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ABSTRACT: 

Nowadays, Mobile Laser Scanning (MLS) systems are more and more used to realize extended topographic surveys of roads. Most of 

them provide for each measured point an attribute corresponding to a return signal strength, so called intensity value. This value enables 

to easily understand uncolored MLS as it helps to differentiate materials based on their albedo. In a road context, this intensity 

information allows to distinguish, among others, the main subject of this paper, i.e. road markings. However, this task is challenging. 

Road marking detection from dense MLS point cloud is widely studied by the research community. It might concern road management 

and diagnosis, intelligent traffic systems, high-definition maps, location and navigation services. Dense MLS point clouds provided by 

surveyors are not processed online, they are thus not directly applicable to autonomous driving, but those dense and precise data can 

be for instance used for the generation of HD reference maps. This paper presents a review of the different processing chains published 

in the literature. It underlines their contributions and highlights their potential limitations. Finally, a discussion and some suggestions 

of improvement are given. 

 

1. INTRODUCTION 

Mobile Laser Scanning (MLS) is now a very popular technique 

to obtain, on large areas, dense points clouds associated with 

panoramic images. This technique can be used to conduct surveys 

of roadways for transportation agencies, local authority, or 

highway operators. The data collected during the survey can be 

used for a wide range of applications, like diagnostics or 

evaluations for maintenance, land-use planning, or to elaborate a 

topographic map. 

In this paper, we focus on the detection and extraction of road 

markings from dense MLS point clouds with intensity 

information. Road markings are essential elements that must 

appear on a topographic map, especially in an urban context. This 

paper is a review of the different techniques proposed in the 

literature. It underlines the solutions with highest potential and 

highlights also their limitations. 

The first section presents a review of the state of the art. The 

second resumes the weaknesses of the presented techniques and 

finally the last section presents some perspectives. 

2. STATE OF THE ART 

The structure of this chapter follows the common chronological 

processing chain. Most of the time, it includes a pre-processing 

step (2.1) of the raw point clouds and a ground segmentation 

(2.2). Then the detection of the marking from the ground points 
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(2.3), is followed by a refinement of the results (2.4). Next, a 

classification of the resulting markings is performed (2.5) before 

a final vectorization and the export of the results (2.7). Some 

Deep-Learning approach are presented apart from the others in 

the section (2.6). Finally, a summary table is presented at the end 

of the paper (Table 1). 

2.1 Pre-processing 

Unlike images, point clouds are unstructured data i.e. no spatial 

relationship between two points of the cloud can be assumed 

without any prior calculations. 

Detection of road markings belongs generally to a larger 

processing chain leading to road modeling. For computational 

purpose, massive MLS point clouds are segmented in blocks of 

small areas. This decomposition is not without consequences, 

since the spatial continuity of the scanned surfaces is broken. To 

overcome this problem, a certain overlap between the blocks is 

kept. Mi et al. (2021) propose an overlap distance corresponding 

to the longest expected marking. Another drawback of this 

necessary decomposition is that the results of the different blocks 

must be merged afterwards. 

To reduce the data volume from the start, Soilán et al. (2017) 

remove all points farer than 10 m from the sensor, considering 

they are irrelevant. On top of that, and in the more general case, 
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a preliminary ground/non-ground segmentation is almost always 

performed.  

2.2 Ground/ non-ground segmentation 

The first segmentation step aims to separate ground from non-

ground. This step is very important, because it enables to 

optimize the further treatments by focusing the search on the road 

and getting rid of unwanted objects such as cars, cyclists, 

pedestrians, and other moving objects. 

Different methods are presented for extracting the ground in a 

road context. Yao et al. (2018) suggest the use of the scan-line 

structure. Supposing that the MMS device collects points in the 

way of single line profiles, the point cloud can be decomposed 

using it. A scan-line is simply a set of points that are almost 

aligned along a straight line because they were acquired during 

the same spin of the lidar head. On each scan-line, the authors 

detect the curb (or road boundary) by identifying abrupt changes 

of slope or elevation.  

However, this approach is not always suitable, depending on the 

kind of sensors used (multi-head devices) or the number of passes 

on the same street. The general idea is to study the road using 

cross-sections i.e. perpendicularly to the road direction. This 

requires the prior orientation of the point clouds along the chosen 

axis or at least the knowledge of the street orientation. By 

exploiting these cross-sections, the authors try to put the data in 

a kind of “canonical” form, knowing that they will correspond to 

a typical profile. Yu et al. (2015) proposed to detect the curbs by 

thresholding the slope and altitude along successive profiles. 

Yang et al. (2020) exploit a pseudo scan-line structure to detect 

the curb positions using a sliding window. In a previous work, 

we used a sigmoid adjustment to detect and vectorize curbs 

Barçon et al. (2022). In these articles, the road area is deduced 

from the curb detection results. 

By using the final adjusted trajectory of the sensor during the 

acquisition as well as some calibration information, Guo et al., 

(2015) and Yang et al. (2020) deduced the road’s altitude. Using 

this information, Guo et al. (2015) select road’s points as those 

verifying a cartesian plane equation.  

Assuming that the road direction is aligned with the x axis, Jung 

et al. (2019) used the robust RANSAC algorithm to fit the y, z 

coordinates with a second order polynomial. The polynomial is 

constrained with a negative first major coefficient. This method 

is more robust than using a plane equation because most of the 

time a cambered cross-section is observed. 

Outside this structuring in profiles, some global approaches have 

been proposed. 

Kumar et al. (2013) use snake curve technique. This image-based 

approach is based on a mixture of elevation, reflectance and pulse 

width information gathered by the LiDAR sensor. The external 

(boundary attraction) energy is then deduced from it, the internal 

energy model (elasticity and stiffness) is also defined before the 

snake adjustment initialization based on the trajectory. 

Cheng et al. (2017) and Ye et al. (2020) use an upward growing 

region using voxels with local and global height thresholds. 

Slices of the road are subdivided into voxels. For each 2D 

location, the clustering process progresses from bottom to top. If 

the top voxel exceeds a threshold, the area is labelled as non-

ground. 

After this voxel upward growing region, Cheng et al. (2017), 

refine the segmentation by generating a Digital Terrain Model 

(DTM) using Inverse Distance Weighted (IDW) interpolation. A 

high-pass filter is used to estimate the roughness of the surfaces 

on the DTM. By thresholding the roughness map, the final road 

area corresponds to the largest smooth surface. 

Fang et al. (2022) extract the ground using the Cloth Simulation 

Filter (CSF) (W. Zhang et al., 2016) method after partitioning the 

point clouds into smaller blocks. 

Wen et al. (2019) used the boundary extraction method presented 

by (Zai et al., 2018). This method is based on supervoxel 

generation followed by a graph cut algorithm that select the road 

boundary among the supervoxels’s facets. 

This section enumerated some techniques used for ground 

segmentation. Some of them are sensor dependent, or depend on 

the availability of the trajectory, on points attributes. Also, the 

choice of a technique and its parameters depends on the tolerance 

regarding the vertical object starters remaining in the ground 

class. In lot of works, the ground segmentation is more like a 

segmentation of the roadway. By doing so, the markings of 

cycling path or others on the sidewalk are deleted at this moment. 

After this step, the segmented point cloud is very often converted 

in an image, i.e. the points are projected on a plane. The image 

approach is more comfortable especially because the available 

tools are more numerous than for 3D point clouds processing. 

After this step, the data are conditioned for the extraction of the 

road markings 

2.3 Road marking detection 

All methods proposed in the literature exploit the high 

radiometric contrast between the markings and the road asphalt. 

Road markings are emphasized by high intensity value returned 

by the laser beam.  

Different thresholding techniques have been presented. Because 

the laser pulse intensity decreases with the range and also 

depends on the incidence angle, many authors propose empirical 

adaptative thresholds based on these two attributes.  

Jaakkola et al. (2008) reduce the variance of the measured 

intensity along a transversal profile of the road. Assuming that 

the median intensity along a transversal profile of the road can be 

mostly described by a second-degree curve, the authors use it to 

model and then rectify the measured values. 

In a very similar way,  Zhang et al, (2016) notice the affine 

relation between the intensity and the cosine of the scan-angle of 

each point. Using this relation, the authors “normalize” the 

intensity values. Wan et al. (2019) correct the intensity using a 

3rd degree polynomial based on the range distance. Then an 

iterative maximum entropy threshold is used to extract the 

markings. 

These three first approaches rectified individually each point, 

using a correction model. However, the scan angle and range 

attributes for each point are not always available. Others 

approaches, less fine since they don’t rectify each point 
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individually, have been proposed in order to do a locally effective 

threshold. 

(Yang et al., 2020), examine the intensity value along a scan-line 

profile and threshold the intensity value and intensity gradient. 

The left and right edges of each marking is thus detected. The 

confrontation of successive profiles’ results allows to delete 

noisy detections. 

Kumar et al. (2014) subdivide the orthophoto into rectangular 

blocks having a similar range (scanner to surface distance). The 

different thresholds are lower as the block is far from the sensor 

trajectory and based on a reference empirical value. 

Yu et al. (2015) proposed a similar approach using the range 

(Figure 1) and Soilán et al. (2017) used the scan-angle. For both, 

each subpartition is thresholded independently using the Otsu 

method (Otsu, 1979). This method supposed the image is 

bimodal. The threshold is determined by minimizing the intra-

class variance, which is equivalent to maximizing inter-class 

variance. 

 

Figure 1. Multisegment partition suggested by (Yu et al., 2015). 

Other authors proposed different adaptative thresholding 

methods that can be applied without the range and incidence 

angle information. Yao et al. (2018) use the Bradley and Roth 

(2007) technique. Their technique allows to quickly compare 

each pixel value with the mean of its neighbourhood pixels and 

then threshold the difference. 

Fang et al. (2022) use the technique presented by Guan et al. 

(2014) consisting in decomposing the road area depending on the 

point density. The assumption is that the distance sensor to object 

is inversely proportional to the point density. Using a point 

density histogram along a cross-section, the densest area is 

considered as a starting position and the standard deviation can 

be estimated. From this starting position, subareas are created on 

each side, with a width corresponding to the previously estimated 

standard deviation. Each area is then independently thresholded 

using the Otsu method. 

Ye et al. (2020) used a simple threshold method for specific 

markings like arrows, texts and symbols. For the linear shaped 

markings, the distance to the preliminary detected road edges is 

also thresholded to introduce a priori knowledge and reduce false 

positives. 

Pan et al. (2019) preferred the maximum entropy technique to 

define the optimal intensity threshold. 

All these techniques are more or less robust towards the 

inhomogeneous intensity values of the point clouds. In addition 

to the range and incidence angle influence, the changing weather 

and illumination conditions (difference of materials’ albedo, 

shadows, etc) also cause intensity variations. Local thresholding 

methods are more resilient to these disturbing elements. 

Despite the use of robust thresholding techniques, the results still 

contain noise. Moreover, the road markings may have rough or 

damaged shapes. That’s why some filtering and improvement 

must be performed before a proper classification. 

2.4 Shape improvement and clustering 

As a result of the thresholding, a binary image is obtained. 

However, this image contains noise that must be reduced. Inliers 

must also be gathered to form markings candidates. 

The raw binary image can be refined using Statistical Outlier 

Removal (SOR) as presented by Ye et al. (2020). The assumption 

made is that the noise is sparser than inliers. 

Cheng et al. (2017) apply a median filter and a minimum area 

threshold for Connected Components (CC) to filter out noise and 

outliers. If this technique is efficient against salt and pepper 

noise, it has the reverse side of smoothing sharp edges. 

Pan et al. (2019) considered closed boundaries and filled them 

using region growing.  The selected pixels are then used to 

retrieve the corresponding 3D points. A refinement is operated 

using the optimal Otsu threshold, and the SOR algorithm. These 

operations allow to remove outlier points after the raster to points 

conversion. 

On top of these first presented operations, very common tool are 

mathematical morphology operations. 

Jung et al. (2019) perform different processes depending on the 

orientation of the markings, longitudinal or transversal. In both 

cases, an opening operation (erosion followed by dilation) is 

performed with a linear Structuring Element (SE). Its orientation 

depends on the orientation of the marking. For the erosion step, 

the authors recommend a structured element’s length greater than 

the lane’s width, in order to remove small False Positives (FP). 

They suggest also to use a bigger SE for the dilation to connect 

over-segmented parts. 

Guan et al. (2014) perform a dilation to merge close connected 

components with a linear structuring element. The SE is oriented 

using the heading value of the sensor along the trajectory and 

with a length defined empirically. By doing so, this technique 

clearly favors longitudinal markings. Using the same procedure, 

Kumar et al. (2014) add a connected component filtering between 

the dilation and the erosion operations. The filtering uses CC 

shapes with prior knowledge about the road markings. 

Guo et al. (2015) and Wan et al. (2019) proposed a closing 

procedure (dilation followed by erosion) to merge the elements 

close to each other. 

It can be noticed that there is a tendency to use specific or 

adaptative SE (dimensions and orientation) for improving the 

results. Dilation and erosion operations are often jointly used, but 

the order in which they are applied can be different according to 

the authors. The paradigm depends on the strictness or sensitivity 

of the thresholding previously performed. Supposing a 

permissive threshold, the tendency will be to delete noise and so 

to perform an opening operation (so to begin with erosion). On 

the contrary, if the thresholding method is “stricter”, shape 

reconstruction is a priority, so the first operation should be a 

dilation (closing procedure). 
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As introduced before, those operations try to reduce the noise on 

the thresholding results and to restore the shape of the markings. 

They can indirectly favor some types of markings and introduce 

prior knowledge. The main goal is also to reduce the over-

segmentation of the objects that can be caused by occlusions or 

point density variations. Considering the current data as cleaned, 

the classification of the objects can be realized. 

2.5 Classification and shape recognition 

Different classification methods have been proposed in the 

literature in order to recognize and classify the markings. Road 

markings are of different types. The most obvious category is 

composed of linear elements, i.e. continuous or discontinuous 

lines such as traffic lane lines, stop lines, pedestrian crossings. 

Zebra lines are a bit apart due to their orientation, their non-

rectangular shape and their possible combination with linear 

markings. Finally, the punctual markings, such as arrows, 

symbols, and texts composed the last category. All the presented 

papers do not manage all kind of markings. The approach 

depends on the used dataset. The classification step is very 

important as it assigns a meaning to the detected elements.  

Before that, Cheng et al. (2017) and Yu et al. (2015) added an 

intermediary step consisting in decomposing potential markings 

clusters (sub-segmented elements). 

Cheng et al. (2017) first try to decompose complex markings (e.g. 

clusters of zebras, sidelines connected with stop line…) into 

straight segments. The method is based on the detection of 

junction points. This is done by thresholding the neighborhood 

count of each pixel. The assumption is that a junction point has 

more neighbors than others. Then, handcrafted features are 

extracted for each connected component: area, perimeter, 

estimated width, orientation, and the Minimum Bounding 

Rectangle (MBR). A hierarchical tree coding a priori knowledge 

from the national standardization of road markings is then used 

to perform the classification. 

Yu et al. (2015) also propose a method to decompose improperly 

connected markings. This special processing is applied to 

connected components having a bounding box diagonal length 

above a threshold. A voxel-based normalized cut segmentation 

(see Figure 2) is performed on these clusters of markings. After 

that, different processing steps are applied to the refined clusters. 

The large-size markings (centerline, boundary-line and stop line) 

are classified using their relative position and orientation with 

curb lines and the knowledge of the sensor’s trajectory. The small 

markings (rectangles, pedestrian crossings, arrows, symbols…) 

are classified using a Deep Boltzmann Machine (DBM) able to 

extract complex features learned during a supervised training. 

Finally, the rest of the markings (zebra, dashed lines) are 

classified using a PCA to determine their orientation and then by 

studying their relative positions and orientation. The lane lines 

are thus reconstructed. 

 

Figure 2. Voxel-based normalized cut segmentation (Yu et al., 

2015). 

Pan et al. (2019) use the bounding box information of each cluster 

to perform a first classification (length, diagonal angle, opposite 

size ratio). This basic classification allows to distinguish 

boundary lines, rectangles, and symbols. For the rest of the 

markings, the boundary of the cluster is estimated using the 

alpha-shape algorithm. A model matching procedure based on 

registration is then performed using Binary Shape Context (BSC) 

and Iterative Global Similarity Points (Pan et al., 2018). 

Yao et al. (2018) also use the MBR for the classification of solid 

lines. For the rest of the markings, the deep learning network 

PointNet++ is used (Qi et al., 2017). 

Guo et al. (2015) operate a Principal Component Analysis (PCA) 

on the connected component. The results allow to compute the 

principal direction of the cluster and to align it with the known 

template. The 𝜆1/𝜆2 ratio (with 𝜆1 et 𝜆1the two first eigen-values 

in descending order) allows to shorten the template candidates. 

Soilán et al. (2017) begin the classification step by extracting 

handcrafted features describing the geometry of pixels’ clusters: 

dimensions, area, bounding box, principal direction (using PCA), 

and pixel distribution along each principal direction. These 

features are put in a two-layer feedforward network that assigns 

markings into 3 classes: rectangles, arrows and others. For the 

first one, the orientation of the marking is compared with the 

trajectory. This allows to distinguish stop lines for instance. A 

neighborhood context analysis allows to classify pedestrian 

crossway (group of parallels markings with specific size and 

spacing). The procedure applied to classify arrows is similar to 

that of (Guo et al., 2015) : rotation of the data and then a model 

matching method is performed. 

Fang et al. (2022) proposed to consider the adjacent markings 

during the classification. A subgraph describes the spatial 

relationship between the considered marking and its neighbors. 

The road marking problem is thus a node classification solved by 

a Graph Neural Network (GNN) model with multi-head attention 

mechanism. 

Whatever handcrafted or learn features, fixed thresholds, 

decision threes or neural networks for the classification part, the 

proposed classification techniques are various, because it is a 

relatively difficult task. The more numerous markings type to 

classify, the finer the feature must be extracted. Considering the 

over-segmentation phenomenon, the potential misclassification 

also increases with the number of categories. 
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2.6 Deep-Learning approches 

This section is dedicated to paper that used deep learning 

approaches. They couldn’t really be presented in the previous 

sections because they are not structured in the same way. 

Mi et al. (2021) proposed a two-steps top-down approach. In the 

first step, YOLOv3 (Redmon and Farhadi, 2018) is used to 

predict positions, bounding boxes and labels from a feature map. 

In a second step, an energy function is optimized. It allows to 

finely position the marking shape inside the bounding box. A 

reranking procedure allows to handle misclassification during the 

first step. 

Ma et al. (2021) introduced two capsule-based network 

architectures for road marking extraction and classification. The 

use of a capsule structure allows to extract high-level features. 

Wen et al. (2019) proposed neural networks for the extraction and 

classification of the road markings. A modified U-net 

(Ronneberger et al., 2015) is used for the extraction. A multi-

scale clustering allows the classification of large size marking 

while a Convolutional Neural Network (CNN) is used for smaller 

markings. 

The image Deep-Learning approach suffers from a loss of 

information. Indeed, such neural networks have a fixed size of 

input. It induces that each marking must be represented on fixed 

size image, for instance on a 512x512 image. The input CC 

should be scaled, or a sliding windows approach should be used 

to overcome that. 

2.7 Shape reconstruction and vectorization 

After the classification, some over-segmented segments can 

remain, and merging operations might be required.  

To further reduce the over-segmentation, Jung et al. (2019) 

presented geometrics rules for segments merging. After a 

skeletonization of the remaining connected components, each of 

them can be considered as a segment. The polar line 

parametrization is used to describe the position and orientation of 

the segment. Different rules, defined as angle or distance 

threshold allow to do or do not merge two segments. 

Barçon and Picard (2021), Jung et al. (2019), Yao et al (2021) 

proposed similar geometric considerations to perform a lane-line 

reconstruction from individual dash-lines. Taking a first marking, 

an azimuth search direction is defined. This marking is associated 

with neighbors under different constraints, i.e. having the same 

orientation, a similar shape, a distance between them and angle 

between the linking angle and a search direction below a 

threshold (see Figure 3). The procedure is repeated until there is 

no remaining element. 

 

Figure 3. Lane line reconstruction procedure (Yao et al., 2018). 

Pan et al. (2019) realize a polyline vectorization of the detected 

markings. For linear shaped objects, the points are adaptively 

sampled proportionally to the local curvature. For the rest of the 

markings that have been classified using model matching, the 

resulting position and orientation are used to generate a closed 

polyline at the right place. This allows to get rid of potential shape 

anomalies before the export. 

Wan et al. (2019) proposed to cluster lane lines using their 

relative position with the trajectory in the transversal direction. It 

simplifies the problem in only one dimension for each linear 

position along the trajectory and allow to easily manage curves. 

This type of post-processing can enhance the performance of the 

global process in case of occlusions. In fact, it is like an 

interpolation of the results where the data is missing. In order to 

constrain the interpolation process, some prior knowledge about 

the normalized shape of the markings is introduced.  

3. WEAKNESSES 

After this literature review, it is appropriate to summarize the 

different weaknesses encountered. 

3.1 The input data 

MLS point clouds are defined as an inhomogeneous and 

unordered data. As already discussed, dense point clouds are 

computationally hard to manipulate as they constitute heavy files. 

Their unstructured nature makes direct spatial analysis difficult 

or even impossible. The acquisition process generates 

inhomogeneous point density, causing a spatial over-sampling 

(useless information) and sub-sampling up to a total lack of 

information in some areas. 

As mentioned before, overcoming the intensity inhomogeneity 

also constitutes a challenging task to distinguish road markings 

from the surrounding asphalt. 

3.2 Non-conform geometry 

Because of the demanding input data, some markings have not 

the expected conform geometry. The typical case is a long 

marking, incompletely extracted, whatever the reason is and 

consequently decomposed in smaller elements. These elements 

are of course misclassified, as they can match with others 

marking classes. The only way to avoid this behaviour of the 

algorithm, is to introduce further context information. And in a 

top-down approach,  merge small element that belong to the same 

original marking. Wen et al. (2019) introduced some prior 

knowledge based on context. The assumption they made is that 

lane lines on both side of the road are continuous. The 

corresponding marking can thus be (re)connected. The authors 

also trained and used a cGAN (conditional Generative 

Adversarial Network) to automatically complete arrows and 

small markings shapes. 

3.3 A comfortable general case 

A lot of paper considers the general case, defined by a road well 

delimited by curbs. For many of them, the road point 

segmentation entirely depends on it. The segmentation is usually 

performed by the detection of abrupt altitude (or slope) 

variations. Anyway, they assume that two hypotheses are 

fulfilled.
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Paper 
Road or ground 

extraction 

Intensity thresholding 

method 

Shape improvement 

and filtering 
Classification 

(Cheng et al., 

2017) 

Voxel upward growing 

region thresholding 

Adaptative threshold 

based on scan-angle and 

range 

Median filter and a 

minimum area 

threshold 

Decision tree 

(Fang et al., 

2022) 

Cloth Simulation Filter 

(CSF) 

Same as (Guan et al., 

2014) 

Voxel-based 

Normalized cut 

Graph Neural Network 

(GNN) 

(Guan et al., 

2014) 

Scan-line slope/altitude 

thresholding 

Adaptative threshold 

depending on point 

density 

Opening operation # 

(Guo, Tsai and 

Han, 2015) 

Road altitude deducted 

from trajectory, cartesian 

plane fitting 

Otsu threshold Closing operation 

PCA, handcrafted 

features and model 

matching 

(Jaakkola et al., 

2008) 
# 

Intensity correction and 

simple thresholding 
Opening then closing Handcrafted features 

(Jung et al., 

2019) 

RANSAC 2nd order 

polynomial fitting 
Expectation-Maximization Opening operation # 

(Kumar et al., 

2013) & (Kumar 

et al., 2014) 

Image based: snake curve 
Adaptative threshold using 

range 
Opening operation # 

(Pan et al., 2019) 
Pseudo scan-line slope/ 

altitude thresholding 

Maximum entropy optimal 

threshold 

Region growing, Otsu, 

Statistical Outlier 

Removal (SOR) 

Handcrafted features, 

alpha-shape, model 

matching 

(Soilán et al., 

2017) 

Voxel-based using 

trajectory 

Adaptative Otsu threshold 

using scan-angle 

Area and width/length 

ratio threshold 

Handcrafted features, 

NN, trajectory, model 

matching 

(Yang et al., 

2020) 

Road altitude deducted 

from trajectory; 

transversal elevation 

thresholding 

Thresholding profile by 

profile  

Euclidian distance 

clustering between 

successive profiles 

# 

(Yao et al., 

2018) 

Scan-line slope/ altitude 

thresholding 

Adaptative 

threshold(Bradley and 

Roth, 2007) 

Minimum connectivity 

threshold 

Handcrafted features 

and PointNet++ 

(Ye et al., 2020) 
Voxel upward growing 

region thresholding 

Double threshold using 

both intensity and distance 

to curb 

Statistical Outlier 

Removal (SOR) 
# 

(Yu et al., 2015) 
Pseudo scan-line slope/ 

altitude thresholding 

Adaptative Otsu threshold 

using range 
Spatial density filtering # 

(Wan et al., 

2019) 

Road altitude deducted 

from trajectory; 

transversal elevation 

thresholding 

Iterative maximum 

entropy and median 

filtering 

Closing operation Handcrafted features 

(Wen et al., 

2019) 

Road boundary detection 

(Zai et al., 2018) 
Modified U-Net # 

Multiscale clustering/ 

CNN 

 Table 1. Summary of the state of the art 
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The first one is the existence of a curb, or at least a significant 

jump. And the second is that no other object can cause an abrupt 

altitude variation. However cars (parked or driving), pedestrians, 

and so on, can be scanned during a mobile mapping acquisition. 

In other words, this technique assumes that the scanned scene is 

an urbanized area composed of curbs and requires a very clean 

point cloud. Even under these conditions, common situations 

such as ramp curbs or crossway cause local failures… 

It can also be noticed the use of the trajectory. Different 

processing chain assumed that the trajectory information is 

available. However, this information cannot always be obtained 

automatically. If the acquisition trajectory leads to multiple 

passing in the same street, eventually in the opposite directions, 

the raw trajectory cannot be used. The dependency on the 

trajectory can also mean that the proposed method cannot be 

applied on lane or areas where the sensor precisely doesn’t cross. 

4.  CHALLENGES AND PERSPECTIVES 

As presented previously, road markings detection, and at a 

greater scale point clouds understanding, is a very challenging 

issue. The perfect algorithm should be able to deal with missing 

and incomplete data. To do that, the algorithm should have a 

strong prior knowledge of what is expected. However, road 

scenes can be very varied. Some context information should be 

determined to trigger the use of prior knowledge. For road 

markings, an useful context information can be the position of 

road edges. Yu et al. (2015) exploit the results of the curb 

detection to enhance the classification of road markings. 

It is also interesting to consider a priori knowledge on the 

markings themselves. First, the shape of each marking should 

follow a standardization defined by the competent authority. So, 

the shapes of individual markings are known in advance. A 

second research issue, less easy to encode and to implement, is 

the dependency between them. For instance, since the spacing of 

lines composing a pedestrian crossing is regular, this knowledge 

should allow to detect that one of its elements is missing. 

However, encoding prior knowledge is not always that simple. 

Moreover, in complex scenes, with a lot of missing information, 

context deductions cannot really be applied as it would be 

considered as extrapolation. Road markings that do not severely 

follow the standardization can also be encountered, as observed 

in recent datasets. 

Considering the limitations of the input data and the different 

innovative ways to threshold the intensity of points clouds, we 

consider that the principal room for improvement is now in the 

classification stage. The literature presents many features 

extraction methods and classifiers, leading to very good results. 

To go further, the classifier should consider more contextual 

information about the surrounding markings. It can also extract 

information from other objects detected in the scene (roads signs 

for instance) and confront them to prior knowledge. The 

improvement needed, can also maybe comes from exogeneous 

data. Barçon et al. (2022) used national vector road database as 

prior knowledge for road orientation for instance. 

The Deep-Learning constitutes an exciting potential for top-

down approaches. The principal inconvenient is the need of 

labelled data for the training. These approaches also do not allow 

to use the strong prior knowledge available on road markings 

directly, a post-processing must be implemented. Nevertheless 

and as presented by (Fang et al., 2022), neural networks can deal 

with more context information. The challenging task of manually 

encoding spatial relationships between road features might be 

directly and automatically learned by the network supposing that 

the training data are sufficient. 

5. CONLUSION 

Road marking detection from dense MLS point cloud is a widely 

studied matter by the research community because of its 

miscellaneous potential applications. This paper presented a 

review of the different processing chains proposed over 10 years 

of the literature and highlighted their contribution. The different 

weaknesses of the proposed algorithm are summarized, and some 

perspectives have been given. The imperfect nature of the input 

data imposes very robust processing chains. Potentials 

improvement of the presented workflows could be found in the 

standardized shape of road markings, their relationship with 

others road furniture or exogeneous data i.e. by introducing prior 

knowledge. 
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