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Background: Vascular smooth muscle cells (VSMCs) phenotype switching

is very important during the pathogenesis and progression of vascular

diseases. However, it is not well understood how normal VSMCs maintain

the differentiated state. The large-conductance Ca2+-activated K+ (BKCa)

channels are widely expressed in VSMCs and regulate vascular tone.

Nevertheless, there is limited understanding of the role of the BKCa channel in

modulation of the VSMC phenotype.

Methods and results: We assessed BKCa channel expression levels in

normal and injured carotid arteries from rats of the balloon-injury model.

A strong decrease of BKCa-β1 was seen in the injured carotid arteries,

accompanied by a parallel decrease of the VSMC contractile markers.

BKCa-β1 in primary rat aortic VSMCs was decreased with the increase of

passage numbers and the stimulation of platelet-derived growth factor

(PDGF)-BB. Conversely, transforming growth factor β upregulated BKCa-

β1. Meanwhile, the BKCa-β1 level was positively associated with the

levels of VSMC contractile proteins. Intravenous injection of PDGF-BB

induced downregulation of BKCa-β1 expression in the carotid arteries.

Knockdown of BKCa-β1 favored VSMC dedifferentiation, characterized by

altered morphology, abnormal actin fiber organization, decreased contractile

proteins expression and reduced contractile ability. Furthermore, the resultant

VSMC dedifferentiated phenotype rendered increased proliferation, migration,

enhanced inflammatory factors levels, and matrix metalloproteinases activity.

Studies using primary cultured aortic VSMCs from human recapitulated

key findings. Finally, protein level of BKCa-β1 was reduced in human

atherosclerotic arteries.
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Conclusion: BKCa-β1 is important in the maintenance of the contractile

phenotype of VSMCs. As a novel endogenous defender that prevents

pathological VSMC phenotype switching, BKCa-β1 may serve as a potential

therapeutic target for treating vascular diseases including post-injury

restenosis and atherosclerosis.

KEYWORDS

vascular smooth muscle cells, phenotype switching, BKCa channel, atherosclerosis,
post-injury restenosis

Introduction

Vascular smooth muscle cells (VSMCs) retain plasticity of
the arterial wall. Meanwhile, VSMCs can undergo reversible
phenotype switching (1). Under physiological conditions,
the vessels-resident VSMCs are differentiated, expressing a
series of contractile proteins including smooth muscle myosin
heavy chain, α-smooth muscle actin (α-SMA), smooth muscle
22α (SM22α), and calponin. However, when exposed to
certain pathological factors, VSMCs can exhibit an adaptive
reaction and lose the contractile phenotype. This process is
called VSMC phenotype switching (2). The dedifferentiated
phenotype is characterized by reduced expression of the
VSMCs marker proteins. Concomitantly, dedifferentiated
VSMCs show high proliferation rate, migration ability,
enhanced synthesis of extracellular matrix and inflammatory
factors, while they lose the regulating capability of vascular
diameter and blood flow (3). Phenotypic modulation of
VSMCs is an early event and critical pathological process
of many cardiovascular diseases, including atherosclerosis
(3), hypertension (2), aneurysm (4), and post-angioplasty
restenosis (5). Thus, strategies blocking the VSMC phenotype
switching may prevent the progression of these diseases
(6–9). Various environmental stimuli, including mechanical
injury, reactive oxidative species, growth factors/cytokines,
and extracellular matrix instability, have been demonstrated
to influence VSMC behavior and induce phenotype switching
(2, 10, 11). Besides, it has been shown that transcriptional
and epigenetic regulators can induce VSMC phenotypic
transition (2). Nevertheless, how normal VSMCs maintain the
contractile phenotype and confer vascular homeostasis remains
largely unknown.

The differentiated VSMCs express a series of ion channels
necessary for their unique contractile properties. VSMCs
predominantly express large-conductance Ca2+-activated K+

(BKCa) channels, which dampen depolarization-dependent
activation of Ca2+ channels by hyperpolarizing membrane
potential. Therefore, BKCa channels have a critical role in
VSMC relaxation (12). In VSMCs, BKCa channel is a protein

complex composed of two subunits, the pore-forming α-
subunit (BKCa-α) and the regulatory β1-subunit (BKCa-β1)
(13). We previously showed that BKCa channel activation
exerts a beneficial effect in VSMC phenotypic transition
by counteracting harmful stimulus (14). Moreover, studies
have found that BKCa channel inhibition aggravates VSMC
calcification (15). During calcification, VSMCs dedifferentiate
to an osteochondrogenic phenotype. However, much more
subtle phenotypic changes will also occur in VSMCs. Indeed,
VSMC phenotype changes according to the local environmental
factors as well as the different stages of development. In
this study, we discovered that during the early stage of
disease development, BKCa-β1 negatively regulated VSMC
dedifferentiation and maintained VSMCs in a quiescent
contractile phenotype.

Materials and methods

Materials

An antibody against BKCa-α (ab99046) used for
immunohistochemical staining and western blot was purchased
from abcam (Cambridge, UK). An antibody against BKCa-
β1 (APC-036) used for immunohistochemical staining and
western blot was purchased from Alomone labs (Jerusalem,
Israel). Antibodies against α-SMA (ab5694), SM22α (ab10135),
and eIF5 (ab228874) used for western blot were purchased from
abcam (Cambridge, UK).

Animal experiments

All animal studies were approved by the Institutional
Animal Care and Use Committee and Ethics Committee of
Capital Medical University (Beijing, China) and were in strict
accordance with the recommendation in the Guide for the
Care and Use of Laboratory Animals of the National Institutes
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of Health. Healthy male Sprague-Dawley (SD) rats, aged 8–
10 weeks (150–180 g), were obtained from the Animal Center of
Capital Medical University and housed in an environment with
standard conditions of humidity and room temperature and a
light/dark cycle of 12/12 h.

Balloon-injured rat model

The balloon-injured rat model was established as previously
described (16). Briefly, male SD rats were anesthetized
by intraperitoneal injection of pentobarbital sodium
(40 mg/kg). A balloon catheter of 1.5-mm diameter (Medtronic,
Minneapolis, MN, USA) was then inserted into the left external
carotid artery lumen and advanced proximally to the common
carotid artery lumen. The balloon was inflated to expand the
carotid artery to 1.5 times its diameter and then gently pulled
back with the rotational movement to the bifurcation. This
pulling-back procedure was repeated twice. A similar operation
that was performed on right carotid arteries, but without injury,
served as a sham control. Two weeks later, the bilateral carotid
arteries were harvested.

Immunohistochemical staining

Tissues embedded in paraffin were cut into slices (7-µm
in thickness) and subjected to immunohistochemical staining.
Briefly, sections were incubated with corresponding antibodies
at 4◦C overnight and then HRP-labeled secondary antibodies
at room temperature for 1 h. The nuclei were counterstained
with hematoxylin.

Immunofluorescence staining

For F-actin staining, VSMCs were fixed with 4%
paraformaldehyde for 15 min and then permeabilized
with 0.25% Triton X-100 in PBS for 5 min. Next, VSMCs
were incubated with rhodamine phalloidin for 1 h at
room temperature.

Cell isolation and treatment

Primary rat VSMCs were isolated using the modified explant
method (17). The thoracic aortas were used for the isolation.
VSMCs were cultured in low-glucose Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum
(Gibco BRL, Grand Island, NY, USA) at 37◦C in a humidified
atmosphere containing 5% CO2. VSMCs passaged 3–6 were
used for the experiments. To evaluate the effects of platelet-
derived growth factor (PDGF)-BB or TGF-β, VSMCs at 80–90%
confluence were subjected to serum starvation for 24 h followed

by stimulation with the indicated concentration of PDGF-BB
(25 µg/L) and TGF-β (2.5 µg/L) for 48 h.

RNA interfering

Small interfering RNA- (siRNA-) targeting KCNMB1 was
designed and synthesized by OBiO (OBiO, China). Sequences
corresponding to the small interfering RNA (siRNA) against
KCNMB1 were sense, 5′-CCUUGGUUGAUGUGAAGAATT-
3′, and antisense, 5′-UUCUUCACAUCAACCAAGGTT-3′.
siRNA transfection (50 nM) was performed using the
Lipofectamine R©3000 Transfection Reagent (Invitrogen, CA,
USA), following the manufacturer’s instructions.

Migration assay

A wound-healing assay was used for the assessment of
VSMC migration. Briefly, VSMCs were seeded in a 6-cm culture
dish. Then the confluent cell monolayers were scratched with
a sterile 200 µL pipet tip. The cells were gently rinsed twice
with PBS to remove floating cells and incubated with standard
culture medium. The migration distance was monitored at 0, 6,
12, and 24 h of incubation. The longest distance of migration
from the wound edge was measured (average of five independent
microscope fields in each of the independent experiments).

Western blot

Rat carotid tissue and VSMC extracts that contained equal
amounts of total protein were separated by 12% SDS-PAGE gels
and subsequently transferred onto PVDF membrane (Millipore,
Billerica, MA, USA). The membranes were blocked with 5%
milk (in TBST) for 1 h, followed by incubation with the
corresponding primary antibodies at 4◦C overnight. Following
1 h of incubation with HRP-conjugated secondary antibodies,
the membranes were developed using an ECL reagent.

Quantitative real-time PCR

Total RNA was extracted from cultured VSMCs with
the TRIzol Reagent (Invitrogen, CA, USA). Equal amounts
(1000 ng) were subjected to reverse transcription into cDNA
using the ReverTra Ace R© qPCR RT kit (TOYOBO, Japan).
Quantitation of all gene transcripts was done by qPCR using
SYBR

R©

Green Realtime PCR Master Mix (TOYOBO, Japan)
and ABI Step One Plus (Applied Biosystems, USA). The primer
sequences used are as follows:

BKCa-α: Forward: 5′-AGCGCGGTTAGTGGAAGAAA-3′

Reverse: 5′- ACTCTGGCAAGATCGTGTGG-3′
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BKCa-β1: Forward: 5′-CTATGGGCCCCAAATCCTCC-3′

Reverse: 5′-GAGCTGCCAAGACAGAGAGG-3′

PDGF-B: Forward: 5′-TCCGCTCCTTTGATGACCTT-3′

Reverse: 5′-TCCGACTCGACTCCAGAATGT-3′

TGF-β: Forward: 5′-ATACGCCTGAGTGGCTGTCTTT-3′

Reverse: 5′-AAAGCCCTGTATTCCGTCTCCT-3′

MCP-1: Forward: 5′-CAATGAGTCGGCTGGAGAAC-3′

Reverse: 5′-AGTGCTTGAGGTGGTTGTGG-3′

IL-6: Forward: 5′-GCTCTGGTCTTCTGGAGTTCC-3′

Reverse: 5′-GAGTTGGATGGTCTTGGTCCT-3′

IL-1α: Forward: 5′-ATCAGCACCTCACAGCTTCC-3′

Reverse: 5′-TCTCCTCCCGATGAGTAGGC-3′

TNF-α: Forward: 5′-CCAGGTTCTCTTCAAGGGACA-3′

Reverse: 5′-GTACTTGGGCAGGTTGACCTC-3′

GAPDH: Forward: 5′-TGTGAACGGATTTGGCCGTA-3′

Reverse: 5′-TGAACTTGCCGTGGGTAGAG-3′.

Gelatin zymography

Vascular smooth muscle cells treated with BKCa-β1 siRNA
or scramble siRNA transfection were incubated in culture
medium for additional 48 h. After that, the medium supernatant
was separated by 10% SDS-PAGE gels containing 1 mg/ml
gelatin (Sigma-Aldrich, MO, USA). The gel was washed with
2.5% Triton X-100 twice and then incubated in zymography
buffer (50 mM Tris–HCl, 150 mM NaCl, 10 mM CaCl2, pH
7.5) for about 48 h. Following 6–8 h of incubation with
Coomassie brilliant blue R250, the gels were imaged using the
imaging instrument.

Collagen gel contraction assay

Vascular smooth muscle cells were digested using trypsin
and resuspended in culture medium at a density of 5 × 105

cells/mL. Then the cells were mixed with 10xPBS, 0.1 M NaOH
and type I collagen to prepare a collagen lattice. A total of 0.5 mL
of the mixture were added to a 24-well plate and incubated for
1.5 h in the cell incubator. After that, each well was added with
0.5 mL of culture medium and the culture plate was incubated
for another 24 h before taking pictures.

Human samples

All human tissue samples were obtained from patients
at the Chinese PLA General Hospital (Beijing, China). This
study was conducted following the principles outlined in the
Declaration of Helsinki and approved by the Medical Ethics
Committee of Chinese PLA General Hospital (S2021-406-
01). Informed consent was obtained from each participating
patient. Internal mammary arteries (IMA) were obtained

from patients undergoing coronary artery bypass surgery as
control samples, and atherosclerotic arteries were collected from
patients undergoing carotid endarterectomy (CEA).

Isolation of primary vascular smooth
muscle cells from human aortas

Primary cultures of aortic medial VSMCs were isolated
from the thoracic aortas of human who underwent aortic valve
replacement or aortic arch surgery using the modified explant
method. The aortic specimen was rinsed in PBS to remove blood
clots. After the adventitia with peripheral connective tissue was
removed, the vessel wall was cut longitudinally and the intima
was scraped gently. Then, the tunica media were cut into 1-
mm2 explants and inoculated in a 25-cm2 flask. A total of 4–6 h
later, culture medium was added carefully into the flask. The
flask kept stationary in the incubator for 10 days until the cells
grew around the explants. During this period, the culture media
were refreshed every 3 days. The purity of VSMCs was tested by
immunofluorescence staining for α-SMA and calponin. Isolated
VSMCs were maintained in Kaighn’s Modification of Ham’s F-12
Medium (ATCC R© 30-2004TM) and supplemented with 20% FBS
(Gibco BRL, Grand Island, NY, USA) and 10% smooth muscle
cell growth supplement (ScienCell).

Statistical analysis

All the data were expressed as the means ± SEM. Protein
band density was normalized to the corresponding control
group and then to the mean of the corresponding control.
Student’s t-test was used to analyze the differences between
two groups. For a pairwise comparison of three or more
groups, One-way ANOVA followed by the Student-Newman-
Keuls test was used. The Chi-square test was used in the
comparison of percentages between two groups. GraphPad
Prism 9.0 (GraphPad Software, Inc., San Diego, CA, USA) was
used for statistical analysis; P-value < 0.05 was considered
statistically significant.

Results

BKCa-β1 expression is decreased in the
carotid arteries of balloon-injured rats

To assess the involvement of BKCa-β1 in VSMC phenotype
switching, we established a rat balloon-injury model. H&E
staining showed that at 14 days post-injury, moderate to
severe intimal hyperplasia developed in the injured carotid
arteries (Figure 1A). No significant change was observed in
the mRNA or protein level of BKCa-α. However, the expression
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FIGURE 1

BKCa-β1 expression is reduced in the carotid arteries of rat balloon-injured model. Representative images of H&E (A) and immunohistochemical
staining of BKCa − α and BKca − β1 (B) in injured and sham-operated carotid arteries of rat balloon-injured model at 14 days post injury. Scale
bar = 100 µm. (C) Quantified mRNA levels of BKca − α and BKca − β1 analyzed by qRT-PCR. Western blot images (D) and quantification (E) for
indicated proteins. Eukaryotic initiation factor 5 (eIF5) was used as an internal control. Data are presented as means ± SEM (n = 4∼6 for each
group, ns, not significant, *P < 0.05, **P < 0.01 vs. sham).

of BKCa-β1 was downregulated, and the VSMC contractile
proteins were reduced in injured vessels compared to sham-
operated vessels (Figure 1). These results indicated that BKCa-
β1 downregulation was correlated with the changes of VSMC
contractile phenotype markers (α-SMA and SM22α).

BKCa-β1 expression is regulated in the
process of vascular smooth muscle
cells phenotype switching in vitro

We then explored the association of BKCa-β1 and the VSMC
phenotype. As the cell passage increased, cultured primary rat
VSMCs showed greatly reduced expression of differentiation

markers, indicating the transformation from differentiated
to dedifferentiated phenotype. In addition, compared with
early passage VSMCs (passage 1, P1), late-passage VSMCs
(passage 6, P6) showed markedly reduced expression of BKCa-β1
(Figures 2A,B).

We then examined the response of BKCa-β1 to vascular
injury-associated stimuli. Plenty of studies have shown that
PDGF-BB can stimulate proliferation and migration of VSMCs
and induce the inhibition of VSMC markers expression
(18, 19). Moreover, transforming growth factor β (TGF-β)
is an effective VSMC differentiation factor in vitro, which
transcriptionally regulates genes involved in proliferation and
growth (20, 21). Our data indicated that BKCa-β1 expression
was reduced in cultured VSMCs due to PDGF-BB stimulation
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FIGURE 2

BKCa-β1 expression is positively associated with VSMC differentiation markers in vitro. Western blot images (A) and quantification (B) of BKca − α,
BKca − β1, and VSMC differentiation markers expression in VSMCs of passage 1 and passage 6. Western blot images (C) and quantification (D) of
BKca − α, BKca − β1, and VSMC differentiation markers expression in VSMCs after PDGF-BB treatment (25 µg/L). Western blot images (E) and
quantification (F) of BKca − α, BKca − β1, and VSMC differentiation markers expression in VSMCs treated with TGF-β (2.5 µg/L). VSMCs were
subjected to serum-starvation for 24 h and then treated with the indicated stimulation for 48 h. Passages 3-5 of VSMCs were used in (C)
through (F). Eukaryotic initiation factor 5 (eIF5) was used as an internal control. Data are presented as means ± SEM (n = 5 for each group, ns,
not significant, *P < 0.05, **P < 0.01, and ***P < 0.001 vs. control).

(Figures 2C,D). Inversely, TGF-β stimulation induced an
opposite effect (Figures 2E,F). In addition, changes in BKCa-β1
expression occurred in parallel with VSMC trans-differentiation
states, as demonstrated by the changes in α-SMA and SM22α.
Altogether, these data showed that BKCa-β1 expression was
closely related to the changes of VSMC contractile phenotype
markers (α-SMA and SM22α).

Elevated platelet-derived growth
factor-BB mediated the
downregulation of BKCa-β1 expression
in vivo

We further explored the mechanism of the downregulation
of BKCa-β1 expression in vivo. It has been reported
that PDGF-BB and TGF-β both play important roles as
endogenous growth regulatory factors during progressive
intimal thickening after balloon angioplasty (22, 23).
As Figure 3A shows, the expression of PDGF-B and
TGF-β was both significantly increased after carotid
injury. It is noteworthy that the change of PDGF-
B is consistent with its effect on BKCa-β1 expression

in vitro. This result implied that PDGF-BB might be
particularly important in BKCa-β1 downregulation.
Consistently, BKCa-β1 expression was reduced in the
carotid arteries of mice injected with PDGF-BB via tail
vein (Figures 3B,C).

BKCa-β1 maintains the differentiated
phenotype of vascular smooth muscle
cells

To obtain direct evidence supporting the role of BKCa-β1
in VSMC phenotype switching, we used siRNA for the BKCa-β1
(siRNAKCNMB1). Morphologically, scramble siRNA-treated
VSMCs were spindle-like, while BKCa-β1-targeting siRNA-
treated VSMCs were polygonal (Figure 4A). Dedifferentiated
VSMCs show impaired actin filament formation (24). Phalloidin
staining showed that BKCa-β1 knockdown disintegrated
actin fibers into short and disorganized fibers, resulting
in polygonal-shaped VSMCs (Figures 4B,C). Besides, the
protein levels of α-SMA and SM22α decreased after siRNA
treatment (Figures 4D,E), indicating that BKCa-β1 was
required for differentiation markers expression. To assess
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FIGURE 3

Decreased BKca − β1 expression is mediated by elevated PDGF-BB in vivo. (A) Quantified mRNA levels of PDGF-B and TGF-β analyzed by
qRT-PCR in injured and sham-operated carotid arteries. Western blot images (B) and quantification (C) of BKca − α and BKca − β1 in the carotid
arteries of mice injected with saline or PDGF-BB via tail vein. Data are presented as means ± SEM (n = 6 for each group, ns, not significant,
**P < 0.01, ***P < 0.001, and ****P < 0.0001 vs. control).

the contractile function of the VSMCs, the collagen gel
contraction assay was performed. In accordance, VSMCs
with BKCa-β1 silencing exhibited reduced contractility
(Figures 4F,G). These data suggested that BKCa-β1 was
necessary for the maintenance of the VSMC differentiated
phenotype.

BKCa-β1 knockdown facilitates
dedifferentiated phenotype of vascular
smooth muscle cells

Dedifferentiated VSMCs display an enhanced proliferative

and migratory capacity. As shown in Figure 5A, BKCa-β1
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FIGURE 4

BKCa-β1 is essential for VSMCs to maintain a differentiated phenotype. (A) Representative micrographs of VSMCs treated with BKca − β1 siRNA or
scramble siRNA transfection. (B) Representative immunofluorescent images of F-actin of VSMCs stained with phalloidin (red). Nuclei were
stained with DAPI (blue). Scale bar = 25 µm. (C) The percentage of spindle-like or polygonal-like cells in each group. Western blot images (D)
and quantification (E) of BKca − β1, α-SMA, and SM22α. Representative images (F) and quantification (G) of the areas of collagen gel in each
group. The size of the collagen gel in each well was calculated compared to the total area of the well. Data are presented as means ± SEM
(n = 5∼6 for each group, ***P < 0.001 vs. scramble).
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FIGURE 5

BKCa-β1 knockdown induces proliferative, migratory, and synthetic phenotype of VSMCs. (A) Proliferation curves of VSMCs transfected with
BKca − β1 or scrambled siRNA. Representative images (B) and quantification (C) of migration assay. (D) Quantified mRNA levels of inflammatory
factors analyzed by qRT-PCR. Representative images (E) and quantification (F) of activities of MMP-9 and MMP-2 tested using gelatin
zymography. Data are presented as means ± SEM (n = 5∼6 for each group, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 vs.
scramble).

silencing VSMCs showed an increased capacity to proliferate.
Scratch-wound assays showed higher migration ability of
VSMCs with BKCa-β1 knockdown compared to control cells
(Figures 5B,C). Another hallmark of the dedifferentiated
VSMCs is the enhanced proinflammatory response and
greater proteolytic activity. As Figure 5D shows, the mRNA
levels of MCP-1, IL-6, IL-1α, and TNF-α were markedly
increased after BKCa-β1 siRNA treatment. In addition,
increased activity of matrix metalloproteinases (MMPs,
including MMP-9, and MMP-2) was observed using the
method of gelatin zymography (Figures 5E,F). Collectively, the
dedifferentiated phenotype secondary to BKCa-β1 knockdown
exhibited an enhanced proliferative, migratory and synthetic
response.

BKCa-β1 reduction correlates with
human vascular smooth muscle cell
dedifferentiation and atherosclerosis

To verify the role of BKCa-β1 in the VSMC identity in
human, we isolated and cultured primary aortic VSMCs from
patients who underwent aortic valve replacement or aortic

arch surgery (Supplementary Figure 1). As the results showed,
PDGF-BB markedly decreased, whereas TGF-β stimulation
significantly increased BKCa-β1 expression, which paralleled the
VSMC trans-differentiation state (Figures 6A–D). We further
collected atherosclerotic tissue samples from human. Clinical
information of human subjects recruited for this study is
shown in Table 1. Notably, protein level of BKCa-β1 was
significantly reduced in the arteries of patients who underwent
CEA compared with control IMA used for coronary artery
bypass graft surgery (Figures 6E,F). Together, these results
indicated that reduced BKCa-β1 expression was correlated with
VSMC dedifferentiation in human.

Discussion

Differentiated VSMCs share definite contractile
characteristics, whereas dedifferentiated VSMCs can show
different functional states or phenotypes. According
to the functional characteristics, these VSMCs can be
osteochondrogenic, proliferative, migratory, synthetic, and
inflammatory (2). Although not depicted, there may be
distinct modulation for VSMC phenotypes with changing
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FIGURE 6

Decreased BKca − β1 expression is correlated with VSMC dedifferentiation and atherosclerosis in human. Western blot images (A) and
quantification (B) of BKca − α and BKca − β1 expression in human primary aortic VSMCs after PDGF-BB treatment (25 µg/L). Western blot images
(C) and quantification (D) of BKca − α and BKca − β1 expression in human primary aortic VSMCs treated with TGF-β (2.5 µg/L). VSMCs were
subjected to serum-starvation for 24 h and then treated with the indicated stimulation for 48 h. Passages 3–5 of VSMCs were used.
(E) Representative western blot images of the protein levels of BKca − α and BKca − β1 in lysates of human carotid endarterectomy artery (CEA)
and control internal mammary arteries (IMA). (F) Quantification was performed by calculating the ratio between the levels of BKca − β1 and
BKca − α. Eukaryotic initiation factor 5 (eIF5) was used as an internal control. Data are presented as means ± SEM (n = 3∼5 for each group, ns,
not significant, *P < 0.05, **P < 0.01 vs. control).

environmental cues. In the early stages of vasculopathy,
VSMCs proliferate rapidly and show enhanced migratory
capacity. As the disease progresses, VSMCs synthesize a large
number of hazardous substances including extracellular
matrix protein, inflammatory factors and MMPs. It is
generally believed that BKCa channels play a central role
in controlling smooth muscle cell contraction. Recent studies
have indicated that BKCa channel activation ameliorates VSMCs
calcification, functionally related to the α-subunit (15). It
is worth noting that during calcification, VSMCs transform
into osteoblast/chondrocyte-like cells. However, the possible
involvement of the BKCa channel in the VSMC phenotype
switching toward other pathological phenotypes has not
yet been explored.

Restenosis often occurs after by-pass surgery, angioplasty
interventions and vascular injury, during which VSMCs are
characterized by pathological proliferation and migration (25).
During restenosis, VSMCs can undergo a transient modification
of their phenotype, which is originally prepared to repair the
vascular injury. The rat model of vascular injury is often used
to describe the initial VSMC phenotypic modulation associated
with neointimal hyperplasia and can closely mimic restenosis
in humans. With the use of the balloon catheter injury model,
it has been demonstrated that neointimal formation after
angioplasty is associated with downregulated BKCa expression
(26). During this process, the mature contractile VSMCs
transform into proliferating neointimal VSMCs. Herein, we
further proved that the decreased expression of BKCa-β1 was
earlier and more obvious (Figure 1). At the same time,
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TABLE 1 Clinical characteristics of the patients.

Sample characteristics IMA (N = 5) CEA (N = 5)

Gender (male) 4 (80) 5 (100)

Age 69.60± 3.203 66.80± 4.042

History of hypertension 3 (60) 5 (100)

History of diabetes 2 (40) 1 (20)

History of smoking 3 (60) 3 (60)

History of drinking 1 (20) 2 (40)

Glucose, mmol/L 6.394± 0.8446 7.920± 1.883

TC, mmol/L 3.556± 0.2765 4.720± 0.4893

TG, mmol/L 1.558± 0.1492 1.340± 0.3140

HDL, mmol/L 1.010± 0.1220 1.100± 0.1581

LDL, mmol/L 1.894± 0.2640 2.880± 0.3277*

Scr, µmol/L 85.72± 11.38 80.86± 6.464

BUN, mmol/L 6.452± 0.6659 5.460± 0.8773

IMA, internal mammary artery; CEA, arteries undergoing carotid endarterectomy; TC,
total cholesterol; TG, triglyceride; HDL, high density lipoprotein; LDL, low density
lipoprotein; Scr, serum creatinine; BUN, blood urea nitrogen. *P < 0.05.

reduced expression of VSMCs contractile proteins was observed.
During neointima formation, complex interactions between
growth-stimulating molecules can promote the proliferation
and migration of VSMCs (27). Therefore, reduced BKCa-β1
expression in the neointima might be mediated by many
mitotic factors. As reported, TGF-β plays different roles
in vitro and in vivo. In vitro, TGF-β can promote SMCs to
transform into contractile phenotype and inhibit proliferation
(24). Nevertheless, in vivo, TGF-β can promote the formation
of neointima and aggravate the restenosis of blood vessels.
Besides, purified, recombinant TGF-β stimulated neointimal,
but not medial, SMC proliferation in vivo (22). This suggests that
functional differences between neointimal and medial SMCs
may extend to the level of growth control. In addition, TGF-
β can stimulate or inhibit VSMC proliferation depending on
cell density (28–32). All these discrepancies above suggest that
the phenotype and biological behavior of SMCs are affected
by the surrounding microenvironment and there are complex
regulations in the body. Anyhow, our results indicated that
BKCa-β1 is consistently and positively associated with the
contractile phenotype of VSMCs in vitro and in vivo.

Numerous studies have confirmed that PDGF-BB can
significantly promote the proliferation and migration of
VSMCs after arterial injury (18, 33). In vitro, PDGF-BB
stimulation significantly reduced the expression of SM α-
actin, SM MHC, and SM22α in the cultured VSMCs (34–
37). Our research also proves this (Figures 2C,D). Research
has demonstrated that PDGF-BB suppresses VSMC contractile
genes expression through the ERK1/2-MAPK pathway, which
leads to the dissociation and nucleation of myocardin and
SRF. Consistently, previous report has shown that BKCa-β1
expression was also driven by myocardin and SRF (38). Thus,
we speculated that the ERK1/2-MAPK pathway would also

mediate the downregulation of BKCa-β1 expression. Whether
other mechanisms are involved needs further exploration.

Decreased expression or increased degradation of BKCa-
β1 has been related to increased vascular tension and
hypertension (39). BKCa-β1 expression is decreased in VSMCs
from hypertensive (39, 40), aging (41), diabetic (42), and
hypoxic rodent models (43). It has also been shown that
vascular BKCa channel function is impaired in Type 1 diabetic
mice and Type 2 diabetic patients, mainly due to the marked
decrease of BKCa-β1 (44, 45). As direct causal evidence, BKCa-
β1 deletion in mice leads to increased arterial tension and
elevated blood pressure (46, 47). In high-fat-diet mice, BKCa-
β1 deficiency exacerbates vascular remodeling and fibrosis (48).
Most importantly, loss-of-function mutations in the KCNMB1
lead to hypertension and renal diseases in humans (49).
Inversely, a gain-of-function mutation in the KCNMB1 (E65K)
is associated with low incidence of diastolic hypertension (50–
52). All of the above findings suggest that decreased BKCa-β1
expression can promote the occurrence and development of
vascular diseases. To date, there are no reports on the role of
BKCa-β1 in the modulation of the VSMC phenotype. Herein,
for the first time, we discovered that BKCa-β1 was significantly
correlated with the phenotype switching of VSMCs. In addition,
we first provided direct evidence that BKCa-β1 knockdown can
drive VSMC dedifferentiation. More importantly, we confirmed
that decreased BKCa-β1 expression was closely related to the
dedifferentiation of VSMCs and atherosclerosis in human. Yet,
the exact mechanisms underlying BKCa-β1 deficiency-induced
phenotype switching remain to be studied.

BKCa channel is composed of BKCa-α and BKCa-β. In
the vascular system, BKCa-β1, encoded by KCNMB1, is
the major subtype in VSMCs. BKCa-α forms a functional
structure and displays the essential properties of native BKCa

channels: voltage and Ca2+ sensitivity, K+ selectivity and
large conductance (53). As for BKCa-β1, it confers the BKCa

channel with higher Ca2+ and voltage sensitivity, making this
channel more efficient in VSMC functions (54). Moreover,
BKCa-β1 regulates BKCa-α expression on the membrane via
regulating endocytic trafficking signaling (55). Our previous
studies identified the mechanosensitivity of the STREX-lacking
BKCa channel in the colonic smooth muscle (56) and further
verified that BKCa-β1 is involved in the regulation (13).
Studies have revealed that BKCa channel activity is significantly
affected by the expression of BKCa-β1, and changes in cellular
function impaired by BKCa-β1 seem to be more significant
than the functional differences among variations in BKCa-
α. In accordance with this, many hormones and curative
medicines are found to enhance the BKCa channel activity by
acting on or interacting with BKCa-β1, and BKCa-β1 targeted
compounds prove to be more favorable for VSMCs disorders
where its expression is restricted (57). Notably, our present
study showed that BKCa-β1 deficiency is specifically involved
in the dedifferentiation of VSMCs. In addition, downregulation
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of BKCa-β1 was characteristic for proliferative and migratory
phenotypes of VSMCs.

Taken together, this study demonstrated that BKCa-β1 is
an important regulator of VSMC identity by preventing its
phenotype switching. These findings reveal a self-protective
mechanism of VSMCs against harmful environmental stimuli
and support a protective role of BKCa channel activation in
various vascular diseases in humans. Targeting BKCa-β1 to
precisely modulate BKCa activity may provide novel therapeutic
strategy for post-injury restenosis and atherosclerosis.
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