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ABSTRACT: 

Historical images provide a valuable source of information exploited by several kinds of applications, such as the monitoring of cities 

and territories, the reconstruction of destroyed buildings, and are increasingly being shared for cultural promotion projects through 

virtual reality or augmented reality applications. Finding reliable and accurate matches between historical and present images is a 

fundamental step for such tasks since they require to co-register the present 3D scene with the past one. Classical image matching 

solutions are sensitive to strong radiometric variations within the images, which are particularly relevant in these multi-temporal 

contexts due to different types of sensitive media (film/sensors) employed for the image acquisitions, different lighting conditions and 

viewpoint angles. In this work, we investigate the actual improvement provided by recent deep learning approaches to match historical 

and nowadays images. As learning-based methods have been trained to find reliable matches in challenging scenarios, including large 

viewpoint and illumination changes, they could overcome the limitations of classic hand-crafted methods such as SIFT and ORB. The 

most relevant approaches proposed by the research community in the last years are analyzed and compared using pairs of multi-

temporal images. 

 

 
 

 
  

 
 

 
  

     

     

Figure 1: Multi-temporal images employed in this work for the evaluation of hand-crafted and learning-based tie points. “now” and “then” image 

pairs are shown in the odd and even rows, respectively. The first two rows, from left to right depict scenes from Osnabrück1, New York2, Prague1, 

Moscow2 and San Francisco2, the last two rows refer to the main square in Trento (Italy). 

 
1 https://www.boredpanda.com/ 
2 https://www.demilked.com/ 
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1. INTRODUCTION 

Automatic image matching is a fundamental task in several 

engineering applications, and it has been traditionally performed 

with hand-crafted approaches like the Scale Invariant Feature 

Transform (SIFT, Lowe, 2004), the Oriented FAST and Rotated 

BRIEF (ORB, Rublee et al., 2011) and the Speeded Up Robust 

Features (SURF, Bay et al., 2006). Nevertheless, it was widely 

experimentally verified that these methods do not perform well 

in challenging conditions such as strong changes in radiometric 

content and angle of views. Indeed, more recent deep-learning 

methods appear to provide promising and encouraging results 

(Remondino et al., 2021; Chen et al., 2021; Bellavia et al., 

2022a). 

Multi-temporal datasets are particularly challenging for image 

matching, since they present several critical situations: large 

viewpoint and radiometric changes, blurry and noisy areas, or 

artefacts (Maiwald, 2019a). These conditions are particularly 

significant when matching old historical images with nowadays 

images. Moreover, the printing process from the original film and 

the digitization of the prints or of the original film itself by using 

a flatbed scanner or by photographing the hardcopies is likely to 

introduce additional geometric deformations with complex 

mathematical modelling (Nocerino et al., 2012a). Multi-temporal 

image co-registrations can be useful for multiple purposes 

including, but not limited to, Augmented and Virtual Reality 

(AR/VR) applications (Torresani et al., 2021; Maiwald et al., 

2019b), the valorisation of archival photos (Nocerino et al., 

2012b), 3D reconstruction of destroyed building facades (Brauer- 

Burchardt and Voss, 2002) or statues (Gruen et al., 2004), and 

environmental and climate changes monitoring (Holmlund, 

2021). 

When dealing with multi-temporal datasets, the approaches are 

different depending on the number of images per epoch. If the 

number of images at each epoch is enough to orient a 

photogrammetric block, the approach of Zhang et al. (2020; 

2021) can be used. This approach first seeks matches among 

images of the same epoch, and then among images of different 

epochs. Zhang et al. (2020) increased the number of extracted 

SIFT keypoint avoiding the use of the Nearest Neighbour Ratio 

(NNR) threshold and heavily relying on geometric constraints for 

the detection of outliers. Moreover, in Zhang et al. (2021) deep-

based local features were used on Digital Terrain Models 

(DTMs). 

Classic hand-crafted local features can sometimes be used when 

it is not possible to rely on the reconstructed scene of single 

epochs (Ali and Whitehead, 2014; Maiwald, 2019a), but the 

extracted correspondences are usually insufficient, and a high 

number of outliers is present. In this case traditional descriptors 

generally fail (Farella et al., 2022), and tie points must be 

collected manually (Holmlund, 2021; Torresani et al., 2021). 

Recently, Maiwald (2019a) proposed a benchmark for historical 

images, analyzing popular hand-crafted local features such as 

ORB+SURF, the Maximally Stable Extremal Regions (MSER, 

Matas et al., 2004) in conjuction with SURF, and the Radiation-

Invariant Feature Transform (RIFT, Li et al., 2018). The results 

underline the complexity of the historical images in automatic 

image matching due to the wide viewpoint differences and the 

very dissimilar radiometric distributions. 

To overcome the limitations due to strong radiometric changes in 

multi-temporal image matching, several new local features based 

on Deep Neural Networks (DNNs) have been proposed, starting 

from the Temporally Invariant Learned DEtector (TILDE, 

Verdie et al., 2015), where keypoints were extracted by a neural 

network trained on multi-temporal and multi-seasonal images of 

static cameras. More recently, hybrid pipelines or end-to-end 

DNNs for image matching have been proposed (Remondino et 

al., 2021; Chen et al., 2021; Jin et al., 2021; Bellavia and 

Mishkin, 2022c). Although these DNNs may lack strong scale 

and rotation invariance, the research is very active. Better and 

more robust DNNs are progressively appearing to improve scale, 

rotation, and radiometric invariances as well as the localization 

accuracy, the repeatability and the reliability of the keypoints. 

Several of these image matching DNNs have already been 

successfully applied and tested in satellite and aerial multi-

temporal datasets (Ghuffar et al., 2022; Zhang et al., 2021; 

Farella et al., 2022) and terrestrial multi-temporal historical 

image pairs (Maiwald et al., 2021). 

 

1.1. Paper aims 
 

The aim of the paper is the evaluation of hand-crafted and deep-

learning local features for the computation of image 

correspondences between current (“now”) and historical (“then”) 

images. To the best of the authors' knowledge, this is the first 

contribution that provides an extensive evaluation on such dilated 

temporal range. Furthermore, an alternative evaluation metric, 

previously proposed in (Bellavia, 2022d), that exploits rough 

optical flow estimation and the epipolar error, is employed. 

Although the reported evaluations employ only image pairs, the 

obtained results are useful also in the case of one-to-many 

registration of multi-temporal images, as those employed in 

AR/VR applications and in multi-view historical 

photogrammetric applications (Maiwald et al., 2021), since 

Structure-from-Motion (SfM) relies on the single image pair 

matching as base step. 

 

 

2. DATASETS AND METHODOLOGY 

2.1 Datasets 

 

The evaluation dataset includes ten multi-temporal image pairs, 

depicting city scenes, see Fig. 1. The historical photos are black 

and white or sepia and are dated around the first half of the 

twentieth century. On one hand, the first five image pairs of Fig. 

1 are from two different internet collections1,2 and depict 

different urban environment around the world. These image pairs 

present relatively low resolution: 692x824 px for San Francisco, 

692x916 px for the Flatiron Building (New York), 1384x846 px 

for Prague, 688x1164 px for Moscow, and 1384x910 px for the 

Osnabrück. Although these image pairs show limited viewpoint 

variations, they are challenging due to the presence of strong 

radiometric changes, noise due to the acquisition stage and due 

to the acquisition support employed. Moreover, the scene 

modifications due to the ages cause to have less than fifty per cent 

of consistent image area between the images, i.e. of scene objects 

not altered across the time. The limited scene consistency can be 

observed for instance in Fig. 3, focusing on the overall support 

region of the correct matches within the matching images. 

The remaining five images of Fig. 1 depict the main square of 

Trento (Italy). The historical scans are from the “TOTEM” 

project (Torresani et al., 2021), and have a limited image 

resolution (972x1364 px, 679x512 px, 713x512 px, 1024x689 

px, and 984x1230 px), while the recent images have been 

collected for this work and have both a resolution of 1500x1000 

px (actually, they have been down-sampled from the original 

acquisition resolution for computational reasons). In addition to 

the first image pairs, these ones contain also relevant scale and 

viewpoint variations. 

All the images are oriented upright, so that rotation issues 

affecting many end-to-end matching networks (Remondino et al., 

2021; Su et al., 2022) can be neglected.  
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2.2 Compared methods 

 

To represent traditional local features, we included SIFT, which 

is still the state-of-the art among hand-crafted approaches, and 

ORB, widely used for real-time applications, such as SLAM 

(Simultaneous Localization And Mapping). The combined 

methods MSER+SURF and ORB+SURF evaluated in Maiwald 

(2019a) were also tested, but the results were not included 

because of their very poor performance. We included SIFT in its 

VLFeat3 implementation as well as its extension RootSIFT 

(Arandjelović and Zisserman, 2012) available through COLMAP 

(Schonberger and Frahm, 2016). 

Concerning deep image matching methods, we included the 

current state-of-the-art according to recent evaluation 

(Remondino et al., 2021; Chen et al., 2021; Jin et al., 2021; Ma 

et al., 2021; Bellavia et al., 2022b): the DIScrete Keypoints 

(DISK, Tyszkiewicz et al., 2020), the Hybrid Pipeline (HP, 

Bellavia et al., 2022c) also without rotational invariance provided 

by OriNet (Mishkin et al., 2018) (denoted as HP_upright ), the 

Local Feature TRansformer (LoFTR, Sun et al., 2021) and its 

rotation invariant extension SE2-LoFTR (Bökman et al., 2022), 

SuperPoint+SuperGlue (Sarlin et al., 2020), the Accurate Shape 

and Localization Features (ASLFeat, Luo et al., 2020), the 

Repeatable Detector and Descriptor (R2D2, Revaud et al., 2019) 

and the Local Feature Network (LF-Net, Ono et al., 2018). Two 

further deep-learning methods providing quite interesting results 

were also added in this evaluation: the Rotation-Robust 

Descriptors (RoRD, Parihar et al., 2021) for its rotation 

invariance and the Accurate and Lightweight Keypoint Detection 

and Descriptor Extraction (ALIKE, Zhao et al., 2022) for its 

ability to run in real-time. 

 

2.3 Evaluation metrics 

 

A commonly adopted evaluation metric for image matching 

assumes that matches are correct on the basis of their epipolar 

error with respect to a ground-truth fundamental matrix, 

estimated manually or computed by SfM. However, it frequently 

happens that wrong matches lie along the epipolar lines. Indirect 

evaluation on the pose can be also employed to bypass this 

situation, but in the case of complex scene and high pose errors, 

these are unable to effectively discriminate which method is 

better. 

To overcome these limitations, Maiwald (2019a) employed the 

trifocal tensor, since its dataset was arranged in triplets instead of 

pairs. As our dataset is composed of image pairs taken from close 

viewpoints, the trifocal tensor is not usable. Moreover, in this 

setup a match appearing only in two images cannot be evaluated, 

hence distorting the recall of the evaluated method. 

To avoid these issues, the alternative approach defined in 

Bellavia (2022d) and successfully applied in Bellavia et al. 

(2022b) is used. The approach starts by considering the epipolar 

error to decide whether a match is correct, but it further removes 

ambiguities by imposing that the optical flow of correct matches 

must be consistent with respect to the sparse optical flow of a 

local neighbourhood of hand-taken correspondences. When 

feasible, local homographies are employed to refine the sparse 

optical flow to improve the accuracy. The hand-taken 

correspondences are used twice: to get the fundamental matrix 

ground truth and to obtain a sparse optical flow. 

Figure 3b shows in yellow the manually taken tie points, while in 

green and blue the matches that are selected as correct according 

to the sparse flow and its local homography, respectively. In 

contrast, Fig. 3c shows in cyan and magenta wrong matches 

 
3 https://www.vlfeat.org/ 

satisfying the epipolar error constraints correctly discarded by the 

proposed approach on the basis of the sparse optical flow and the 

local homographies, respectively. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3: Evaluation on the San Francisco image pair. (a) an example of 

valid (green) and invalid (red) matches, in the specific case for DISK 

with DEGENSAC; (b) sparse optical flow for hand-taken ground-truth 
matches (yellow) and detected correct matches (green, blue); (c) 

detected wrong matches (cyan, magenta) that also satisfy the epipolar 

error constraints. 

 

More in detail, the epipolar error threshold was set to 15 px, as 

well as the threshold to define the optical flow consistency, while 

local homographies reprojection error was fixed to 5 px. 

Although these thresholds are relatively high, these aspects 

should be considered: (i) no camera distortion correction can be 

trustworthy applied, (ii) sub-pixel accuracy for hand-taken 

matches is very unlikely and (iii) in the analysis we are primarily 

interested in the ability to localise corresponding image areas 

more than the localization accuracy. In Remondino et al. (2021) 

and Bellavia et al. (2022a) evaluations on the accuracy of 

keypoint localization with deep-learning local features are 

presented. 

Besides the match ratio, i.e. the number of correct matches with 

respect to the detected matches, results are also given in terms of 

absolute correct matches, and match coverage, i.e. how well the 

matches are distributed over the images. Specifically, the 

coverage is defined according to the Keypoint Filtering by 

Coverage (KFC) mask (Bellavia et al., 2022a). The KFC mask is 

computed by expanding keypoints of correct matches on each 

image as 31x31 px blocks, so that the final mask is defined as the 

union of the blocks on each image. The KFC coverage is defined 

as the maximum ratio over a pair of images between the 

corresponding masked area and the image area. Notice that the 

block radius is 15 px as the optical flow and the epipolar errors. 

The KFC coverage provides a sort of recall accounting for the 
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spatial distribution of the retrieved matches over the images: 

dense but small clusters of matches, which basically correspond 

to a same match, weigh less than large but less dense clusters of 

matches covering a wider area. Further analyses (not reported) 

show that the KFC coverage is strongly correlated with similar 

measures that define the mask using more computationally 

complex area definitions, such that of the convex hull or of the 

alpha shape of the correct keypoints. 

 

 

3. RESULTS 

Results are reported in Table 1 in terms of KFC coverage, 

absolute correct matches and match ratio, respectively without or 

with applying DEGENSAC (Chum et al., 2005) as final step. The 

aim of employing DEGENSAC is to further refine matches 

according to global geometric epipolar constraints. This is a 

widely adopted and suggested practice in the literature (Jin et al., 

2021). Using DEGENSAC, it is reasonable to get an increase of 

the matching ratio with a negligible reduction of the matching 

coverage. The DEGENSAC threshold was set to 4 px and it is 

relatively high for the same motivation given for the epipolar 

error threshold setup in Sec. 2.3. Furthermore, with the exception 

of LoFTR, SuperGlue, DISK and HP that use ad-hoc matching 

assignment, NNR ratio is used and reported with different 

thresholds, or alternatively replaced by the simpler Nearest 

Neighbour (NN) matching strategy. For the reference SIFT the 

standard VLFeat implementation, which sets the NNR threshold 

to 1/1.2=0.85, is used. To further ease the analysis, Figure 4 also 

reports the results in terms of scatter plots according to the match 

ratio and KFC coverage, providing a sort of precision-recall plot, 

with absolute correct matches indicated by the radius of the 

scatter points. 

 

According to the results, LoFTR, SE2-LoFTR, and SuperGlue 

provided overall the best-balanced results without or with 

DEGENSAC. SuperGlue is pushing more on the matching 

precision while LoFTR on the matching coverage and the amount 

of the absolute number of correct matches. For all the three 

methods, there are no relevant differences in using or not 

DEGENSAC, which implies a robust computation of the 

matches. Moreover, by inspecting LoFTR results with respect to 

its rotation invariant version SE2-LoFTR, it is evident that the a-

priori knowledge of image orientation can provide a relevant 

boost to the results, since possible match ambiguities are clearly 

removed. This is also confirmed by the better results obtained by 

HP_upright with respect to HP. 

 
 

Image matching method 
KFC coverage 

without DEGENSAC 

KFC coverage 

with DEGENSAC 

correct matches 

without 
DEGENSAC 

correct matches 

with 
DEGENSAC 

match ratio % 

without 
DEGENSAC 

match ratio % 

with 
DEGENSAC 

SuperGlue 0.108 0.073 131 75 0.71 0.71 

LoFTR 0.207 0.175 843 568 0.66 0.63 

SE2-LoFTR 0.138 0.106 407 268 0.53 0.50 

DISK 0.123 0.062 407 108 0.33 0.33 

HP 0.033 0.020 70 23 0.34 0.35 

HP_upright 0.053 0.036 141 51 0.48 0.48 

VLSIFT 0.007 0.002 6 1 0.05 0.07 

ORB - NN 0.028 0.000 34 0 0.02 0.00 

ORB - NNR 0.90 0.012 0.000 11 0 0.04 0.00 

ORB - NNR 0.80 0.005 0.000 3 0 0.07 0.00 

ORB - NNR 0.70 0.001 0.000 1 0 0.12 0.00 

RootSIFT - NN 0.079 0.000 107 0 0.04 0.00 

RootSIFT - NNR 0.90 0.034 0.000 39 0 0.15 0.00 

RootSIFT - NNR 0.80 0.015 0.000 13 0 0.37 0.00 

RootSIFT - NNR 0.70 0.004 0.000 4 0 0.79 0.00 

ASLFeat - NN 0.116 0.053 244 115 0.27 0.38 

ASLFeat - NNR 0.90 0.025 0.011 28 13 0.71 0.33 

ASLFeat - NNR 0.80 0.003 0.001 3 1 0.55 0.10 

ASLFeat - NNR 0.70 0.001 0.000 0 0 0.20 0.00 

ALIKE - NN 0.115 0.068 221 134 0.15 0.29 

ALIKE - NNR 0.90 0.021 0.018 24 19 0.37 0.35 

ALIKE - NNR 0.80 0.005 0.004 4 3 0.48 0.18 

ALIKE - NNR 0.70 0.001 0.000 1 0 0.20 0.00 

LFNet - NN 0.021 0.016 19 15 0.03 0.14 

LFNet - NNR 0.90 0.007 0.006 6 5 0.13 0.21 

LFNet - NNR 0.80 0.002 0.002 2 2 0.24 0.18 

LFNet - NNR 0.70 0.001 0.000 1 0 0.20 0.00 

R2D2 - NN 0.072 0.030 105 43 0.23 0.36 

R2D2 - NNR 0.90 0.013 0.006 11 6 0.64 0.26 

R2D2 - NNR 0.80 0.001 0.000 1 0 0.40 0.00 

R2D2 - NNR 0.70 0.000 0.000 0 0 0.00 0.00 

RoRD - NN 0.059 0.039 93 61 0.09 0.34 

RoRD - NNR 0.90 0.007 0.006 7 6 0.34 0.24 

RoRD - NNR 0.80 0.001 0.000 1 0 0.10 0.00 

RoRD - NNR 0.70 0.000 0.000 0 0 0.00 0.00 
 

Table 1:  KFC coverage, absolute correct matches and match ratio for the evaluated image matching methods. The results are averaged on the whole 

dataset. Increasing better results are highlighted with darker colors. 
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Figure 4: Scatter plots of the evaluated image matching approaches in terms of their match ratio and KFC coverage without (top row) and with 

(bottom row) DEGENSAC. The radius of each scatter point indicates the number of correct matches for the associated matching method. 

For DISK, HP, HP_upright, LoFTR, SE2-LoFTR, and 

SuperGlue the match ratio remains stable with or without 

DEGENSAC while the absolute number of correct matches 

and the KFC coverage decrease. For the remaining methods, 

refining the initial NN matches by NNR at any threshold level 

drastically reduces the absolute number of matches and the 

KFC coverage, but increases the match ratio. Nevertheless, the 

number of matches becomes too exiguous to be used by 

DEGENSAC, causing a final decrease of the match ratio. 

These observations imply that the matched features for these 

specific image pairs are not so easily disambiguated. 

 

VLSIFT, ORB and RootSIFT, the handcrafted methods 

included in this evaluation, perform poorly according to any 

metric employed. With the exception of LF-Net, the remaining 

deep approaches RoRD, R2D2, ALIKE and ASLFeat with the 

NN matching strategy followed by DEGENSAC obtain in 

order better increasing results than the handcrafted methods. 

For these deep methods avoiding to initially filter matches 

according to NNR and relying on geometric constraints 

through DEGENSAC for the match refinement seems the best 

solution, maybe due to their specific design. HP without 

DEGENSAC can be grouped with these last deep methods, 

while DISK and HP_upright, also without DEGENSAC, 

provide slightly better results with respect to these deep 

methods when focusing respectively on the KFC coverage and 

the match ratio. 

 

Finally, Figure 5 shows the matching results of RootSIFT 

(handcrafted), HP_upright (hybrid), SuperGlue and LoFTR 

(both deep) on the dataset image pairs, indicating correct and 

wrong matches respectively in green and red. 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

K
FC

 c
o

ve
ra

ge
 w

it
h

o
u

t 
D

EG
EN

SA
C

match ratio without DEGENSAC

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

K
FC

 c
o

ve
ra

ge
 w

it
h

 D
EG

EN
SA

C

match ratio with DEGENSAC

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W1-2022 
7th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 15–16 December 2022, Würzburg, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W1-2022-163-2022 | © Author(s) 2022. CC BY 4.0 License.

 
167



 

   

 

4.  CONCLUSIONS AND FUTURE WORKS 

 

This work presented an analysis of recent and state-of-the-art 

image matching approaches to retrieve image correspondences 

in challenging multi-temporal images. The evaluation was 

based on the consistency of the epipolar geometry and of a 

sparse optical flow, both computed according to manually-

measured matches. In this way, correct matches can be 

discriminated correctly and robustly, providing an analysis in 

terms of the number of correct matches as well as their image 

coverage. 

The results show that recent deep learning-based image 

matching methods are sufficiently robust to strong radiometric 

variations due to different sensors and illumination conditions, 

as well as viewpoint changes. According to the reported 

evaluations, these methods can be employed on challenging 

multi-temporal datasets in which traditional image matching 

methods such as SIFT typically fails, yet the results are still far 

to equal those obtained in common application scenarios. 

As future works, more challenging image pairs will be 

included in the dataset and alternative evaluation metrics and 

image matching methods will be investigated and tested.

 

RootSIFT - NNR 0.80 HP_upright  SuperGlue LoFTR 

    

    

  
 

 

    

    

    

    

    

    

    

Figure 5: Correct (green) and wrong (red) matches for RootSIFT, HP_upright, SuperGlue and LoFTR on the employed image pairs. 
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