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Objectives: To identify a prognosis-related subtype of cancer-associated

fibroblasts (CAFs) in head and neck squamous cell carcinoma (HNSCC) and

comprehend its contributions to molecular characteristics, immune

characteristics, and their potential benefits in immunotherapy and

chemotherapy for HNSCC.

Materials and Methods: We performed single-cell RNA sequencing (scRNA-

seq) analysis of CAFs from the samples of HNSCC patients derived from Gene

Expression Omnibus (GEO), to identify the prognosis-related subtype of CAFs.

CAFs were clustered into five subtypes, and a prognosis-related subtype was

identified. Univariate and multivariate cox regression analyses were performed

on the cohort selected from The Cancer Genome Atlas (TCGA) to determine

signature construction, which was validated in GSE65858 and GSE42743. A

prognostic signature based on 4 genes was constructed, which were derived

from prognosis-related CAFs. The molecular characteristics, immune

characteristics as well as the predicted chemosensitivity and

immunotherapeutic response in the signature-defined subgroups were

analyzed subsequently.

Results: The patients with higher CAF scores correlated with poor survival

outcomes. Additionally, a high CAF score correlated with lower infiltration levels

of many immune cells including M1 macrophages, CD8+ T cells, follicular T

helper cells, monocytes, and naïve B cells. High CAF score also demonstrated

different enrichment pathways, mutation genes and copy number variated

genes. Furthermore, patients with high CAF scores showed lower sensitivity

for chemotherapy and immunotherapy than those with low CAF scores.

OPEN ACCESS

EDITED BY

Jialiang Yang,
Geneis (Beijing) Co. Ltd, China

REVIEWED BY

JunLin Xu,
Hunan University, China
Rui Hou,
Geneis (Beijing) Co. Ltd, China

*CORRESPONDENCE

Qinghai Ji,
jq_hai@126.com
Ning Qu,
jonathan_qn@163.com
Yu Wang,
neck130@sina.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 26 August 2022
ACCEPTED 21 November 2022
PUBLISHED 08 December 2022

CITATION

Yang Y, Ma B, Han L, Xu W, Du X, Wei W,
Liao T, Ji Q, Qu N and Wang Y (2022),
Integrated single-cell and bulk RNA
sequencing analyses reveal a prognostic
signature of cancer-associated
fibroblasts in head and neck squamous
cell carcinoma.
Front. Genet. 13:1028469.
doi: 10.3389/fgene.2022.1028469

COPYRIGHT

©2022 Yang, Ma, Han, Xu, Du,Wei, Liao,
Ji, Qu andWang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 08 December 2022
DOI 10.3389/fgene.2022.1028469

https://www.frontiersin.org/articles/10.3389/fgene.2022.1028469/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1028469/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1028469/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1028469/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1028469/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1028469/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1028469&domain=pdf&date_stamp=2022-12-08
mailto:jq_hai@126.com
mailto:jonathan_qn@163.com
mailto:neck130@sina.com
https://doi.org/10.3389/fgene.2022.1028469
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1028469


Conclusion: The results of our study indicate the potential of the CAF signature

as a biomarker for the prognosis of HNSCC patients. Furthermore, the signature

could be a prospective therapeutic target in HNSCC.
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Introduction

Head and neck cancers comprise an array of cancers

originating from the upper aerodigestive tract, with an

incidence rate of sixth in the world (Leemans et al., 2011).

Head and neck squamous cell carcinoma (HNSCC) is the most

common histological type, with a 5-year survival rate of less

than 50%. The traditional multimodality therapeutic strategy

for HNSCC is the synthetic treatment of surgery,

radiotherapy, and chemotherapy; however, this approach is

less efficient for recurrent and metastatic tumors. In 2016,

nivolumab and pembrolizumab, which are anti-programmed

cell death 1 (anti-PD-1) antibody, were approved by the US

Food and Drug Administration (FDA) for HNSCC treatment.

Nonetheless, they are only effective in a select number of

patients (Ferris et al., 2016; Larkins et al., 2017; Cohen et al.,

2019). The molecular mechanisms underlying the

tumorigenesis, progression, and metastasis of HNSCC have

been continuously analyzed to identify novel therapeutic

targets, but its intricacy cumbers traditional anti-cancer

therapies widely use (Mroz and Rocco, 2016; Nishino et al.,

2017). Nowadays, HNSCC is no longer regarded as merely

malignant tumor cells but as a form of cancer with a

complicated tumor microenvironment (TME) (Wu and

Dai, 2017). During the early phase of TME researches,

normal cells in TME were perceived as ideal targets for

relative genetically stable (Joyce, 2005). As research

continues, TME is no longer regarded as merely a tumor

inhibitor but a double-edged sword which interacted with

malignant cancer cell (Quail and Joyce, 2013). Nowadays,

HNSCC is no longer regarded as merely malignant tumor cells

but as a form of cancer with a complicated tumor

microenvironment (TME), through which cells in the

matrix interact with malignant cells to mediate

tumorigenesis and metastasis (Wu and Dai, 2017).

Cancer associated fibroblasts (CAFs) are an essential part of

the TME. As the major component of tumor stromal cells, CAFs

have several origins, such as spontaneous mutation from

normal fibroblasts, tumor cell-induced mutations, and

transdifferentiating from epithelial or mesenchymal cells

(Sahai et al., 2020). Following activation, CAFs provide

physical support and contribute to tumor development and

progression via various processes (Hanahan and Weinberg,

2011; Castells et al., 2012; Costa et al., 2018; Bertero et al.,

2019; Mhaidly and Mechta-Grigoriou, 2020). Past studies have

suggested that CAF enrichment leads to inconsistent prognosis

by influencing different factors in various cancers (Özdemir

et al., 2014; Costa et al., 2018; Monteran and Erez, 2019; Wang

et al., 2021; Wen et al., 2021). The contradictory outcomes

could be due to the heterogeneity of cancers and the unknown

markers of CAFs. In previous studies, non-specific

mesenchymal cell markers, such as smooth muscle actin (α-

SMA), fibroblast activation protein (FAP), and podoplanin

(PDPN), were commonly used to evaluate CAFs. The diverse

phenotypes and functions of CAFs indicate heterogeneity

(Richards et al., 2017; Li et al., 2018; Wen et al., 2019). In

HNSCC, CAFs interact with cancer cells during the processes of

tumor progression and invasion, metabolic reprogramming,

angiogenesis, immunodepression, and tumor therapy

(Bienkowska et al., 2021). With the development of single-

cell technology, single-cell RNA sequencing can be used to

analyze the heterogenous cell population at a single cell

resolution at the transcriptome level; this strategy was

employed to study the heterogenous cells in the present

study (Ren et al., 2018).

In this study, we aimed to understand the CAF and its

potential as a prognostic biomarker for HNSCC patients. In

addition, we aimed to gain insight into the molecular and

immune characteristics of CAFs and their potential impact on

the immunotherapy and chemotherapy of HNSCC patients.

Material and methods

Data sources and preprocessing

The scRNA-seq files were downloaded from GSE103322

(Puram et al., 2017), GSE164690 (Kürten et al., 2021) and

GSE139324 (Cillo et al., 2020) via the Gene Expression

Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). The

raw data were processed by standard way of Seurat (version 3.

2.3). For each sample, the cells with less than 200 or more than

5,000 features were filtrated and the mitochondrial RNA

percentage >5 were excluded.

The bulk of the RNA sequencing data were obtained from

The Cancer Genome Atlas (TCGA) database with normalized

reading counts (N = 502). In addition, RNA sequencing data

were obtained from the GEO database in GSE65858 (N = 270)

and GSE42743 (N = 74), which were used for external

validation.
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Assessment of CAF infiltration level

CAF infiltration levels were evaluated with three algorithms,

MCPCOUNTER (Becht et al., 2016), XCELL (Aran et al., 2017),

and EPIC (Racle et al., 2017), using the TIMER2.0 online-tool

(http://timer.cistrome.org/).

CAF scRNA-seq analysis

We utilized the Seurat R package (version 3.2.3) to analyze

CAFs separately (Butler et al., 2018). Using the resolutions 0.05,

the clusters were determined with the FindClusters function. The

principal component analysis was performed and visualized

using the uniform manifold approximation and projection

(UMAP) and t-Distributed Stochastic Neighbor Embedding

(t-SNE) methods for dimension reduction. The scRNA-seq

data were used to define five different subtypes of CAFs and

their markers genes. The marker genes of each cluster were

identified using the FindMarkers function, which was used to

perform differential gene expression analysis between the cluster

and all other cells using a Wilcoxon Rank-Sum test. All genes

with false discovery rates (FDR) < 0.05 and |log Fold change|>1.0
(log FC) were regarded as marker genes. The top20 marker genes

with largest logFC were list in Supplementary Table S1.

Construction and validation CAF gene
signatures

Top20 marker genes of each cluster were subjected to

univariate cox regression analysis to select prognosis-related

markers. The fraction of each cluster was calculated by

geometric mean expression of prognosis-related genesand

regarded as continuous variables. The results were then

analyzed via multivariable regression with other

clinicopathological factors to select the independent risk

factors for prognosis. The CAF signatures were assessed by

the summation of the expression of each gene multiplied by

the coefficient of each gene. The median of signatures was

considered as the cut-off value, and the prognostic power of

the CAF signature was calculated using the log-rank tests; the

results were visualized using Kaplan-Meier (K-M) survival curves

for each cohort from TCGA and GEO.

Gene set enrichment analysis in the
Cancer Genome Atlas HNSC cohort

Patients were divided into two groups based on the median of

CAF score. We explored the different hallmark gene sets between

the high-CAF risk group and low-CAF risk group. Enrichment

analysis was performed using the GSEA method based on

HALLMARK gene sets with clusterProfiler package of R. The

|normal enrichment score| (|NES|) > 1, nominal p value (NOM

p-val) < 0.01, FDR q-val < 0.01 were regarded as significantly

enriched pathways. The gene sets “h.all. v7.4. entrez” were

downloaded from the Molecular Signatures Database

(MSigDB). Single sample GSEA (ssGSEA) analysis was then

performed on several enriched pathways using the GSVA

package.

Estimation of tumor microenvironment
infiltration

Twenty-two types of immune cells were estimated using the

CIBERSORTX (https://cibersortx.stanford.edu/) by using the

signature genes from LM22. Differences between the two

subgroups were compared using Wilcoxon test.

Evaluation significant somatic mutations
and copy number variations

The information about somatic mutation and CNV in the

TCGA-HNSC cohort was downloaded from TCGA and

cBioPortal (https://portal.gdc.cancer.gov and https://www.

cbioportal.org/). The ‘Maftools’ package was used to

summary mutations and perform the oncoplot to visualize

the somatic mutations. For CNV analysis, the segment mean

value of each region was used to determine amplification and

deletion using 0.2 and -0.2. Chi-square test was used to

compared CNV differences between the two groups, and

the “ComplexHeatmap” package was used to visualized the

results.

Chemotherapeutic sensitivity and
immunotherapeutic response prediction

The pRRophetic R package was used to predict the

chemosensitivity of each patient. The half-maximal inhibitory

concentration (IC50) in each patient was calculated by building a

ridge regression model with ten-fold cross-validation (Geeleher

et al., 2014).

The predicted immunotherapeutic effects were estimated by

Tumor Immune Dysfunction and Exclusion (TIDE, http://tide.

dfci.harvard.edu) (Jiang et al., 2018).

Statistical analysis

All statistical analyses and visualization were performed

using R software v3.6.3 (https://www.r-project.org/). p < 0.

05 was regarded as statistical significance.
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Results

CAF infiltrations in head and neck
squamous cell carcinoma patients

The overall study schematic flow chart is shown in Figure 1.

To detect CAF abundances of each patient, three methods, MCP-

COUNTER, XCELL and EPIC, were used to estimate the CAF

score of each patient with HNSCC from the TCGA database.

These three methods are all based on the transcriptome data but

with distinctive algorithms. MCP-COUNTER is based on

geometric mean of the expression of marker genes, XCELL is

based on enrichment scores of single sample GSEA (ssGSEA)

and EPIC is based on constrained least square regression. The

estimated CAF scores were regarded as phenotype data for

univariate cox regression analysis, which was performed to

detect the relevancy of CAF scores as a prognostic tool for

HNSCC patients and shown in Supplementary Figure S1. It

shown that CAF scores calculated by these three algorithms

cannot discriminate the patients with poor survival.

Identification of different subtypes of
cancer associated fibroblasts and its
corresponding biomarkers

To further explore the association between CAF infiltration

and prognosis, we used the scRNA-seq data containing CAF

information from GSE103322, GSE164690, and GSE139324.

After quality control and normalization, all fibroblasts were

annotated and isolated (N = 5,200). CAFs were annotated and

perform sub-clustering analysis (N = 3,839) subsequently. The

distributions of CAFs from GSE103322, GSE164690, and

GSE139324 were shown in Supplementary Figure S2. It was

divided into five subtypes finally. Two dimension-reduction

methods (t-SNE and UMAP) were adopted to visualize the

distribution of each subtype of CAFs. (Figures 2A,B). The

top20 highly expressed genes (FDR < 0.05) across each

subtype were regarded as markers and shown in

Supplementary Table S1.

Constructing CAF-related prognostic
signature

Markers of each subtype were included in the univariable

cox regression analysis for the TCGA training cohort to detect

prognosis-related markers (p < 0.01). Then, the fraction of

each subtype was calculated using the selected prognosis-

related markers. In TCGA database, only cluster0 and

cluster4 have significant prognosis-related markers

expression. To detect whether these CAF subtype can be

regarded as an independent factor influencing prognosis,

multivariate cox regression analysis was performed. For

TCGA database, multivariate cox regression analyses

showed that age, tumor stage, cluster0 and cluster4 of

CAFs were significantly associated with prognosis

(Figure 3A). The same analyses were performed for

validating the GEO cohorts (GSE65858 and GSE42743), the

results are shown in Figures 3B,C. In all datasets, CAF subtype

0 uniquely acted as an independent factor for poor prognosis.

Therefore, we constructed a signature consisting of 4 marker

genes from CAF subtype 0. The 4 genes included in our

signature were Ferritin Heavy Chain 1 (FTH1),

Transmembrane 4 L Six Family Member 1 (TM4SF1),

Solute Carrier Family 16 Member 3 (SLC16A3) and

Immediate Early Response 3 (IER3). The median risk score

was used as the cut-off value to divide patients into two

subgroups, low-CAF group and high-CAF group. The high-

CAF group consistently correlated with low overall survival,

which was evident for all cohorts compared with low-CAF

group (Figures 4A–C, p < 0.05).

FIGURE 1
The flow chart of this study.
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Molecular characteristics of different CAF
risk groups

We performed GSEA using RNA-sequencing data from

TCGA database to identify tumor-associated gene sets

enriched in different CAF risk groups. As shown in

Figure 5A, the top five tumorigenic pathways enriched in the

high-CAF group were the epithelial mesenchymal transition

pathway, angiogenesis pathway, hypoxia pathway, glycosis

pathway and TNFα -NFκB signaling pathway (|NES| > 1,

NOM p-val < 0.01, FDR q-val < 0.01). Next, we performed

ssGSEA and determined the correlation between our CAF

signatures and different pathways (Figure 5B). 21 pathways

were found significantly related to our CAF signature scores

(p < 0.01). Besides what mention above, many pathways related

to the development of tumor enriched in CAF high group,

FIGURE 2
Analysis of single-cell RNA sequencing data in GSE103322, which including 18 primary HNSCC patients. All fibroblasts were isolated and
clustered into 4 subtypes via t-SNE dimensionality reduction (A) and UMAP (B) dimensionality reduction.
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FIGURE 3
Clinicopathological and CAF infiltrations correlation of prognosis in HNSC patients. Univariate Cox analysis of clinicopathologic factors and
each CAF subtype and multivariate Cox analysis of the significant factors (p < 0.05) in TCGA-HNSC cohort (A), GSE65858 (B) and GSE42743 (C).
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FIGURE 4
Prognostic analysis of the infiltrations of CAFs. Kaplan-Meier survival curve of CAF subgroups in TCGA-HNSC cohort (A), GSE65858 (B) and
GSE42743 (C). Patients were stratified into two groups according to its CAF risk score. The table at the bottom showed the number of patients at risk
in each group.
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including adipogenesis pathway, cholesterol homeostasis

pathway, apoptosis pathway, PI3K-AKT pathway,

mtorc1 signaling pathway. Meanwhile, interferon alpha

response pathway and interferon gamma response pathway

were enriched in CAF low group.

Next, we analyzed the associations of genetic mutations with

CAF infiltration in TCGA-HNSC cohort. Patients were divided

into two subgroups according to our CAF signature. In addition

to nonsense mutations, missense mutations were the most

common mutation type, followed by frameshift deletions. The

top 10 genes with the highest mutation rates in each group are

shown in Figures 5C,D. All the genes showed more than 10%

mutation rates. TP53, TTN and FAT1mutated most frequently in

both the groups. TP53, TTN, FAT1, CDKN2A, CSMD3, and

MUC16 mutations were more common in high- CAF group

while SYNE1, PIK3CA, KMT2D, and DNAH5 are more common

in low-CAF group. We also identified 203 significantly different

mutation genes between two groups which shown in

Supplementary Table S2. All of 203 genes mutated more

frequently in high CAF group. It may suggest that high CAF

infiltration related to a relative unstable state with more mutated

genes.

Aberrant DNA CNVs are an important molecular

mechanism during the occurrence and development of

tumors. CNV information of the TCGA-HNSC cohort

was obtained and compared using Chi-square test. The

TCGA-HNSC cohort was divided into two

subgroups according to pervious method. After deleting the

very short CNV records,2,373 genes have significantly

different CNV between two groups (adj.p < 0.05). The

top 9 genes with the biggest disparity are shown in

Figures 5E,F.

Immune characteristics of high-CAF
group and low-CAF group

To further distinguish which TME components result in

distinct clinical outcomes, the constituents were compared

between the two different CAF subgroups. Wilcoxon analysis

was performed on two CAF subgroups of the TCGA-HNSC

cohort to evaluate the differences in TME contents. Between

the two groups, 9 types of TME cells showed significant

differences. M0 macrophages, activated mast cells and

eosinophils were significantly increased in the high-CAF

group. In comparison, CD8 T cells, M1 macrophages, T

follicular helper cells, naïve B cells, monocytes, resting

dendritic cells and resting mast cells significantly increased

FIGURE 4
(Continued).
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in the low group (p < 0.05). The infiltration levels of these cells

are shown in Figure 6A. The interactions between each type of

immune cell are shown in Figure 6B. Our findings are

consistent with those of previous studies, wherein patients

with low CAF infiltration had a greater number of activated

M1 macrophages and activated CD8+T cells which often exert

anti-tumor effect in TME. This suggests that high CAF

infiltrated in patients may related to immunosuppressive

microenvironments. To further clarify the intrinsic factors

influencing immune characteristics, the relationship between

different infiltrated TME cells and CAF signatures were

assessed, as shown in Figure 6C. In our signature,

FTH1 was related to activated dendritic cell and IER3 was

related to naïve B cell.

Chemosensitivity and immunotherapy
response prediction

We predicted the IC50 of three common

chemotherapeutic agents used to treat HNSCC patients

(cisplatin, docetaxel and gemcitabine) for the different CAF

subgroups. IC50 is half maximal inhibitory concentration,

which means the concentration that can inhibit half of total

tumor cells. As shown in Figure 7A, the low-CAF group had a

significantly lower IC50s for the chemotherapeutic agents

(p < 0.05).

Next, we investigated the predicted immunotherapeutic

effects of CAF signature in TCGA-HNSC cohort. As shown in

Figure 7B, the percentage of patients who responded to

immunotherapy was higher in the low-CAF group. The

predictability of the efficacy of the CAF risk score in

immunotherapy was visualized using the receiver operating

characteristic curve (ROC) curve. According to previous

studies, CAFs are involved in the resistance of immune

checkpoints inhibitors (Bienkowska et al., 2021). As shown

in Figure 7C, the integrated area under the curve (AUC) of the

CAF signature, tumor mutation burden (TMB) and combined

expression of CD8, CD274, and Merck18 was 0.776, which was

higher than the AUC of TMB (AUC = 0.571) as well as the

AUC of the expression of immune checkpoints (AUC =

0.760).

FIGURE 5
Molecular characteristics in CAF-high group and CAF-low group in TCGA-HNSC cohorts. (A), Top4 tumor-associated gene sets enriched in
CAF-high subgroup (FDR q-val<0.01). (B), Heatmap of gene sets correlated significantly with CAF signature (p < 0.05). (C,D), Waterfall plot illustrated
the Top10 mutated genes in the TCGA-HNSC cohort patients in CAF-high groups (C) and CAF-low group (D). Samples (central columns) are
arranged to emphasizemutual exclusivity amongmutations. The upper plot shows themutation frequency of each patient. The right plot shows
mutation percentage, the color coding in the bottom indicates the mutation types. (E,F), Detailed information of top 10 genes with different copy
number variation in CAF-high subgroups (E) and CAF-low group (F) (p-value of all genes are less than 0.0001). Samples (columns) in the central are
arranged to emphasize copy number variated among patients. Each column in the upper represents a patient, the left percentages show the
proportion of patients with mutated gene and the barplots in the right indicate the alteration types.
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Discussion

As a potential therapeutic target, CAF have been long

studied. However, lack of specific biomarkers of CAFs has

impeded their clinical application. In this study, we evaluated

the total levels of CAF infiltration, which cannot be regarded as a

risk factor of prognosis. We integrated three scRNA-seq

databases including GSE103322, GSE164690, and GSE139324.

Then, we evaluated the cancer associated fibroblast subtypes and

their corresponding marker genes. We used the marker genes of

each CAF subtype to identify the infiltration levels of CAFs in the

TCGA-HNSCC cohort, GSE65858, and GSE42743. The

univariate and multivariate cox regression analyses verified

one subtype of CAF as an independent risk factor for overall

survival, which we used to construct a CAF-related signature.

Furthermore, we revealed the differences in immune and

molecular characteristics between the two CAF subgroups.

The high-CAF group had low levels of anti-tumor immune

cells, leading to a poor prognosis. These immune cells included

CD8 T cells, M1 macrophages, T follicular helper cells, naïve

B cells, monocytes, resting dendritic cells and resting mast cells.

Some tumor-associated pathways, such as the angiogenesis,

EMT, hypoxia, glycolysis and TNFα-NFκB pathways, were up-

regulated in the CAF-high group. Moreover, the CAF-high group

also had a significant higher rate of many gene mutations.

Furthermore, the chemosensitivity and response to

immunotherapy were predicted for the two CAF subgroups.

Results showed that the CAF-high group was less sensitive to

the conventional chemotherapeutic and immunotherapeutic

agents compared with CAF-low group. Integration of the CAF

FIGURE 5
(Continued)

Frontiers in Genetics frontiersin.org10

Yang et al. 10.3389/fgene.2022.1028469

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1028469


FIGURE 6
The TME immune cell infiltration characterization. (A), The proportions of differently infiltrated TME immune cells in two CAF subgroups in
TCGA-HNSC cohort. (B), Correlations between CAF signature genes and different infiltrated TME immune cells. (C), The correlation of all
24 infiltrated TME immune cells. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, ****p-value < 0.0001.
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signature and traditional indexes (TMB and immune cell surface

antigens) can help in predicting the response to immunotherapy

more accurately. This indicates that the CAF subtype signature

could serve as not only a promising biomarker but also as a

potential therapeutic target in HNSCC patients.

For the CAF-related 4 genes signature, none of them were

identified as common CAF markers before. According to

previous studies, FTH1 is a subunit of ferritin, which regulate

the ion metabolism and ferroptosis both in vivo and in vitro

(Fang et al., 2021; Kong et al., 2021; Zhang et al., 2022). IER3 was

proved mediated cancer development in many cancers including

tongue cancer (Garcia et al., 2014; Xiao et al., 2019; Liu et al.,

2021). TM4SF1 was proved not only mediating the development

of cancer but also the immunotherapeutic sensitivity. There are

also many clinical trials of mAb-L6, which is the inhibitor of

TM4SF1(Fu et al., 2020). SLC16A3 was also proved could

influence immunotherapeutic sensitivity by modulating lactate

metabolism (Li et al., 2020; Fang et al., 2022).

As shown in the results, the overall infiltration level of CAF

cannot be regarded as a risk factor for prognosis in HNSCC

patient. In this study, we innovatively identified a subtype of CAF

to improve the prognosis and therapeutic outcome of HNSCC.

However, there are some limitations to this study. First, it is a

retrospective study based on public databases. The samples

obtained from GSE103322 are not sufficient. Secondly, we

defined the CAF subtypes on mRNA level but not protein

level, which could be investigated in future studies. Finally,

the CAF signature in this study is composed of 17 genes.

Future research could simplify the signature by detecting the

underlying mechanisms of each gene. More critically, there is a

challenge of moving RNA-seq to the clinic. The variation of the

biopsy and subsequent processing may cause extensive variation

in transcriptome. Recent years, some sequencing methods with

simplifier pre-processing have emerged such as single nuclei

RNA sequencing. The liquid biopsy has also emerged with

extensive attention. Compared to classical tissue biopsy, liquid

biopsy can get rid of selection bias caused by spatial limitations

and tumor heterogeneity. The study of Duda et al. firstly revealed

that the TME components in circulation together with

circulating tumor cells (Duda et al., 2010). Subsequent a series

of studies demonstrated the existence of circulating CAFs or

CAF-derived exosomes in body fluids (Wintzell et al., 2012; Ao

et al., 2015; Herrera et al., 2019). The exact biomarkers of

FIGURE 7
Predicted chemosensitivity and immunotherapeutic
response in different CAF subgroups. (A), The IC50 values of four
anti-cancer drugs of different CAF-subgroup of TCGA-HNSC
patients predicted by pPRophetic algorithm. (B), Predicted

(Continued )

FIGURE 7 (Continued)
immunotherapeutic effects of TCGA-HNSC (C), The
prediction effect of CAF signature. (Yellow represents the
combination of many immune cell surface antigen including
CD247, CD8 and Merck18; red represents TMB; black
represents the combination of our CAF signature, TMB and cell
surface antigens) *p-value < 0.05, **p-value < 0.01, ***p-value <
0.001, ****p-value < 0.0001.
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circulating CAF to predict prognosis and immune therapeutic

effects in HNSCC are deserving of further study.
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