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Introduction: Forest fires seriously threaten the safety of forest resources and

human beings. Establishing an accurate forest fire forecasting model is crucial

for forest fire management.

Methods: We used different meteorological and vegetation factors as

predictors to construct forest fire prediction models for different fire

prevention periods in Heilongjiang Province in northeast China. The

logistic regression (LR) model, mixed-effect logistic (mixed LR) model, and

geographically weighted logistic regression (GWLR) model were developed

and evaluated respectively.

Results: The results showed that (1) the validation accuracies of the LR

model were 77.25 and 81.76% in spring and autumn fire prevention periods,

respectively. Compared with the LR model, both the mixed LR and GWLR

models had significantly improved the fit and validated results, and the GWLR

model performed best with an increase of 6.27 and 10.98%, respectively. (2)

The three models were ranked as LR model < mixed LR model < GWLR

model in predicting forest fire occurrence of Heilongjiang Province. The

medium-and high-risk areas of forest fire predicted by the GWLR model were

distributed in western and eastern parts of Heilongjiang Province in spring,

and western part in autumn, which was consistent with the observed data.

(3) Driving factors had strong temporal and spatial heterogeneities; different

factors had different effects on forest fire occurrence in different time periods.

The relationship between driving factors and forest fire occurrence varied

from positive to negative correlations, whether it’s spring or autumn fire

prevention period.

Discussion: The GWLR model has advantages in explaining the spatial

variation of different factors and can provide more reliable forest fire

predictions.
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Introduction

Forest fires seriously threaten the safety of forest resources,
human life, and property (Flannigan et al., 2010; Turetsky et al.,
2011). The occurrence of forest fire is a complex process with
large spatial heterogeneity, which is not only affected by a variety
of environmental factors but also interacts with them (Martinez-
Fernandez et al., 2013; Rodrigues et al., 2014). A scientific and
accurate forest fire prediction model is conducive to establishing
a scientific and efficient forest fire ecological management
system to reduce the risk of forest fires, which plays an
essential role in sustainable forest management (Curt et al.,
2016).

At present, extensive research on forest fire prediction
models have been carried out. Among them, the logistic
regression (LR) model is most widely used (Liu et al., 2012;
Guo et al., 2015; Guo et al., 2016a). The logistic regression
global prediction model is simple in form, can apply the
fitting parameters to the whole study area. However, the model
established has shortages in reflecting the variability and spatial
heterogeneity of observed data between different fire points. It is
especially obvious when the research area is fair-sized (Boubeta
et al., 2015; Nunes et al., 2016).

With the development of the research, the geographical
weighted logistic regression (GWLR) model and mixed effects
model have been gradually applied in forest fire prediction
(Drever et al., 2008). By establishing the GWLR model of
forest fire, it has been found that the GWLR model can
better predict the spatial relationship between forest fires and
their driving factors. For example, a pervious study using
the GWLR model has demonstrated that the behavior of the
driving factors affecting the occurrence of Spanish forest fires
would change with time and space (Rodrigues et al., 2018).
Su et al. (2021) found that drivers of wildfire in Leizhou
Peninsula (coastal area) had clear spatial variation, and the
GWLR model has better prediction ability. The mixed effects
model incorporates some factors other than variables into the
modelling process through random effects, which can effectively
deal with the influence of spatial heterogeneity and individual
differences of samples on the model (Groom et al., 2012;
Blozis and Harring, 2021). For example, Hegeman et al. (2014)
included five management units of the Mojave Desert Network
can be used as a subject-level random effect to account for
heterogeneity in fire occurrence among management units.
Stan et al. (2014) took the stations of Hualapai Tribal
lands as a random effect, and used the generalized linear
mixed model to model the combustion probability in this
area.

These three models have been wildly applied in forest fire
prediction (Guo et al., 2015; Rodrigues et al., 2018). However,
these studies have varied research areas, research purposes,
selections of driving factors and data sources. Chang et al. (2013)
selected daily rain fall, mean wind speed, mean temperature,

minimum temperature, vegetation type and other factors in
Heilongjiang Province of China to predict the probability of
forest fire using LR model. Oddi et al. (2019) applied a nonlinear
mixed effect method to model the time change of water content
of live fuel in Northwestern Patagonia area. Rodrigues et al.
(2019) used forest fire data from Spanish fire database, and
based on the fire season in Spain, used GWLR model to
parameterize the marginal impact of driving factors. And so on.
In such a variety of situations, it is difficult to have a clear and
comprehensive view of the applicability of the three models in
forest fire prediction.

Heilongjiang Province is located in the northeast of China,
with its high spatial variability of natural conditions (Guan et al.,
2021). It is crucial to understand where wildfires are more likely
to occur as well as their drivers in complex landscapes (Wu
et al., 2021). Based on the above considerations, we established
a prediction model of forest fire occurrence during different
forest fire seasons in Heilongjiang Province, based on LR model,
mixed LR model, and GWLR model. We aim to understand the
applicability of these forest fire prediction models by using the
same variables in the same study area, so as to provide a basis for
scientific forest fire management.

Materials and methods

Study area

Heilongjiang Province (43◦26’-53◦33’N, 121◦11’-135◦05’E)
is located in Northeastern China (Figure 1), with a land area
of 473,000 square kilometers. The province has a terrestrial
monsoon climate, and the climate varies significantly among
regions. The forest stock in Heilongjiang Province amounts to
2.24 billion cubic meters. The forest area, total forest volume,
and timber production of Heilongjiang Province all rank at the
forefront of China. At the same time, Heilongjiang is also a
province with a high incidence of forest fire in China. According
to the Chinese Forestry Statistical Yearbook (National Forestry
and Grassland Administration, 2018), the total area of the
fire site in Heilongjiang Province was 18,400 ha, of which the
affected forest area was 12,385 ha, from 2010 to 2016. These
data have not included forest fires with a small fire area or
no casualties. By taking strict actions on wildfire prevention,
human-caused forest fires have been greatly limited to occur in
Heilongjiang Province over the last decade. As a result, climate
and vegetation factors play a crucial role in Heilongjiang’s
wildfires (Faivre et al., 2014; Wu et al., 2021).

Data

The data used in this study consists of forest fire data,
meteorological data, and vegetation data.
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FIGURE 1

Location of Heilongjiang Province, China.

Forest fire data
Forest fire data is derived from the daily forest fire product

(including fire coordinates, time, and reliability, etc.) of 1 km-
resolution imaging spectrum of MODIS satellite, provided by
Geospatial Data Cloud1 during 2019. This product has been
proved to be a suitable and reliable source for monitoring
vegetation fires (Justice et al., 2002; Amraoui et al., 2015), and
has been widely used in forest fire research (Eskandari et al.,
2015). Since there may be multiple fire points in a fire, ArcGIS
software was used to eliminate the fire points with a distance
of less than 1 km within 24 h. The fire point data in 2019
was superimposed with the 1 km-resolution land use type map
of Heilongjiang Province in 2015, which was provided by the
multi-temporal 1:100,000 scale land use status database covering
the national land area. After eliminating fire points in non-forest
areas, 5,226 credible fire points were finally obtained during
the fire prevention period (Figure 2). The Logistic regression
model requires the response variable data to be in the form of a
binomial distribution, so a certain proportion of random points
(non-fire points) need to be created (Guo et al., 2016a). The
ArcGIS software (10.8) was used to generate random points at
a ratio of 1:1. Usually, the number of random points is slightly
more than that of fire points, and the distribution of random
points is completely random in time and space. A total of 5,523
non-fire points were generated in this study.

Meteorological and vegetation data
Meteorological and vegetation data were derived from the

global ERA5-Land database,2 from which the daily data of
Heilongjiang Province in 2019 was extracted. Among them, the
meteorological data included the wind speed, precipitation, and

1 http://www.gscloud.cn/

2 https://cds.climate.copernicus.eu/

the surface temperature of the day. Vegetation data included leaf
area index (LAI) of the day. The meteorological and vegetation
data and forest fire data were connected by temporal and spatial
information through python to form the complete sample data.

In Heilongjiang Province, there are two primary forest fire
prevention periods at spring and autumn every year. The spring
fire prevention period ranges from 15 March to 15 June, and the
autumn fire prevention period ranges from 15 September to 15
November. In this study, we calculated statistics of the factors for
both fire prevention periods, and all data were randomly divided
into a fit data set (60%) for estimating regression parameters
and a validation data set (40%) for evaluating the models
(Table 1).

Methods

Our main research steps are as follows: (1) Variable
selection. (2) Establish a base model, namely the logistic
regression model in this study. (3) Construct the mixed model
by adding random effects to the base model. (4) Build the
geographically weighted regression model by use of the base
model (5) Model evaluation and application.

Variable selection
In order to avoid the influence of the possible

multicollinearity among the meteorological factors on the
model prediction, we calculated the Variance Inflation Factor
(VIF) for each meteorological factor. According to the
thumb rule, if any of the VIF values exceed five or ten, it
implies that the associated regression coefficients are poorly
estimated because of the multicollinearity (Kennedy, 1992;
Parajuli et al., 2020). In this study, we eliminated the
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FIGURE 2

Distribution of fire points in Heilongjiang Province at 2019. (A) Fire points in spring fire prevention period. (B) Fire points in autumn fire
prevention period.

TABLE 1 Statistics of the influencing factors of forest fires.

Factors Spring fire prevention period Autumn fire prevention period

Mean Max. Min. SD CV Mean Max. Min. SD CV

Wind speed (m/s) Fit 1.750 19.175 0.001 1.125 0.643 2.324 9.040 0.126 1.553 0.668

Validation 1.742 12.781 0.001 1.002 0.078 2.209 9.371 0.076 1.423 0.644

Temperature (◦C) Fit 5.013 20.304 −9.612 6.480 1.293 3.376 17.947 −16.158 7.567 2.241

Validation 4.763 20.250 −9.753 6.406 0.316 3.630 17.596 −16.576 7.587 2.090

Precipitation (mm) Fit 1.382 8.983 0.007 1.662 1.202 1.318 4.615 0.160 0.847 0.643

Validation 1.315 9.022 0.007 1.592 1.210 1.280 4.547 0.173 0.826 0.645

LAI (%) Fit 3.438 7.898 0.000 1.540 0.448 3.260 7.273 0.000 1.593 0.489

Validation 3.429 7.798 0.000 1.502 0.438 3.227 7.212 0.000 1.630 0.505

variable with a VIF value larger than five. Then, the two-
way stepwise regression technique was used to eliminate the
variables with no significant difference (p > 0.05). Finally,
the variables that had no collinearity and were extremely
significant with fire occurrence were retained in the basic model
(Rodrigues et al., 2014).

Logistic regression model
In this study, the values of forest fire occurrence or not were

taken as follows: Fire y = 1, no fire y = 0. The probability of
forest fire (y = 1) was set as P, then the LR model between fire
occurrence probability and predictors could be developed. The
regression model is expressed as:

ln
(

P
1− P

)
= α + βX (1)

where P is the probability of forest fire; X is the vector of
predictive variables; α is the constant term; β is the parameter
vector of the predictive variables.

After logit transformation, the probability formula of forest
fire occurrence can be obtained as:

P =
eα+βX

1+ eα+βX (2)

Mixed-effects model
The mixed-effects model is a statistical analysis

model composed of fixed effects and random effects. In
order to understand the impact of different geographic
regions on meteorological conditions and overcome its
spatial heterogeneity, we divided the data into 13 groups,
corresponding to the 13 prefecture-level cities in Heilongjiang
Province (Figure 1). We tested different mixed models
that containing random effects on different combinations
of parameters based on the LR model to find the optimal
parameters that random effects account for. In this way, the
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error caused by the prediction of the fixed-effect model could
be reduced. The mixed-effects model can be expressed as:

ln
(

P
1−P

)
= α + βX + bZ + e

b ∼ N (0,D)
e ∼ N (0,Ri)

(3)

where: α is the constant term; β is the parameter vector of
the predictors with fixed effects; X is the vector of predictive
variables with fixed effects; b is the parameter vector of the
predictors with random effects; Z is the vector of predictive
variables with random effects;boldsymbole is the error vector;
D is the random effect variance-covariance matrix; Ri is the
within-group variance-covariance matrix.

The variance-covariance structure matrix of random effects
can reflect the difference between forest fire occurrence
and various meteorological factors among different groups.
Therefore, its structure will change with the number of random
parameters. For the simplicity of the model, this study only
considers the variance-covariance structure of random effects
and assumes that it is a generalized positive definite matrix.
Take the variance-covariance structure matrix containing two
random parameters as an example; its structure is as follows:

D=

[
σ 2

b1
σb1b2

σb1b2 σ 2
b2

]
(4)

where σ 2
b1

is the variance of random parameterb1; σ 2
b2

is the
variance of random parameter b2; σb1b2 is the covariance of
random parameters b1 and b2.

The within-group variance-covariance structure
was described by the commonly used error effect
variance-covariance structure:

Ri=σ
2Ii (5)

where σ 2 is the error variance of the model; Ii is the variance
matrix of within-group errors.

Geographically weighted logistic regression
model

The geographically weighted logistic regression model is
the extension of the traditional logistic regression model by
taking spatial location information into account (Fotheringham
et al., 2002). The GWLR model estimates the parameters of
each coordinate point by using the weighted least square
method. The parameter estimation is local rather than global.
Therefore, data in different coordinates have corresponding
specific parameters. In the construction of the GWLR model,
we used the exponential kernel function and determined
the optimal bandwidth according to the corrected Akaike
information criterion (AICc). Assume that the probability of fire
occurrence (y = 1) at location i is P, then the probability of no

forest fire (y = 0) is (1-P). The expression of the GWLR model
is:

ln(
P

1−P
) = α0(ui,vi)+α1(ui,vi)xi1+α2(ui,vi)xi2+. . .+αn(ui,vi)xin

(6)
where (ui,vi) is the geographic coordinate of location i, α(ui,vi) is
the parameter estimates of predictive variables at location i, and
xin is the predictive variables at location i.

After logit transformation, we have,

Py = 1

=
exp(α0(ui, vi) + α1(ui, vi)xi1 + α2(ui, vi)xi2 + . . .+ αn(ui, vi)xin)

1+ exp(α0(ui, vi) + α1(ui, vi)xi1 + α2(ui, vi)xi2 + . . .+ αn(ui, vi)xin)

=
ez

1 + ez (7)

where z = α1(ui, vi)xi1 + α2(ui, vi)xi2 + · · · + αn(ui, vi)xin.
The data structure of the model was first assumed to be

spatially non-stationary, then the spatial non-stationarity of the
relationship between forest fire occurrence and predictors was
evaluated. If the quartile range of the estimated coefficient of
an explanatory variable is larger than the coefficient ± standard
deviation of the same variable in the LR model, then the
explanatory variable will be considered to be significantly spatial
non-stationary (Chen et al., 2012).

Model evaluation
For model fitting comparison, Akaike information criterion

(AIC), Bayesian information criterion (BIC), and −2∗ Log-
likelihood value (−2LogL) were used in this study (Rawlings
et al., 1998; Hastie et al., 2001; Burnham and Anderson, 2002).
For each criterion, the best model produced the smallest value.
The criteria are computed as follows:

AIC = 2m− 2ln(L) (8)

BIC = − 2ln (L)+kln(n) (9)

where L is the maximum value of the likelihood function of
estimated model, n is the number of samples, and m is the
number of parameters.

For model validation, we applied mean absolute error
(MAE), root mean squared error (RMSE), and the area
under the receiving operating characteristic (ROC) curve.
The ROC curve shows the ability of a system to classify
binary data at various threshold settings, and the area
under the ROC curve (AUC) ranges from 0.5 (poor
fit) to 1 (perfect fit) (He et al., 2018). A good model
should produce a smaller MAE, smaller RMSE, and
larger AUC. The calculations for MAE and RMSE are as
follows:

MAE =
∑n

i = 1 |̂yi − yi|

n
(10)
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RMSE =

√∑n
i=1 (ŷi − yi)2

n
(11)

where ŷi and yi are the predicted and observed values of the i-th
point, respectively.

The global Moran’s index (Moran’s I) was used to
evaluate the spatial autocorrelation of model residuals
(residual = observed value–predicted value). A smaller value
of the global Moran’s I indicates lower spatial dependence of
residuals, meaning that more spatial information is considered
in the model. The calculation for the global Moran’s I is:

I =
n
S
∗

[∑n
i=1
∑n

j=1 ωij(ei − e)(ej − e)∑n
i=1 (ei − e)2

]
(12)

where n is the number of spatial units in data, ei and ej

are residual values of spatial units i and j, respectively, e is
the average value of the residuals, S is the sum of all spatial
weights, and ωij represents an element in the spatial weight
matrix. If space units i and j are adjacent, then ωij = 1;
otherwise ωij = 0. The values of Moran’s I ranges between
[−1, 1]. When the value of Moran’s I index is greater than
0, the residuals in the study area are positively correlated
in space, whereas a value less than 0 indicates negative
correlate on in space.

In addition, we calculated the accuracy of fitting data and
validation data of different models respectively. The model
accuracy is computed as follows:

Accuracy =
TP + TN

n
=

TP + TN
TP + TN + FP + FN

(13)

where n is number of samples; TP is number of correct
predictions of fire points; TN is number of correct predictions of
non-fire points; FP is number of wrong predictions of fire points;
FN is number of wrong predictions of non-fire points.

In this study, all model fitting and validation
were implemented by R. The parameter estimation
of the LR model was realized by the glm function in
stats package. The parameter estimation of the mixed
effect model was realized by the glmer function in
lme4 package. The bandwidth selection and parameter
estimation of the GWLR model were respectively
implemented by the bw.ggwr and ggwr.basic functions in
GWmodel package.

Results

Parameter estimation of the logistic
regression model

The VIF values of all meteorological and vegetation variables
are less than 3, indicating that there are no multicollinearities

TABLE 2 Parameter estimation based on the logistic
regression model.

Parameter Spring fire
prevention

period

Autumn fire
prevention

period

Estimate SE Estimate SE

α 2.2934 0.1210 1.4167 0.1762

β1 −0.3077 0.0420 −0.6582 0.0542

β2 −0.1048 0.0103 −0.1683 0.0117

β3 −0.5346 0.0486 0.9133 0.0827

β4 −0.1162 0.0269 −0.4773 0.0422

α, β1, β2, β3, β4 are parameters of intercept, wind speed, surface temperature,
precipitation, and LAI, respectively. SE, standard error. All parameters are extremely
significant (p< 0.0001).

among these factors. During stepwise regression, all variables
are extremely significant (p < 0.01). Table 2 shows parameter
estimation of the LR model during both spring and autumn
fire prevention periods. Among them, wind speed, surface
temperature, and LAI have negative effects on fire occurrence in
both seasons, precipitation has negative effect in spring whereas
positive effect in autumn.

Parameter estimation of the
mixed-effects logistic regression
model

A total of 22 models were received by adding the random
effects on different combinations of parameters (Appendix
1). Among them, 11 models were developed for spring fire
prevention period and the other 11 models for autumn fire
prevention period, in the same order for different models. The
mixed-effects model considering random effects on intercept,
temperature and precipitation (Model 9) for spring fire
prevention period, and the model considering random effects
on intercept, temperature and leaf area index (Model 10) for
autumn fire prevention period obtained the best evaluation
statistics (Appendix 1). Table 3 shows the parameter estimation
of the optimal mixed-effects models for spring and autumn
fire prevention periods. Surface temperature has negative effect
on the fire occurrence in both seasons. Wind speed and
LAI have positive effect in spring whereas negative effect in
autumn. Precipitation has negative effect in spring whereas
positive effect in autumn. Meanwhile, different parameters show
varied significance levels (Table 3). Precipitation is significantly
related to forest fire in spring fire prevention period, while
other variables become insignificant. Wind speed, precipitation
and LAI are significantly related to forest fire in autumn
prevention period, while temperature is not significant. We
conducted ANOVA test on the LR model and the optimal
mixed LR model of both seasons, and the results showed that
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TABLE 3 Parameter estimation of the optimal mixed-effects model.

Fixed parameter Spring fire prevention period Autumn fire prevention period

Estimate SE Estimate SE

α 0.1727 0.5657 −0.5423 0.4793

β1 0.0562 0.0416 −0.4665*** 0.0666

β2 −0.0406 0.0391 −0.0447 0.0421

β3 −0.6840*** 0.1575 0.3457** 0.1096

β4 0.0199 0.0230 −0.2534** 0.0874

Random effect variance-covariance structure (D)


14.1805 0.0655 0.8239

0.0655 0.0003 0.0038

0.8239 0.0038 0.0479




3.3970 0.0364 0.0973

0.0364 0.0004 0.0010

0.0973 0.0010 0.0028


α, β1, β2, β3, β4 are fixed parameters of intercept, wind speed, surface temperature, precipitation and LAI, respectively. SE, standard error. ***p< 0.001, **p< 0.01.

TABLE 4 Parameter estimation of the geographically weighted logistic regression (GWLR) model.

Fire prevention period Coefficient Min 1st Qu. Median 3rd Qu. Max.

Spring Intercept −13.5734 0.1962 1.5914 3.1240 8.9713

Wind speed −4.6675 −0.6572 −0.2350 0.1202 4.5696

Surface temperature −0.5920 −0.2440 −0.0729 0.0401 0.7576

Precipitation −4.8864 −1.3845 −0.5759 −0.0286 1.3245

LAI −1.0879 −0.1519 0.0725 0.3082 1.3498

Autumn Intercept −15.6536 −2.4041 −1.5089 0.0510 14.1989

Wind speed −3.8086 −0.6985 −0.3357 0.0749 1.1752

Surface temperature −0.3936 −0.2144 −0.0863 0.0332 0.4990

Precipitation −13.0498 0.0422 0.4743 1.8876 8.1877

LAI −1.2431 −0.4569 −0.2172 0.0374 1.8506

there were significant difference between the two model types
(p< 0.0001).

Parameter estimation of the
geographically weighted logistic
regression model

Appendix 2 evaluates the spatial stationarity of parameter
estimation for the GWLR model based on the entire data set,
intercept, wind speed, surface temperature, precipitation, and
leaf area index are all non-stationary spatial variables. The
parameters of all meteorological and vegetation factors vary
between positive and negative correlations over the entire study
area (Table 4). In order to reflect the local variations of the
parameters for each variable in the GWLR model, we divided
each parameter into 5 intervals based on the Natural Breaks
(Jenks) method, and performed spatial interpolation on the
parameters using the ArcGIS 10.8 software (Figure 3). The
parameters of the GWLR model vary with spatial location,
revealing obvious spatial heterogeneity. Meanwhile, there are
differences in spatial heterogeneity among different parameters,
and spatial heterogeneity within the same parameter has great

distinctions during different fire seasons. The distribution maps
of t-values for parameter estimations also show that all variables
in the GWLR model have locally significant influence on forest
fire (Figure 4).

Model evaluation

Table 5 shows the fitting and validation statistics of the
LR model, the mixed LR model, and the GWLR model. In the
fitting process, the AIC (3332.708, 1362.171), BIC (3364.675,
1390.383), and −2LogL (3322.708, 1352.171) values of the
GWLR model were the smallest in both spring and autumn
fire prevention periods. Those values in the mixed LR model
were in the middle, and the LR model received the largest
values. Similar in the validation process, the GWLR model
obtained the best values of all evaluation statistics (MAE, RMSE,
Moran’s I, AUC, Accuracy) during the spring and autumn fire
prevention periods, followed by the mixed effect model, and
the LR model performed relatively poor (Table 5). Figure 5
shows the ROC curves of the LR model, the mixed LR model
and the GWLR model, which presented the same results. The
residual distribution of the LR model was relatively scattered,
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FIGURE 3

Parameter distribution for each variable of the geographically weighted logistic regression (GWLR) model. (A) Parameter distribution in spring
fire prevention period. (B) Parameter distribution in autumn fire prevention period.

while the residuals of the mixed LR model and the GWLR model
were more concentrated around zero (Figure 6). Particularly,
the residual distribution of the GWLR model was the most
concentrated in the two fire prevention periods. Therefore, the
three models showed consistent model performance in both
fire prevention periods, that is, the LR model < the mixed LR
model< the GWLR model.

Prediction of forest fire occurrence
probability in Heilongjiang Province

The LR model, mixed LR model and GWLR model were
used to predict the probability of forest fire occurrence in

Heilongjiang Province, and the Kriging interpolation method
was applied to analyze its spatial probability. Figure 7
shows the probability distribution of forest fire in two fire
prevention periods. In the prediction of the LR model, the
probabilities of forest fire occurrence in northern parts of
Heilongjiang Province are high, while the probabilities in
southern parts are low. The high-probability areas in spring
are larger than those in autumn. In the mixed LR model,
the regions with higher probability of forest fire in spring
are distributed in western and eastern parts of Heilongjiang
Province, while those regions in autumn are mainly distributed
in western parts. The results of the GWLR model are
basically similar to those of the mixed LR model, except
that there are sporadic medium-and high-probability areas in
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FIGURE 4

Distribution of t-values for each parameter of the geographically weighted logistic regression (GWLR) model. (A) Distribution of t-values in
spring fire prevention period. (B) Distribution of t-values in autumn fire prevention period. If the t-test value is less than –1.96 or greater than
1.96, it means that the estimated coefficient is significant.
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TABLE 5 Model fitting and validation for two fire prevention periods.

Spring fire prevention period Autumn fire prevention period

LR Mixed LR GWLR LR Mixed LR GWLR

Fitting statistics

AIC 4485.899 3665.854 3332.708 1913.41 1495.358 1362.171

BIC 4517.867 3736.182 3364.675 1941.623 1557.426 1390.383

−2 LogL 4475.899 3643.854 3322.708 1903.412 1473.358 1352.171

Validation statistics

Minimum probability 0.002 0.001 0.000 0.007 0.000 0.000

Maximum probability 0.893 0.986 0.994 0.926 0.969 0.997

MAE 0.332 0.257 0.208 0.293 0.201 0.175

RMSE 0.405 0.355 0.308 0.380 0.314 0.269

Moran’s I 0.303 0.141 0.051 0.302 0.113 0.037

AUC 0.812 0.899 0.939 0.833 0.908 0.989

Accuracy (%) fit 78.32 82.32 87.55 78.51 86.28 91.13

validation 77.25 82.56 83.52 81.76 89.07 94.50

All Moran indices are extremely significant (p< 0.0001), bold values denote the best model for each criterion.

FIGURE 5

The receiving operating characteristic (ROC) curves of different models. (A) ROC curves in spring fire prevention period. (B) ROC curves in
autumn fire prevention period.

northern and southern regions during autumn fire prevention
period.

Discussion

Comparison of statistical indicators of
different models

Compared with the LR model, the mixed LR model, and
GWLR model both improved the fit and validation results

significantly. Among them, the GWLR model produced the
best accuracy of prediction, followed by the mixed LR model.
The ROC curves, Moran’s I index and residual distribution
also showed the same results. The superiority of the mixed-
effects and GWLR models in forest fire prediction has
been demonstrated by many prior research. For example,
Oddi et al. (2019) applied a nonlinear mixed-effects model
to estimate temporal changes in live fuel moisture content
in Northwestern Patagonia area, and the model showed
greater goodness of fit and a smaller AIC value than the
traditional statistical model. The AIC, BIC, and prediction
probability difference of the mixed effect model were also
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FIGURE 6

Residual distributions of different models. The violin plots represent the probability densities of residual distributions of different models in
spring and autumn fire prevention periods. The box plots display the distributions of residuals, the middle line of the box represents the median
of residuals, the two ends of the box represent the upper and lower quartiles respectively, and the two ends of the upper and lower lines outside
the box represent the maximum and minimum residuals excluding outliers.

FIGURE 7

Spatial variation of forest fire probability in Heilongjiang Province, China. (A1) Forest fire probabilities predicted by the logistic regression (LR)
model in spring fire prevention period. (A2) Forest fire probabilities predicted by the mixed LR model in spring fire prevention period. (A3) Forest
fire probabilities predicted by the geographically weighted logistic regression (GWLR) model in spring fire prevention period. (B1) Forest fire
probabilities predicted by the LR model in autumn fire prevention period. (B2) Forest fire probabilities predicted by the mixed LR model in
autumn fire prevention period. (B3) Forest fire probabilities predicted by the GWLR model in autumn fire prevention period.
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smaller than those of the corresponding fixed effect model in
the study of forest fire in Qiannan Autonomous Prefecture,
Guizhou Province, China (Xiao et al., 2015). Similarly, In
the study of estimating the spatial pattern of forest fire
in Korea, it was found that the predictions using the
mixed-Poisson model for the validation quadrats showed a
remarkably lower RMSE and a higher correlation between
predictions and observed values than the estimates using
Poisson (Kwak et al., 2012). In the study of modeling
human-caused forest fire in north China, the GWLR model
performs better than the LR model in terms of model
prediction accuracy, model residual reduction, and spatial
parameter estimation by considering geospatial information of
explanatory variables (Guo et al., 2016b). The GWLR model
better described the relationship between wildfire drivers and
ignition probability than global LR model in Chinese tropical
forest ecosystems (Su et al., 2021). On the basis of these
findings, we made a comprehensive comparison among these
three models, and highlighted the effectiveness of the GWLR
model.

Driving factors of forest fire occurrence in Heilongjiang
Province have obvious spatial heterogeneity. The LR base model
assumes that all variables are spatially stationary, and establishes
a simple regression relationship between the probability of
forest fire occurrence and driving factors while ignoring the
complex interactions among the meteorological factors and
the spatial variations among the fire points. Therefore, the LR
model cannot reflect the spatial relationship among variables
(Boubeta et al., 2015). For the mixed LR model, we mainly
considered the effects of latitude and longitude differences in the
horizontal direction, as well as natural environment differences,
on the occurrence of forest fires. We added random effects to
different influence factors to improve the fitting and predicting
effects of the model (Liu et al., 2021). At the same time,
because the social economy, human activities, and forest fire
prevention policies of different administrative divisions varies,
the mixed LR model considering administrative division effects
can better meet the needs of practical applications. Although
some parameters become insignificant after adding random
effects (Table 3), the mixed LR model still highly improved
the performance of the LR model. The GWLR model fully
considers the influence of spatial location on the dependent
variables and estimates parameters for each coordinate point,
which has higher prediction accuracy (Koutsias et al., 2005;
Saeuddin et al., 2012).

Comparison of different models for
forest fire probability prediction

From the perspective of predicted probability, the
probability predicted by the LR base model ranges from
0.002 to 0.893, the probability of the mixed LR model ranges

from 0.001 to 0.986, and the probability of the GWLR model
is between 0.000 and 0.994, during the spring fire prevention
period. In the autumn fire prevention period, the ranges of fire
occurrence probability predicted by the 3 models are 0.007 to
0.926, 0.000 to 0.969, and 0.000 to 0.997, respectively (Table 5).
The 3 models show consistent performance rank regardless of
spring or autumn fire prevention period, i.e., LR model<mixed
LR model< GWLR model.

During the spring fire prevention period, the areas with
medium- and high-probability of forest fire predicted by the LR
model basically cover the whole Heilongjiang Province except
the southern part. The areas with medium-and high-probability
of forest fire predicted by the mixed LR and GWLR models
are similar, both concentrating in the western and eastern
parts of Heilongjiang Province (Figure 7). However, during
the autumn fire prevention period, the areas with medium-
and high-probability of forest fire predicted by the mixed
LR and GWLR models are concentrated in the northwestern
part of Heilongjiang Province, with sporadic areas of the
GWLR model scattered in the northern and southern regions
(Figure 7).

According to the National Forest Fire Risk Classification
of China (NFFRCC), the first-and second-level risk areas are
mainly distributed in northwest, east and south Heilongjiang
Province, while the third-level risk areas are distributed
in the southwest region (National Forestry and Grassland
Administration, 2016). Compared with the LR and mixed
LR models, the regions with high probability of forest
fire predicted by the GWLR model are all included in
the first-level fire risk areas in the NFFRCC map. In
addition, the GWLR model gave consistent predictions with
the actual fire data distribution, indicating that the GWLR
model has immense predictive ability. This research is
consistent with other studies that showed the best prediction
performance of the GWLR model (Wang et al., 2013;
Su et al., 2021).

For the accuracy of the prediction probability for
forest fire, the prediction accuracy of logistic regression
(Table 4) is only 77.25 and 81.76% for spring and autumn
fire prevention period, respectively, which are lower
than that of the mixed LR and GWLR models. Thus,
logistic regression analysis has poorer performance in
predicting forest fires in Heilongjiang Province. This
is consistent with the results of previous studies. For
example, the logistic regression has been found to be
less accurate with a prediction accuracy of 64.9% in
forest fire prediction of Heilongjiang Province (Chang
et al., 2013). The prediction accuracy of the LR model
ranged from 58.6 to 70.5%, whereas the prediction
accuracy of the GWLR model ranged from 65.2 to 79.9%
in modeling human-caused forest fire in north China
(Guo et al., 2016b).
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Driving factors of forest fire
occurrence in fire prevention period

The distributions of parameters (Figure 3) and its
t-values (Figure 4) show spatial and temporal variations in
Heilongjiang Province. Compared with other regions, the
spatial and temporal heterogeneities of the Daxing’anling
region in northwest Heilongjiang Province are relatively
strong. Different driving factors have different effects in
the same fire prevention period (Figure 3). In the spring
fire prevention period, the Daxing’anling region has small
spatial variations of precipitation and temperature, and
large spatial variations of wind speed and LAI; in other
regions, the spatial variations of temperature and leaf
area index are large, and the spatial variations of wind
speed and precipitation are small. In the autumn fire
prevention period, the spatial variation of each driving
factor in the Daxing’anling region is large, while the
spatial variations of factors in other regions are relatively
small.

The same driving factor has different effects during
different fire prevention periods (Figure 3). Wind speed has
positive effects on forest fire occurrence in the Daxing’anling
region whereas negative effects in other regions during
spring fire prevention period. But the opposite is true
during the autumn fire prevention period. This may be
due to the temperate continental monsoon climate in
Heilongjiang Province. Affected by low pressure in winter
and spring, less vapor accelerates the decline of the moisture
content of combustibles and increases the possibility of
forest fire. On the contrary, southeast monsoon will reduce
the probability of forest fire by bringing precipitation in
summer and autumn, because of the tropical cyclones. The
effect of surface temperature on fire occurrence varies little
in different seasons. This may be because Heilongjiang
Province is located in the middle and high latitudes of
the Northern Hemisphere, and the temperatures in both
spring and autumn are low, which has little impact on the
occurrence of forest fires. The influence of precipitation
on forest fire in autumn is greater than that in spring.
Although the dead combustibles increase in autumn,
more precipitation can increase the moisture content
of combustibles, thus reducing the possibility of fire
occurrence. Previous studies have shown that precipitation
affects the fuel moisture content, and high precipitation
contributes to the moisture of dead combustibles, thus
reducing the likelihood of fire ignition (Murthy et al.,
2019; Xiong et al., 2020; Su et al., 2021). During the two
fire seasons, LAI always shows a positive effect in the
Daxing’anling region, but has large spatial variations in
other regions of Heilongjiang Province. This may be due
to the fact that the Daxing’anling region is mainly covered
by deciduous needle-leaved forest, herbaceous species,

deciduous broadleaved forest and cultural vegetation,
which are the most important natural forest area of China
(Zhang et al., 2014). The leaf growth in this area is affected by
seasonal changes, resulting in a large change in LAI space in this
area.

The occurrence of forest fires is usually determined by
the local environmental variables. Heilongjiang Province
has a large span of longitude and latitude, and great
variations of its topography. Meanwhile, the climate
in Heilongjiang Province changes greatly in different
seasons because of monsoons. These variations make the
driving factors have diverse effects on fire occurrence in
different time periods and different spatial environments,
resulting in strong spatial and temporal heterogeneities
(Wu et al., 2014). The same phenomenon is also shown
in Australia (Williamson et al., 2016), where there are
strong geographic and seasonal patterns in fire weather.
Therefore, the mixed LR model and GWLR model that
can express spatial heterogeneity have shown better
applicability in regions with variable climate (Guo et al.,
2016b; Liu et al., 2021).

Limitations

We applied meteorological and vegetation factors to
predict forest fire occurrence in Heilongjiang Province.
However, human activities are also important factors in
triggering forest fires in many other regions. Therefore,
socio-economic variables should be taken into account
in these regions when predicting forest fires. We only
selected the data of the fire prevention period in 2019
in this study, aiming to evaluate different forest fire
prediction models, as well as different influencing factors,
in different fire prevention periods. In the context of
climate change, drastic changes of climate in different
years may affect the predictions of the models in this
study. In future research, including multiple regions and
long time periods should be carried out to expand the
application of the model.

Conclusion

In this study, the LR model, the mixed LR model,
and the GWLR model were developed for spring and
autumn fire prevention period in Heilongjiang Province
in northeast China, and the effects of different driving
factors on forest fire occurrence were explored. The
driving factors of forest fire occurrence show great spatial
heterogeneities in both spring and autumn forest fire
seasons. Compared with the LR model, both the mixed
LR model and the GWLR model can significantly improve
the prediction of forest fire occurrence. Among them,
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the GWLR model always produced the best predictions.
The GWLR models can provide more reliable forest fire
prediction and provide useful information for forest fire
monitoring and management.
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Appendix

APPENDIX TABLE 1 Fitting results of the mixed effect model.

Model no. Random parameters Fitting statistics

α β1 β2 β3 β4 AIC BIC −2 LogL

Spring fire prevention period 1 N 3778.65 3817.01 3766.65

2 N N 3740.93 3792.08 3724.93

3 N N 3716.84 3767.99 3700.84

4 N N 3716.85 3768.00 3700.85

5 N N 3764.63 3815.77 3748.63

6 N N N 3687.54 3757.87 3665.54

7 N N N 3708.10 3778.43 3686.10

8 N N N 3737.26 3807.59 3715.26

9 N N N 3665.85 3736.18 3643.85

10 N N N 3709.00 3779.33 3687.00

11 N N N 3707.89 3778.22 3685.89

Autumn fire prevention period 1 N 1607.133 1640.988 1595.133

2 N N 1567.819 1612.959 1551.819

3 N N 1502.459 1547.599 1486.459

4 N N 1594.027 1639.167 1578.027

5 N N 1605.069 1650.209 1589.069

6 N N N 1498.402 1560.47 1476.402

7 N N N 1566.866 1628.934 1544.866

8 N N N 1567.131 1629.199 1545.131

9 N N N 1497.645 1559.713 1475.645

10 N N N 1495.358 1557.426 1473.358

11 N N N 1590.458 1652.526 1568.458

Model parameters α β1 β2 β3 β4 for intercept, wind speed, monthly mean temperature, monthly precipitation, and leaf area index, respectively. N means the parameter
contains random effect.

APPENDIX TABLE 2 Spatial stationarity evaluation of parameter estimation for the geographically weighted logistic regression (GWLR) model.

fire protection
period

Model Statistics Intercept Wind speed Surface
temperature

Precipitation LAI

Spring LR model estimated coefficients 2.2934 −0.3077 −0.1048 −0.5346 −0.1162

standard error 0.121 0.042 0.0103 0.0486 0.0269

Estimated coefficients +
standard error

2.4144 −0.2657 −0.0945 −0.486 −0.0893

Estimated coefficients−
standard errors

2.1724 −0.3497 −0.1151 −0.5832 −0.1431

GWLR model Minimum −25.1341 −4.3679 −0.7269 −6.8299 −1.5848

Quartile 0.2433 −0.7590 −0.2347 −1.4508 −0.1915

Median 1.8378 −0.2659 −0.0919 −0.5572 0.0768

Quartile 3.2613 0.1949 0.0529 0.2056 0.3461

Maximum value 10.6489 9.7470 1.3319 1.9097 1.8944

Interquartile range 3.0181 0.9539 0.2876 1.6564 0.5376

Autumn LR model Estimated coefficients 1.4167 −0.6582 −0.1683 0.9133 −0.4773

Standard error 0.1762 0.0542 0.0117 0.0827 0.0422

Estimated coefficients +
Standard Error

1.5929 −0.604 −0.1566 0.996 −0.4351

(Continued)
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APPENDIX TABLE 2 (Continued)

fire protection
period

Model Statistics Intercept Wind speed Surface
temperature

Precipitation LAI

Estimated coefficients−
standard errors

1.2405 −0.7124 −0.1800 0.8306 −0.5195

GWLR model Minimum −5.4563 −2.3873 −0.3973 −4.3177 −0.7965

Quartile −1.4366 −0.7947 −0.2025 0.2402 −0.5060

Median −0.3684 −0.4901 −0.1135 0.7018 −0.2965

Quartile 0.4493 −0.2043 −0.0224 1.9994 −0.1168

Maximum value 3.9049 0.9039 0.1783 5.8349 1.1769

Interquartile range 1.8858 0.5904 0.1801 1.7593 0.3892
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