22°). The

morphology of the chitosan-insoluble complex obtained using a field

emission scanning electron microscope (FE-SEM) revealed that particles

were slightly porous. After characterization, the performance of the

chemically modified polymer complex was evaluated as an adsorbent for

AFB1 and compared with those of the unmodified chitosan, soluble chitosan

complex, and commercial montmorillonite clay binder. In addition, the polymer

complex was investigated as an adsorbent in an in vitro model for the poultry

gastrointestinal system. Sequestration of AFB1 by a chemically modified

polymer complex was 93.4%, equivalent to that of commercial

montmorillonite clay (99.5%). However, these treatments also sequestered

microminerals, particularly selenium and iron. This pH-stable, high-capacity

adsorbent could be used in poultry feed to reduce the uptake of AFB1.
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Introduction

Mycotoxins are toxic compounds naturally produced by

fungi such as Aspergillus, Penicillium, and Fusarium (Liew and

Mohd-Redzwan, 2018). Among the hundreds of mycotoxins, the

best-known ones are aflatoxins, ochratoxins, trichothecenes,

zearalenone, fumonisins, and patulin (Omotayo et al., 2019).

The aflatoxins are produced by the Aspergillus fungus species,

which are considered potent hepatotoxins and carcinogens, that

contaminate maize, peanuts, and cottonseed (Duan et al., 2019).

More than 20 types of aflatoxins (AFs) exist in nature; the main

ones are aflatoxin B1 (AFB1), AFB2, AFG1, AFG2, and the

secondary hydroxylated metabolites of AFB1 and AFB2, AFM1

and AFM2.

Studies in animals and humans (Centre International de

Recherche Sur le Cancer, 2002) have shown that AFM1 and

AFM2 are transferred to milk andmeat (Tozzi et al., 2016; Kumar

et al., 2017) and that AFB1 is the most dangerous mycotoxin

because it is adsorbed andmetabolized in the liver by cytochrome

P450 (CYP) enzymes into AFB1-8,9-epoxide, which covalently

binds to DNA, RNA, and proteins to induce carcinogenic and

mutagenic effects (Yang et al., 2012; Patrick and Stepman, 2019;

Kövesi et al., 2020). Hence, the International Agency for Research

on Cancer indicated AFs as carcinogenic (Group 1) (Centre

International de Recherche Sur le Cancer, 2002) because of

increased risks for hepatocellular carcinoma in humans

(Cogliano et al., 2011; Marchese et al., 2018).

The structure of AFs is composed of a bifuran ring fused to a

coumarin nucleus with a pentanone ring (AFB and AFM) or a

six-membered lactone ring in AFG. The four compounds

produce fluorescence (B = blue, and G = green), which allows

their detection (Dhanasekaran et al., 2011). The

chromatographic and spectroscopic techniques are the most

widely used methods for the detection of AFs, followed by

enzyme-linked immunosorbent assays (ELISA), polymerase

chain reaction (PCR), radioimmunoassay (RIA),

immunoaffinity column assay, and chemiluminescence

immunoassay (CLIA). However, these techniques have some

limitations. Recently, biosensing techniques have been

developed to increase the specificity, sensitivity, and accuracy

of AFs detection. The biosensors consist of biorecognition

elements such as immunoglobulins, enzymes, cells,

molecularly imprinted polymers, or drugs. These elements

have selectivity for the targeted analyte (Yadav et al., 2021).

Akgönüllü et al. (2020) designed a nanosensor containing

imprinted polymers with gold nanoparticles selective to AFB1,

with a limit of detection of 1.04 pg/ml in nuts and corn samples.

Similarly, Salvador et al. (2022) developed an AFB1 detection

method based on the lateral flow immunoassay (LFIA). This test

presented a limit of detection of 4.80 ng/ml in almond milk.

The Food and Drug Administration (FDA) established a level

of 20 μg/kg of AFs for all foods, including animal feeds, to avoid

and reduce danger to the health of animals or risk of poisoning

humans that consume food derived from the exposed animals

(Guidance for FDA, 2019). However, the effect of AFs level varies

between species. Ducks, pigs, and dogs die immediately after

exposure to AFs at higher concentrations, whereas humans,

chickens, and rats are less vulnerable to acute poisoning. In

the poultry species, ducks are the most sensitive to aflatoxins,

followed by turkey poults, broilers, and laying hens (Patrick and

Stepman, 2019). The acute effects lead to low productivity,

susceptibility to disease, and contamination of eggs and meat

(Razzaghi-Abyaneh, 2013; Fouad et al., 2019; Peles et al., 2019).

Only ducks are known to develop cancer; however, owing to their

short lifespan, the acute effects in ducks are still critical (Diaz and

Murcia, 2019).

In the case of chickens, chicks are more susceptible to AFs

exposure than adults, males being the most affected owing to

their high growth rate. The major negative effects of AFs are

decreased growth rate, poor feed conversion, anemia,

immunosuppression, more susceptibility to infectious disease,

lower egg production, and embryonic mortality (Ochieng et al.,

2021).

Prevention of AFs production reduces the contamination of

feeds. Antifungal agents, UV, X-rays or microwave irradiation,

thermal inactivation, decontamination with ozone (O3), and

chemical compounds (acids, salts, oxidants, reducing agents)

can be used to eliminate or decrease AFB1, and the use of

adsorbents can prevent AFB1 from entering the intestinal tract

after ingestion (Patrick and Stepman, 2019; Su, 2020).

Kurup et al. (2022) reported that the use of UV-A light

reduced the concentration of AFB1 and AFM1 in milk, and in

in vitro model with HepG2 cells, they observed that UV-A light

decreased the aflatoxins-induced cytotoxicity. McKenzie et al.

(1998) evaluated the capability of ozone (O3) to degrade AFB1 in

contaminated whole kernel corn, obtaining a reduction of 95% in

AFB1 concentration. Furthermore, corn-fed turkeys treated with

O3 did not show changes in organ weight, liver discoloration,

serum enzyme activity, hematological parameters, and blood

chemistry, in contrast to corn-fed turkeys with AFB1 and

without O3.

Wang et al. (2022) reported that the use of natural

antioxidants can reduce the effects of AFs, such as oxidative

stress, cytotoxicity, and DNA damage. In vitro and in vivo studies

demonstrated that the use of curcumin, a polyphenolic molecule

extracted from the Curcuma longa (turmeric), inactivated

CYP450 enzymes preventing mitochondrial malfunction,

apoptosis, inflammatory response, modification of autophagy,

and gut microbiome but allowed free radical scavenging and

downregulation of oxidative stress effects produced by AFB1 (Dai

et al., 2022). Similarly, resveratrol, a polyphenolic phytoalexin

present in grapes, berries, peanut skins, and other plant parts,

reduced reactive oxygen species (ROS) and prevented the AFB1-

induced testicular damage in in vivo studies (Omur et al., 2019;

Wu et al., 2020); in in vitro study, it reduced AFB1 induced

cytotoxicity and reverted transcriptional modification induced by
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AFB1 (Pauletto et al., 2021). Other molecules such as vitamin E

and selenium have been demonstrated to reduce the negative

effects of mycotoxins in swine, poultry, and ducks (Neeff et al.,

2018; Wu et al., 2021).

Another method for detoxification of AFB1, is the use of

adsorbents in animal feed, in which AFs bind to the adsorbent

surface and are subsequently removed from the gastrointestinal

tract (GT), instead of passing into the blood (Peles et al., 2019).

Clay minerals, which are phyllosilicates characterized by layered

structures consisting of tetrahedral sheets of silicon oxides with

alternating octahedral sheets of aluminum oxide, are the most

widely used adsorbents (Bibi et al., 2016; Speight, 2020). Based on

the number of tetrahedral and octahedral sheets and their

arrangement, clays of the smectites family can be classified as

montmorillonite, beidellite, nontronite, saponite, and hectorite

(Kumari and Mohan, 2021). These are differentiated by

variations in chemical compositions involving substitutions of

ions in tetrahedral (aluminum and silica) and octahedral cationic

sites (aluminum, iron, magnesium, and lithium) (Odom, 1984).

The cationic sites present in smectites allow the adsorption of

AFB1 by cation exchange and intercalation between the layers

(Prasad et al., 2019; Núnez-Delgado, 2021).

Researchers have also considered various organic binders,

such as yeast cell walls and lactic acid bacteria (Kim et al., 2019;

Luo et al., 2020), β-D-glucans, chitosan, cellulose (El-Naggar and
Thabit, 2014; Sid et al., 2021), and plant derivatives (Zavala-

Franco et al., 2018; de Jesús Nava-Ramírez et al., 2021). Chitin is

one of the most abundant biopolymers obtained from the

exoskeleton of crustacea, insects, algae, and the cell wall of

fungi (Aranaz et al., 2021). Chitosan is derived from

deacetylated chitin, and it is formed by D-glucosamine and

N-acetyl- D-glucosamine units linked by the β-1,4 glycosidic

bonds (Muxika et al., 2017). Since chitosan is a nontoxic,

biocompatible, and biodegradable polymer, it is commonly

used in medicines for drug delivery systems, antimicrobials,

wound dressing, and as an antioxidant (Zhao et al., 2018).

In agriculture, chitosan has been used as a protector against

diseases and plagues, as well as to enhance the development and

regulation of plant growth. Zachetti et al. (2019) reported that

chitosan reduces growth rates of Fusarium graminearum,

Fusarium verticillioides, and Fusarium proliferatum, as well as

the concentration of deoxynivalenol (DON) and fumonisin (FB) in

corn and wheat grain samples. Similarly, Cortés-Higareda et al.

(2019) and Segura-Palacios et al. (2021) observed a decrease in AFs

concentration in Aspergillus flavus treated with chitosan in vitro.

The use of chitosan as an adsorbent for mycotoxins was

reported by Solís-Cruz et al. (2017) and Abbasi Pirouz et al.

(2020), who observed that this molecule can adsorb AFB1. Zhao

et al. (2015) observed that the capacity of adsorption increased in

chitosan crosslinked with other molecules. Additionally, the use

of chitosan as an additive in poultry feed demonstrates positive

impacts on productive parameters, immune responses, and

antioxidant capacity (Swiatkiewicz et al., 2015). Further,

chitosan can be used as an alternative to antibiotics with an

improvement of gut (Nuengjamnong and Angkanaporn, 2018;

Osho and Adeola, 2019) and liver function (Chang et al., 2020).

When chitosan is in an acidic medium, the amine groups of

D-glucosamine units are protonated, and the resultant cationic

polymer easily interacts with diverse molecules (Worthen et al.,

2019). Furthermore, the hydroxyl (OH) and amine (NH2) groups

can be chemically modified to improve the physical and chemical

properties of the polymer (Wang et al., 2020), including the

affinity for anions and cations. The SDS forms a complex with

chitosan (Petrovic et al., 2016) that features numerous adsorption

sites and a flexible polymer chain structure (Vakili et al., 2019).

SDS is a surfactant comprising a hydrophobic carbon chain (C12)

and a polar sulfate head capable of interacting with positively

charged molecules (Li and Ishiguro, 2016; Jafari et al., 2018). The

sulfonate and sulfate groups of SDS interact electrostatically with

the NH2 groups of the D-glucosamine unit of chitosan, forming

an insoluble complex that can bind anionic organic molecules

and contaminants, such as heavy metals and dyes (Chiappisi and

Gradzielski, 2015). The chitosan-SDS complex has previously

been used as an adsorbent for heavy metals in water (Bat-

Amgalan et al., 2021); however, there are no studies on the

use of the chitosan–SDS complex as an AFB1 adsorbent.

To the best of our knowledge, no studies have been reported

on the use of modified chitosan as a mycotoxin binder; therefore,

this study aimed to synthesize chitosan crosslinked with SDS

surfactant to increase the adsorption capacity of chitosan for

AFB1, maintaining the stability of the molecule at different

pH values in an in vitro model for poultry. AFB1 adsorption

on the resultant insoluble complex was compared with that of the

unmodified chitosan, soluble chitosan complex, and commercial

montmorillonite clay, as a control experiment. The insoluble

complex and the other treatments were further tested for

micromineral removal.

Materials and methods

Reagents

The following reagents and chemicals were purchased from

Sigma Aldrich (Burlington, MA, United States): AFB1 from

Aspergillus flavus (catalog no. A6636), pepsin from porcine

gastric mucosa (catalog no. P7000), pancreatin from porcine

pancreas (catalog no. P7545), chitosan (medium molecular

weight, 75%–85% deacetylated, catalog no. 448877), and SDS

(catalog no. 436143). Acetonitrile (catalog no. 75-05-8),

methanol (catalog no. 67-56-1), and water (catalog no. 7732-

18-5) were purchased from Fisher Scientific (Waltham, MA,

United States). Sources of the inorganic microminerals required,

such as iron sulfate, manganese sulfate, zinc sulfate, and sodium

sulfate, were provided by MNA de México (Nuevo León,

México).
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Synthesis of chitosan-based adsorbents

First, a soluble chitosan complex (chitosan-soluble) was

prepared by mixing chitosan (2% w/v) with an acetic acid

solution (0.1 M), followed by adding NaOH (2 M) and stirring

for 20 min at 300 rpm. The formed precipitate was washed thrice

with distilled water and dried at 60°C for 24 h. To obtain the

insoluble chitosan complex (chitosan-insoluble), 2 g of chitosan-

soluble was dissolved in an acetic acid solution (0.1 M) under

magnetic stirring for 1 h at 400 rpm. The solution was then

mixed with an SDS solution in Milli-Q water (0.6% w/v). The

obtained beads were washed thrice with distilled water and dried

at 60°C for 24 h. Both chitosan-soluble and chitosan-insoluble

complexes were ground and sieved to use as aflatoxin adsorbents

and were compared with a commercial montmorillonite clay

(Toxisorb™ Premium, Clariant; Puebla, México).

Adsorbent characterization

The functional groups of the adsorbents chitosan, chitosan-

soluble, chitosan-insoluble complexes and commercial

montmorillonite clay, commercial montmorillonite clay, and

their interactions with AFB1 were determined using attenuated

total reflection (ATR) Fourier transform infrared (FTIR)

spectroscopy. The adsorbent was placed onto a diamond ATR

crystal, and the spectra were recorded using an FTIR spectrometer

(Perkin Elmer; Waltham, MA, United States) based on

16 accumulated scans at a resolution of 4 cm−1 between

4500 and 500 cm−1. Data were analyzed using the Spectrum

10 software (Perkin Elmer). The adsorbents (chitosan, chitosan-

soluble, and chitosan-insoluble complexes) were characterized

using X-ray diffraction (XRD) in a Dmax2100 (Rigaku, Tokyo,

Japan), and the Cu Kα radiation (1.5406 Å) was determined at

20 mA and 30 kV. The morphology and structure of adsorbents

were characterized using an ultra-high resolution field emission

scanning electron microscope (UHR FE-SEM, Hitachi SU8020;

Schaumburg, IL, United States). Before analysis, the samples

(chitosan complexes) were coated with a gold layer and the

images were taken at an acceleration voltage of 3 kV for the

chitosan complex and 1 kV for commercial montmorillonite

clay at 500x magnification.

pH-dependent adsorption of AFB1

The adsorption percentage of ABF1 was determined

according to the literature (Marroquín-Cardona et al., 2009).

A stock solution of AFB1 (5,000 µg/2 ml) was prepared in

acetonitrile and further diluted with distilled water to a

concentration of 4 μg/ml. The UV absorption of the solutions

was measured at 364 nm using a UV-visible spectrophotometer

(Shimadzu UV-1601PC; Midland, ON, Canada). For the

adsorption experiment, 40 mg of the adsorbent was weighed

and mixed with the AFB1 solution (4 μg/ml, 1 ml) and water

(4 ml) to reach a final AFB1 concentration of 0.8 μg/ml, and the

pH was adjusted to 2.5, 5.2, or 6.6. There were also two sets of

control samples: 1) water at pH 2.5, 5.2, and 6.6 with AFB1 but no

adsorbent and 2) water at pH 2.5, 5.2, and 6.6 with the adsorbent

but no AFB1. The mixture of the solution and adsorbent was

incubated at 40°C for 45 min under constant agitation. Finally,

the samples were centrifuged at 2,000 rpm for 20 min, and the

absorbance of the supernatant was measured at 364 nm using the

aforementioned UV-visible spectrophotometer. All

measurements were performed in quadruplicate, and the

adsorption percentage of AFB1 was obtained by the difference

between the initial and final AFB1 concentrations in the

supernatant using the following equation (Solís-Cruz et al.,

2017):

Adsorption% � (Ci − Cf )/Ci × 100 (1)

where Ci and Cf are the initial and final concentrations of AFB1
(µg/ml) in the supernatant, respectively.

Quantification of AFB1 via ultra-
performance liquid chromatography
(UPLC) after adsorption in an in vitro
gastrointestinal model for poultry

An in vitro gastrointestinal model for poultry was previously

designed to corroborate the efficiency of the adsorbents in poultry

feed (Solís-Cruz et al., 2017). The model simulates three parts: 1) the

crop (pH 5.2, constant agitation and incubation at 40°C for 30 min);

2) the proventriculus (pH 2.5, 3,000 U pepsin under constant

agitation, and incubation at 40°C for 45 min); and 3) the small

intestine (pH 6.6, 6.84 mg pancreatin under constant agitation, and

incubation at 40°C for 2 h). After incubation, the mixture was

centrifuged at 2,000 rpm for 10 min. The supernatant was passed

through a 0.2 µm syringe filter (Wathman® UNIFLO® 25;

Burlington, MA, United States), evaporated at 50°C under a

nitrogen stream, and the obtained residue was dissolved in 500 µl

of the mobile phase (6.4:1.8:1.8 water/methanol/acetonitrile). The

dissolved sample was then analyzed in an ACQUITY UPLC®

H-Class Bio System (Waters, Milford, MA, United States),

coupled with a fluorescence detector and an ACQUITY UPLC

TABLE 1 Nutritional requirements minerals for poultry.

Trace mineral source Concentration of mineral
(mg/500 ml)

Iron sulfate 33.33

Manganese sulfate 184.62

Zinc sulfate 151.52

Sodium selenite 0.33
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BEH C18 reversed phase column (2.1 mm × 50mm, 1.7 µm). The

liquid sample (10 µl) was injected and eluted with the

aforementioned mobile phase at a flow rate of 0.5 ml/min and

detected at λex/λem = 365 nm/429 nm. AFB1 was identified by its

retention time (4 min) and compared to a pure AFB1 standard

solution (200 ng/ml).

Each sample was measured in quadruplicate. The AFB1
concentration in the mobile phase was determined using a

pre-determined calibration curve with R2 = 0.996 (for details

see Supplementary Table S1; Supplementary Figure S1, S2). The

percentage of adsorbed AFB1 was calculated from the difference

in the peak area between samples with and without the adsorbent

using the following equation (Wang et al., 2018):

R � (1–A1/A0) × 100 (2)

where A0 and A1 are the peak area without and with the

adsorbent, respectively.

Micromineral adsorption percentage

The adsorption percentage of microminerals (iron,

manganese, zinc, and selenium) was measured using a

standard solution that contained the mineral amounts

nutritionally required by poultry (Table 1) (Ross Broiler:

Nutrition Specifications, 2019). The micromineral inorganic

sources were dissolved in 500 ml of distilled water and 40 mg

of chitosan, chitosan-soluble, chitosan-insoluble, or commercial

montmorillonite clay were weighed and mixed with 6 ml of the

micromineral solution. The samples were incubated under

conditions simulating an in vitro gastrointestinal poultry

model and were centrifuged at 2,000 rpm for 20 min. Finally,

the concentrations of the microminerals in the supernatant were

determined by inductively coupled plasma-optical emission

spectroscopy (ICP-OES; Perkin Elmer OPTIMA 2000 DV).

Statistical analysis

The experimental data were analyzed in a completely

randomized design using Statistics 9 Analytical Software

(Tallahassee, FL, United States). The data were subjected to a

one-way analysis of variance, and the means were compared

using Dunnett´s test at p ≤ 0.05.

Results

Adsorbent characterization via infrared
spectroscopy

FTIR spectra were used to determine the chemical

composition of the complexes and their interaction with

AFB1. Figure 1 shows the FTIR spectra of chitosan,

chitosan-soluble, chitosan-insoluble, and commercial

montmorillonite clay, with and without adsorbed AFB1.

The spectrum of pure chitosan (Figure 1A) displays a

characteristic band at 3,268 cm−1 for hydroxyl group (OH)

stretching; two bands at 2,930 and 2,875 cm−1 for C–H

stretching; and strong bands at 1,637, 1,533, and 1,408 cm−1

for C = O stretching (amine I), N–H bending, and C–H

stretching, respectively. Another strong band at 1,016 cm−1

can be attributed to the stretching vibrations of characteristic

groups of the polymer (–C–O–C–), and the band at 903 cm−1

corresponds to the amine group (NH2). In the spectrum of

chitosan-soluble (Figure 1B), the characteristic absorption

bands of chitosan are shifted and have lower intensities.

The spectrum of CH-insoluble (Figure 1C) also shows

characteristic bands of chitosan at 3,416–1,470 cm−1, along

with additional bands at 1,212, 1,055, 1,016, 819, and 630 cm−1

due to the insertion of sulfate groups (S=O, R–O–S, and S–O)

into the chitosan molecule. The FTIR spectra also show that

AFB1 interacts with the amine groups of chitosan and

chitosan-soluble (Figure 1E and Figures 1F, respectively).

Chitosan-insoluble also exhibits interaction between the

amine and sulfate groups (Figure 1G). Finally, the main

functional groups of montmorillonites were observed in the

FTIR spectrum of commercial clay (Figure 1D); vibrational

band at 1,637 cm−1 corresponded to H-O-H bending of water,

bands at 798 and 693 cm−1 corresponded to stretching

vibrations of Si-O, and band at 515 cm−1 corresponded to

bending vibration of Al-O. The interaction of AFB1 with

montmorillonite clay was observed with Si-O and Al-O

groups (Figure 1H).

XRD was used to identify the crystallinity, and physical

properties of chitosan, chitosan-soluble, and chitosan-

insoluble complexes. The XRD patterns of chitosan

complex are shown in Figure 2, where the chitosan

exhibited two peaks at 2θ = 9.52° and 19.8°, consistent with

the crystalline structure of chitosan. However, the intensity of

these peaks decreased in the diffraction patterns of chitosan-

soluble and chitosan-insoluble complexes. Besides, the

chitosan-soluble complex exhibited new peaks at 2θ = 16.7°,

18.6°, 37.9°, 40.5°, 45°, 52.9°, and 57.2°. Similarly, chitosan-

insoluble complex exhibited new peaks at 2θ = 4.7°, 7°, 11.6°,

19.1°, 22°, and 29.9°, indicating changes in the crystalline

structure.

The surface structure and morphology of adsorbents

were observed using SEM analysis. Figure 3 shows

micrographs representative of the adsorbents morphology

where the chitosan shows nonporous flakes (10–90 µm).

Similarly, chitosan-soluble flakes were porous (8–200 µm).

However, the chitosan-insoluble dense particles were

slightly porous (1–50 µm), and the commercial

montmorillonite clay had porous particles (3–10 µm) and

aggregates (30–60 µm).
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FIGURE 1
FTIR spectra: (A) chitosan, (B) chitosan-soluble, (C) chitosan-insoluble, (D) montmorillonite clay, and the interaction of AFB1 with chitosan (E),
with chitosan-soluble (F), with chitosan-insoluble (G), and with montmorillonite clay (H).
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pH-dependent adsorption of AFB1

Table 2; Figure 4 compare the AFB1 adsorption percentages

at different pH levels. At pH 5.2, the commercial

montmorillonite clay (99.40% ± 1.03) and chitosan-soluble

(96.43% ± 4.72) showed a higher adsorption ratio (p = 0.001)

compared to that of the chitosan-insoluble (79.17% ± 5.15) and

chitosan (17.88% ± 1.89). In contrast, at pH 2.5, the commercial

montmorillonite clay (95.83% ± 1.03), showed the highest

adsorption ratio (p = 0.001) followed by chitosan-insoluble

(72.03% ± 2.53), chitosan-soluble (38.71% ± 4.44) and

chitosan (1.81% ± 0.01). The same trend was observed at pH

6.6, the commercial montmorillonite clay (p = 0.01) (82.14% ±

3.40) > chitosan-insoluble (75.60% ± 3.08) > chitosan-soluble

(61.32% ± 2.32) > chitosan (13.05% ± 2.30).

Quantification of AFB1 via UPLC in an
in vitro gastrointestinal model for poultry

From the UPLC chromatogram, AFB1 was detected at a

retention time of 4 min after adsorption on chitosan in the

in vitro model (Figure 5A). The amount of AFB1 in the

supernatant decreased for chitosan-soluble complex

(Figure 5B), and it was undetected for chitosan-insoluble

complex (Figure 5C) and commercial montmorillonite clay

(Figure 5D). From these data, AFB1 adsorption in the in vitro

model was the highest (p = 0.0001) on commercial

montmorillonite clay (199.06% ± 0.064; 99.52%), and

chitosan-insoluble complex (184.98 ± 0.989 ng/ml; 93.44%),

followed by the chitosan-soluble complex (129.6 ± 0.433 ng/

ml; 64.79%) and chitosan (117.83 ± 0.668 ng/ml; 58.91%)

(Table 3; Figure 6).

Micromineral adsorption in an in vitro
gastrointestinal model for poultry

The adsorptions of manganese (95.0% ± 2.30) and

selenium (90.7% ± 3.05) were highest (p = 0.001) with

chitosan, that of iron was the highest (p = 0.001) with

chitosan-insoluble (98.0% ± 2.6), chitosan-soluble (95.0% ±

3.60) complexes, and commercial montmorillonite clay

(94.0% ± 2.3), and that of zinc (47.7% ± 3.0) was the

highest (p = 0.01) with the chitosan-soluble complex, and

chitosan (42.66% ± 1.20) (Figure 7).

FIGURE 2
X-ray diffraction patterns (XRD) of chitosan, chitosan-soluble, and chitosan-insoluble.
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Discussion

Adsorbent characterization via infrared
spectroscopy

The bands of chitosan observed in the FTIR spectra are

similar to those in the previous reports (Vijayalakshmi et al.,

2016; Drabczyk et al., 2020). The chitosan-soluble complex was

synthesized using NaOH, which deprotonates the amine groups

of chitosan (observed at 1,648, and 1,564 cm−1), thereby

reducing the hydration shell and allowing the formation of

new hydrogen bonds in the chitosan chain (Takara et al., 2015).

The spectrum of the chitosan-insoluble complex also displayed

the characteristic bands of chitosan, and the sulfate groups

observed in the FTIR spectra are the result of SDS treatment and

are in accordance with previous reports (Piyamongkala et al.,

2008; Jiang et al., 2022).

FIGURE 3
Scanning electron microscope (SEM) images of adsorbents used: chitosan, chitosan-soluble, chitosan-insoluble, and montmorillonite clay.

TABLE 2 Adsorption (%) of AFB1 at different pH for chitosan, chitosan-
soluble, chitosan-insoluble, and montmorillonite clay.

Adsorbent Percentage of AFB1 (%)

pH 5.2 pH 2.5 pH 6.6

Chitosan 17.88 ± 1.89c 1.81 ± 0.01c 13.05 ± 2.30c

Chitosan-soluble 96.43 ± 4.72a 38.71 ± 4.44b 61.32 ± 2.32b

Chitosan-insoluble 79.17 ± 5.15b 72.03 ± 2.53a 75.60 ± 3.08a

Montmorillonite clay 99.40 ± 1.03a 95.83 ± 1.03a 82.14 ± 3.40a

*Different letters indicate significant differences (Dunnett's test at p ≤ 0.001), same

letters show no significance difference.
FIGURE 4
Percentage of adsorption of AFB1 at different pH for chitosan,
chitosan-soluble, chitosan-insoluble, and montmorillonite clay.
Different letters indicate significant differences (Dunnett’s test at p
≤ 0.001), same letters show no significance difference.
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Interactions were observed between AFB1 and the amine

groups of chitosan and chitosan-soluble complexes and between

the amine and sulfate groups in chitosan-insoluble complex. A

previous study reported an electrostatic interaction within the

physisorption range between a hydrogen atom (–H) of the

chitosan amine group (NH2) and an oxygen atom-6 (–O6) of

AFB1 (Juarez-Morales et al., 2018).

In the case of commercial montmorillonite clay, we observed the

interaction of AFB1 with silica (Si-O) and aluminum (Al-O) groups.

Similarly, Desheng et al. (2005) reported that the interaction of

AFB1-montmorillonite clay leads to chemisorption with the

FIGURE 5
UPLC chromatograms of AFB1 from the in vitro gastrointestinal poultry model: (A) chitosan, (B) chitosan-soluble, (C) chitosan-insoluble, and (D)
montmorillonite clay.

TABLE 3 Concentration of AFB1 adsorbed for chitosan, chitosan-
soluble, chitosan-insoluble, and montmorillonite clay in an
in vitro gastrointestinal poultry model.

Adsorbent Concentration of AFB1

adsorbed (ng/ml)
Percentage
of AFB1 (%)

Control 200 ± 0.33a 0

Chitosan 117.83 ± 0.668d 58.91 ± 0.334

Chitosan-soluble 129.60 ± 0.433c 64.79 ± 0.217

Chitosan-insoluble 184.98 ± 0.989b 93.44 ± 0.327

Montmorillonite clay 199.064 ± 0.064a 99.52 ± 0.033

*Different letters indicate significant differences (Dunnett’s test at p ≤ 0.001), same

letters show no significance difference.

FIGURE 6
Concentration of AFB1 adsorbed for chitosan, chitosan-
soluble, chitosan-insoluble, and montmorillonite clay in an in vitro
gastrointestinal poultry model. Different letters indicate significant
differences (Dunnett’s test at p ≤ 0.05).

FIGURE 7
Percentage of adsorption of trace minerals for chitosan,
chitosan-soluble, and chitosan-insoluble, and montmorillonite
clay in an in vitro gastrointestinal poultry model. Different letters
indicate significant differences (Dunnett’s test at p ≤ 0.001),
same letters show no significance difference.
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formation of double hydrogen bonds at the edge of montmorillonite

clay, where the tetrahedral sheets are composed of O-Si-O (Zhou

et al., 2019).

The crystalline structure of chitosan observed in the XRD

patterns was in accordance with that reported in other studies

(Ali et al., 2018; Morsy et al., 2019; Hao et al., 2021). The peaks of

chitosan-soluble complex at 2θ = 16.76° and 18.64° are the result

of treatment with sodium hydroxide (NaOH) that induces the

formation of an anhydrous structure. Takara et al. (2015)

observed the same effect in chitosan films treated with

different concentrations of NaOH and the peaks at 2θ = 37.9°

and 40.54° corresponded to the presence of sodium (Keshk and

Hamdy, 2019). In the case of chitosan-insoluble complex, news

peaks observed in the XRD pattern (2θ = 4.76°, 7°, and 22°) are

related to the interaction of the SDS molecule with the chitosan.

A similar phenomenon was observed by Jiang et al. (2022).

SEM is an analytical technique used to identify the microstructure

of materials, such as size and shape (Ural, 2021). The morphology of

chitosan was in accordance with that reported by Kumar and Koh

(2012), in which the molecule exhibited a nonporous and crystalline

morphology. However, the chitosan-soluble complex showed changes

in the surface. This is consistent with previous reports that demonstrate

that alkali treatment changes the polymer network producing a rough

porous surface (Nakayama et al., 2020; Gültan et al., 2021). The

crosslinking of chitosan with SDS generated strong intermolecular

interactions shown by spherical and slightly porous structures; this

result is similar to those reported in other studies (Milinković Budinčić

et al., 2021; Jiang et al., 2022). We observed porous individual particles

in the commercial montmorillonite clay. In contrast, Belousov et al.

(2019) noticed thin leaf-shaped microaggregates with a diameter

ranging from 3 to 5 to 10–20 µm. Similarly, De León et al. (2015)

and Yin et al. (2016) reported a structure of plates and flat particles in

montmorillonite clay.

pH-dependent adsorption of AFB1

In acidic aqueous media, the amine groups of chitosan get

protonated (NH3
+), and make the polymer soluble; at pH ≥ 6.5,

the amine groups deprotonate to formNH2, which leads to a decrease

in solubility (Rinaudo, 2006). Chitosan and chitosan-soluble

complexes showed lower adsorption at pH = 2.5–6.5. In contrast,

the effect of pH on the performance of chitosan-insoluble complex

was negligible. Treatment with NaOH results in a more soluble

polymer with a lower adsorption capacity for AFB1. In contrast,

chitosan-insoluble complex, which is formed by the complexation of

chitosan and SDS, forms highly stable physical network complexes in

the pH range of 1.2–5.0 (Babak et al., 2000; Worthen et al., 2019;

Miras et al., 2021). This complexation leads to the highest adsorption

capacity for AFB1. This result agrees with a previous report (Zhao

et al., 2015), inwhich chitosan crosslinkedwith glutaraldehyde has the

highest adsorption capacity for AFB1, andwith another report (Wang

et al., 2018), in which montmorillonite modified with a surfactant

nonionic has the highest affinity to AFB1. Adsorption of mycotoxins

involves physisorption by Van der Waals electrostatic interactions

observed in organic binders, or chemisorption by the exchange of

electrons between the adsorbent and adsorbate observed in inorganic

binders (Deng et al., 2010; Di Gregorio et al., 2014; Hojati et al., 2021).

Juarez-Morales et al. (2018) reported a physisorption occurring

between the positive charges of amine groups of chitosan and the

negative charges of the oxygen atom of AFB1. The polycationic nature

of chitosan allows the adsorption of polar molecules such as AFB1.

Desheng et al. (2005) reported an ion-dipole interaction between the

carbonyl groups of AFB1 and the positive ions of montmorillonite

clay (Shattar et al., 2017; Li et al., 2018). These results are consistent

with our results from infrared (FTIR) spectroscopy.

Quantification of AFB1 via UPLC in an
in vitro gastrointestinal model for poultry

The binding capacities of adsorbents are influenced by the pH,

concentration of adsorbent, enzymes, feed composition and

additives, and incubation time; therefore, the stability of the

adsorbent–toxin bond is important throughout the GT (Magnoli

et al., 2013; Di Gregorio et al., 2014). In this study, we observed pH-

dependent adsorption of AFB1. The highest adsorption rates were

observed with the commercial montmorillonite clay and chitosan-

insoluble complex compared to the chitosan-soluble complex and

chitosan. This result may be due to the high structural stability of

chitosan-insoluble complexes across the different parts of the poultry

GT, with an unaltered capacity of adsorption. However, Zhao et al.

(2015) reported that the presence of dietary components in the GT

decreased the adsorption capacity of chitosan-glutaraldehyde for

AFB1, and Magnoli et al. (2013) observed the same effect with

sodium bentonite in presence of rumen fluid components. This

effect is due to enzymes such as pepsin that can bind to the interlayers

of smectites, blocking the adsorption sites for AF molecules

(Barrientos-Velázquez et al., 2016). However, we did not observe

differences in the adsorption capacity of AFB1 for the chitosan-

insoluble complex and commercial montmorillonite clay.

Micromineral adsorption in an in vitro
gastrointestinal model for poultry

The primary function of microminerals is to catalyze themany

enzyme systems within cells (Goff, 2018). Iron takes part in

oxidation-reduction reactions and its metabolism biosynthesizes

hemoglobin; manganese is involved in the glycosylation of

proteins, metabolism of carbohydrates and lipids, and immune

function; zinc is a component of transcription proteins (Bao and

Choct, 2009); and selenium is essential for normal growth and

maintenance in poultry (Ševčíková et al., 2011).

Benavente (2008) observed that chitosan can adsorb metallic

ions, such as copper, zinc, arsenic, and mercury, depending on the
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pH, with the adsorption increasing when the pH is between four

and six; meanwhile, Unagolla and Adikary (2015) reported the

adsorption of cadmium and lead. Similarly, the chitosan surfactant

complex has exhibited adsorption efficiency for chromium (Bat-

Amgalan et al., 2021), iron, manganese (Reiad et al., 2012), and

other organic (Jabeen et al., 2020) and inorganic molecules

(Arumugam et al., 2019). The addition of surfactants to the

chitosan polymer chain increases the adsorption capacity for

diverse molecules (Matusiak et al., 2022). Similarly, clay

minerals can adsorb proteins, enzymes, vitamins, and minerals

(Elliott et al., 2020; Damato et al., 2022). Besides, Schlattl et al.

(2021) reported that a mixture of clays such as bentonite, kaolinite,

and illite adsorbed Zn, Cu, and Mn in in vitro conditions.

Conclusion

Chitosan crosslinked with a surfactant molecule (SDS) was

synthesized. The intramolecular interactions of the sulfate groups

of SDS and the amine groups of chitosan produced a stable

adsorbent at different pH values across different parts of the

poultry GT in vitro, with greater thermal and chemical stability.

In addition, this interaction generated more positively charged

sites in the chitosan-insoluble complex, increasing the affinity

and capacity of adsorption of AFB1 (>93%), similar to the

commercial clay binder. One limitation of this polymer

complex, as with the commercial montmorillonite clay, in

addition of adsorbing AFB1, it also sequestered essential

minerals. These results suggest that the chitosan-insoluble

complex can be an alternative adsorbent for AFB1 in poultry

feed, and the next step would be an in vivo test.
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