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With the development of high-throughput sequencing technology, the scale of

single-cell RNA sequencing (scRNA-seq) data has surged. Its data are typically

high-dimensional, with high dropout noise and high sparsity. Therefore, gene

imputation and cell clustering analysis of scRNA-seq data is increasingly

important. Statistical or traditional machine learning methods are inefficient,

and improved accuracy is needed. Themethods based on deep learning cannot

directly process non-Euclidean spatial data, such as cell diagrams. In this study,

we developed scGAEGAT, a multi-modal model with graph autoencoders and

graph attention networks for scRNA-seq analysis based on graph neural

networks. Cosine similarity, median L1 distance, and root-mean-squared

error were used to measure the gene imputation performance of different

methods for comparison with scGAEGAT. Furthermore, adjusted mutual

information, normalized mutual information, completeness score, and

Silhouette coefficient score were used to measure the cell clustering

performance of different methods for comparison with scGAEGAT.

Experimental results demonstrated promising performance of the scGAEGAT

model in gene imputation and cell clustering prediction on four scRNA-seq data

sets with gold-standard cell labels.
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Introduction

In recent years, use of single-cell RNA sequencing technology (scRNA-seq) in

research has become increasingly popular. scRNA-seq can be used to assess gene

expression of cells at the single-cell level and sequence genes from uncommon or rare

cells. The sequencing information allows identification of unknown cell types based on

specific gene expression, which is a significant advantage in brain cell differentiation and

embryonic cell development research. In addition, scRNA-seq data plays an important

role in guiding the diagnosis and treatment of disease (Potter, 2018). With the

development of high-throughput sequencing technology, the scale of scRNA-seq data
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has surged; it is typically high-dimensional, high noise, high

sparsity data. Therefore, analyzing scRNA-seq data has become

an important research direction in bioinformatics (Abdelaal

et al., 2019).

A remarkable feature of scRNA-seq data is its many zero

values, resulting in high data sparsity. Some of the zero values in

scRNA-seq data reflect a true lack of gene expression, but other

zero value genes are mistakenly quantified as not expressed due

to transcriptome deletion or low expression, which results in a

large number of zero values, or dropout events (Risso et al., 2018;

Xu et al., 2020a). In recent years, many methods have emerged

for imputation of scRNA-seq data, such asMagic (Van Dijk et al.,

2018), Saver (Huang et al., 2018), scImpute (Li and Li, 2018), and

others. These methods correct the inaccurate zero read count by

borrowing the information from similar genes or cells and

restoring the gene expression data in the scRNA-seq output.

Magic uses similar cells and gene information to impute missing

values based on the Markov transfer matrix (Van Dijk et al.,

2018).

In contrast, Saver uses the relationship between genes to infer

the gene expression after denoising by using the Bayesianmethod

(Huang et al., 2018). Magic and Saver can restore the expression

level of each gene in each cell, including non-zero values. The

scImpute method computes the dropout probability of each gene

in each cell by fitting the mixed model and then estimates the

dropout value in cells by comparing with information on the

same gene obtained from similar cells (Li and Li, 2018). However,

Magic and Saver have failed to learn the nonlinear relationship

and counting structure in scRNA-seq data. With the

development of deep learning, imputation methods-based

neural networks have been proposed, including a deep count

autoencoder (DCA) (Eraslan et al., 2019), DeepImpute

(Arisdakessian et al., 2019), and Saver-X (Wang et al., 2019).

DCA proposes a deep count autoencoder for single-cell RNA-seq

denoising, which uses a negative binomial noise model with or

without zero-inflation to account for the count distribution,

overdispersion, and sparsity of the results, and allows

nonlinear gene-gene dependencies to be captured (Eraslan

et al., 2019). DeepImpute uses the divide-and-conquer

approach to impute groups of target genes using other genes

that are strongly associated with the target genes (Arisdakessian

et al., 2019). Saver-X extracts the relationship between

transferable genes by combining deep autoencoders with a

Bayesian model to impute the scRNA-seq data set (Wang

et al., 2019). However, these methods cannot directly deal

with non-Euclidean spatial data, such as cell maps.

An important phase in the analysis of scRNA-seq data is cell

clustering. Cell clustering classifies cells into different groups

according to the cell-cell distance matrix, so cells of highest

similarity can be clustered into groups sorted to the greatest

extent possible. Clustering aims to explore or identify cell types or

sub-types and reveal complex structure and potential functions

of various tissues (Peng et al., 2020). Cell clustering is also the

premise of scRNA-seq downstream analysis. Some classical

clustering methods, such as spectral clustering (Ntranos et al.,

2016), double clustering (Shi and Huang, 2017), sparse subspace

clustering (Zhuang et al., 2021), and some other hybrid clustering

models (Sun et al., 2018), show good clustering performance

when dealing with small-scale single-cell data sets. However, with

the improvement of sequencing technology, the scale of single-

cell sequencing data has expanded in recent years. These classical

clustering methods are inefficient in analysis of large-scale data,

and many clustering methods cannot accurately manage

complex single-cell data. Many scholars have turned to the

design of supervised and unsupervised clustering techniques

based on deep learning for scRNA-seq. Li et al. (2020)

proposed a deep embedding algorithm based on autoencoders

for clustering scRNA-seq data with a self-training target

distribution that can also denoise and potentially remove

batch effects. Chen et al. (2020)presented an end-to-end

supervised clustering and cell annotation framework,

scAnCluster, built upon their previous unsupervised clustering

work. Tian et al. (2019) created the scDeepCluster method, which

uses a nonlinear approach to combine DCA modeling and the

Deep Embedding algorithm for Single-Cell Clustering (DESC).

The method seeks to improve clustering performance while

reducing dimensions directly. The scDeepCluster outperforms

state-of-the-art approaches on a variety of clustering efficiency

metrics. Grønbech et al. (2020) introduced a single variational

autoencoder (scVAE) model, which is used to cluster cells. Since

scVAE uses raw count data as input, many traditional

preprocessing steps are not required. The scVAE can

accurately predict each cell’s expected and implicit gene

expression and is flexible in use of the known scRNA-seq

count distribution (such as the Poisson distribution or

Negative Binomial distribution) as its model hypothesis.

This article introduces a graph neural networks framework

based on multi-modal graph autoencoders (GAEs) and graph

attention (GAT) networks (scGAEGAT) to model heterogeneous

cell-cell relationships and their underlying complex gene

expression patterns from scRNA-seq data. The scGAEGAT

model performs gene imputation and cell clustering, uses an

encoder-decoder deep learning framework for scRNA-seq

analysis, and provides a global perspective for exploring cell

relationships by capturing the associations between cells across

the entire cell population.

Materials and methods

scGAEGAT model

The overall structure of the scGAEGAT model is shown in

Figure 1. scGAEGAT is a graph neural network that integrates

GAEs and GAT networks. Compared with the Magic (Van Dijk

et al., 2018) and DCA (Eraslan et al., 2019) methods, scGAEGAT
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contains the GAT mechanism, which can allocate different

weights to different cells through the coefficient of GAT. In

the iteration process, scGAEGAT comprises four powerful

autoencoders: a feature autoencoder for gene expression

regulation, a graph autoencoder for constructing cell-cell

relationships, a cluster autoencoder for identifying cell type,

and an imputation autoencoder for recovery of the gene

expression matrix. scGAEGAT obtains the topological

information between genes to express the cell-cell relationship

through low dimensional embedding of multiple autoencoder

structure training feature vectors. It plays a significant role in

aggregating cell types, inferring cell arrangement according to

trajectory topology, and imputing missing information to

improve the correlation between genes.

The structure of the feature autoencoder is shown in

Figure 2A; it takes the gene expression matrix, composed of

the first 2000 genes obtained after removing the low-expression

cells and genes, and sorts them according to the standard

deviation as input. The feature autoencoder regulates the

regulatory signals between genes through the left-truncated

mixed Gaussian (LTMG) model. The purpose of using the

LTMG model (Wan et al., 2019; Xie et al., 2020) as a

regularizer is to carry out processing according to the

regulation state of each gene through the loss function. The

encoder size of the feature autoencoder is 512 × 128, and the size

of the decoder is 128 × 512. By reducing the loss function, the

reconstructed gene expression matrix is as similar as possible to

the raw gene expression matrix to achieve the training feature of

the autoencoder. The K-Nearest Neighbor (KNN) graph

constructs a cell graph through the learned embedding, in

which nodes represent cells and edges represent the

relationship between cells (Bendall et al., 2014; Wolf et al.,

2019). Then, by removing the noisy edges in the cell graph,

the adaptive number of neighbor nodes is selected for the KNN

graph to prune the cell graph.

The structure of the GAE is shown in Figure 2B, which takes the

trimmed cell diagram as input. The encoder is composed of two

GAT convolution layers. By adding a GAT mechanism, different

weights are added to other nodes to learn the graph embedding of

nodes. In the encoder, each node of the cell graph gathers the

FIGURE 1
Structure of the scGAEGAT model. The model uses the pretreatment gene expression matrix as input to the feature autoencoder. The feature
autoencoder builds and prunes the cell graph through learned embedding. The graph autoencoder adds the graph attentionmechanism. It takes the
constructed cell graph as input by adding different weights to different nodes, which can better capture cell relationships and achieve cell-type
clustering. Each type of cell has a separate cluster autoencoder to reconstruct the gene expression value of the cell. The reconstructed gene
expression value is used as the new input for iteration until convergence.
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information of its neighbor nodes to understand the low-

dimensional embedding of the pruned cell graph. The decoder

regenerates the cell graph through the sigmoid activation function

and continuously optimizes the model by minimizing cross-entropy

loss. Then the k-means method is used to cluster cells according to

the learned graph embedding and the Louvain algorithm is used to

determine the number of cell clusters (Wang et al., 2021).

The structure of the cluster autoencoder is shown in Figure 2C,

with the reconstructed gene expression matrix generated by the

feature autoencoder as input. The expression matrix in each cell

cluster is reconstructed by the cluster autoencoder. The cluster

autoencoder processes different cell types according to the cell

types learned by the GAE. Each cell type has a single autoencoder

for separate training. There is continuous iteration through the

feature autoencoder, GAE, and cluster autoencoder; when the

clustering result does not change, the iteration stops, and the

cell clustering result is the final cell cluster prediction result.

When the iteration stops, the imputation autoencoder takes

the pretreated gene expression matrix as the input and is trained

by regularization of the inferred cell graph and cell type. The

regularization matrix is generated by the edges of the cell graph

learned in the iteration process and via recognized cell types.

Finally, the reconstructed gene expression value output is the

final imputation result.

Data preprocessing and normalization

The scGAEGAT model takes the gene expression matrix of

scRNA-seq data as input. Because there is a high dropout rate in

scRNA-seq data, it is necessary to filter and control the quality

of scRNA-seq data first, then the genes are sorted according to

the standard deviation, and finally, the first 2,000 genes are

extracted for research. All data are normalized by log-

transformation. After preprocessing, the LTMG model (Wan

et al., 2019) is used to accurately infer the modality and

distribution of individual gene expression profiles in scRNA-

seq data, modeling the dropout and low expressions as left-

censored data caused by a limited experimental resolution. The

LTMG model is adopted to the top 2,000 variable genes to

quantify gene regulatory signals encoded among diverse cell

states in scRNA-seq data. This model was built based on the

kinetic relationships between the transcriptional regulatory

inputs and mRNA metabolism and abundance, which can

infer the expression of multi-modalities across single cells.

The captured signals have a better signal-to-noise ratio to be

used as a high-order restraint to regularize the feature

autoencoder. For N cells, the normalized expression values

of gene X are denoted as X � x1, x2,/, xN{ }, supposing

xj ∈ X adhere to a mixture of k Gaussian distributions,

FIGURE 2
Architecture of the scGAEGAT model. (A) Structure of the feature autoencoder. (B) Structure of the graph autoencoder. (C) Structure of the
cluster autoencoder.
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corresponding to k possible gene transcriptional regulatory

signals (TRS). The density function of gene X is:

ρ X; θ( ) � ∏N

j�1ρ xj; θ( ) � ∏N

j�1∑k

i�1αiρ xj; θi( )
� ∏N

j�1∑k

i�1αi
1����
2πσ i

√ e
− xj−μi( )2

2σ2
i � L θ;X( ) (1)

where αi is the mixing probability, μi is the average value, σ i is the

standard deviation of the ith Gaussian distribution,N is the total

number of observations, and θ can be obtained by EM algorithm

of k value to model the errors at zero and the low expression

values. With the left truncation assumption, the gene expression

profile is split into M, which is a truly measured expression of

values, and N − M represents left-censored gene expressions for

N conditions. The parameter θmaximizes the likelihood function

and can be estimated by an expectation-maximization algorithm.

The number of Gaussian components is selected by the Bayesian

Information Criterion; the original gene expression values are

then labeled as the most likely distribution under each cell. The

probability that xj belongs to distribution i is formulated by:

p xj ∈ TRS i/K, θp( )ϵ αi����
2πσ2j

√ e

− xj−μi( )2
2σ2

i (2)

where xj is labeled by TRS i if

p(xj ∈ TRS iK, θ*) � max
i�1....k

(p(xj ∈ TRS iK, θ*)). Thus, the

discrete values (1,2, . . . ,K) for each gene are generated.

Feature autoencoder

The feature autoencoder is composed of an encoder and

decoder process. It takes the gene expression matrix as input, and

LTMG performs regularization processing to learn the

embedding expression of scRNA-seq data. The encoder

constructs the embedding of low dimension X̂ (reconstructed

gene expression matrix) through the input gene expression

matrix X (normalized gene expression matrix), then the

decoder is reconstructed according to embedding, so the

encoder is a process of dimension reduction. The feature

autoencoder is trained by minimizing the loss function of the

difference between the input gene expression matrix and the

output matrix so that the output matrix is as similar as possible to

the input matrix. The mean square error (MSE) is defined as:

∑ X − X̂( )2 (3)

Graph autoencoder

The GAE adopts a deep learning model based on GAT, which

can process input as a sparse matrix. Due to the addition of a

GAT convolution layer, the gathering of cell information is

improved. The calculation process of graph convolutional

layers is as follows:

H k+1( ) � f H k( ),A( ) � σ ~AH k( )W k( )( ) (4)

where ~A � D−1/2AD1/2, A and D are the adjacency matrix and

degree matrix of the cell-cell connection graph, respectively, k is

the number of layers of graph convolution, W is the learning

weight, σ is the activation function, and H(k) is the input matrix

of the convolution of the kth layer graph. The GAE is composed

of an encoder and a decoder. We added two layers of graph

convolution to the encoder, and the output of the encoder is:

H 2( ) � ReLU ~AReLU ~AX̂W1( )W2( ) (5)

where W1 is the learning weight of the first layer and W2 is the

learning weight of the second layer. The first and second-level

output dimensions are set to 32 and 16, respectively, and the

learning rate is set to 0.001. To better learn the cell information,

we introduced the attention model, which adds attention to the

neighbor nodes by increasing the weight, to enhance GAE

learning of the embedding of the cell graph. The formula for

calculation of the attention coefficient is:

eij � a hi

→
, hj

→( ) � Whi
→ ·Whj

→
(6)

where hi
→

and hj
→

represent the characteristics of node i and node j,

respectively, the attention coefficient of node i to node j, andW is

the shared weight matrix. It can change the features of nodes into

higher-level features so that the pruned cell map obtains better

expression ability. Adding multiple independent attention

coefficients can extend further to the multi-head attention

mechanism. By calculating the average value from the

adaptive attention coefficient, more stable learning of the

embedding and topology information of the cell graph can

occur. The formula of the multi-head attention mechanism is:

�h′ � σ
1
K
∑K
k�1

∑
KNi

akijW
khi
→⎛⎝ ⎞⎠ (7)

To compare the attention coefficients of different nodes, we

added the softmax function for standardization. The decoder of

the GAE is defined as:

Â � sigmoid ZZT( ) (8)

where Â is the reconstructed adjacency matrix of A, and Z is the

embedding learned by the encoder. The function of the graph

self-encoder is to minimize the difference between the input

matrix A and the output matrix Â, which can be achieved by

minimizing the cross entropy L:

L A,Â( )�− 1
N ×N

∑N

i�1∑N

j�1 aijplog âij( )+ 1−aij( )p log 1− âij( )( )
(9)
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where aij and âij are the elements of row i and column j of matrix

A and row i and column j of reconstruction matrix Â,

respectively, and N is the number of nodes in the cell

diagram. Since the number of cells in the cell diagram is N,

the total number of elements in the matrix is N × N.

Iterative process

The purpose of iteration is to build a better cell map and

gradually converge through continuous iteration so that the cell

map has more biological significance. The iterative process is

defined as follows:

~A � μL0 + 1 − μ( ) Aij∑j Aij
(10)

where L0 is the adjacency matrix of the pruned cell map and μ is

the parameter controlling the iteration speed. ~A is the

symmetrically normalized adjacency matrix, and Aij represents

elements of row i and column j of the adjacency matrix A. The

iteration stops depending on two criteria: 1) whether the

adjacency matrix converges and 2) whether the types of cells

are as similar as possible as determined by similarity

measurement. During the iteration, the parameter μ is set to

0.5. The clustering result obtained by the final iteration is the final

clustering result.

Imputation autoencoder

After the iteration stops, the imputation autoencoder

imputes and denoises the raw gene expression matrix

according to the relationship between cells and the cell types.

The imputation autoencoder uses cell graph, type, and

L1 regularizer (Wang et al., 2021). The regularizer of the cell

graph is defined as:

γ1 ∑ A · X − X̂( )2( ) (11)

whereA is the adjacency matrix obtained in the last iteration, and

represents the product. The punishment of the edge of the cell

graph in training is Eq. 11:

γ2 ∑ B · X − X̂( )2( )
Bij � 1 i and j belong to the same cell type

0 else
{ (12)

where B is the relationship matrix of cells. When i and j are the

same cell type, the value of Bij is 1, otherwise, the value is 0; γ1, γ2
represent the intensity of regularization. The L1 regularizer is

defined as:

β∑ w| | (13)

where w is the weight, and ∑ |w| represents the sum of the

absolute values of each element. By reducing the w, the

generalization ability of the imputation autoencoder is

improved and sparsity is increased. βϵ[0, 1] is the parameter

that controls the intensity of the L1 regularizer. The loss function

of the imputation autoencoder is defined as:

Loss � 1 − α( )∑ X − X̂( )2 + α∑ X − X̂( )2 pTRS( ) + β∑ w| |

+ γ1 ∑ A · X − X̂( )2( ) + γ2 ∑ B · X − X̂( )2( )
(14)

Evaluation metrics

To verify the imputation performance of the model, we

flipped the random 10% non-zero data to zero. The gene

imputation ability of the scGAEGAT model is verified by

calculating the three evaluation indicators: median

L1 distance, cosine similarity, and root mean squared error

(RMSE). In Eqs 14–16, x represents the row vector of the

original data and y represents the row vector after data

imputation.

L1 distance represents the absolute deviation between the

original and imputed data. The lower the value means, the higher

the similarity, and the better the obtainable imputation effect.

L1 distance is greater than zero:

L1 distance � x − y
∣∣∣∣ ∣∣∣∣ (15)

Cosine similarity refers to the product between the original

and imputed data. The value range of cosine similarity is [0, 1];

the higher the value, the better the imputation performance.

Cosine similarity x, y( ) � xyT

x‖ ‖ y
���� ���� (16)

RMSE represents the square root of the quadratic mean of

differences between the original data and the imputed data; the

smaller the value, the better the effect.

RMSE x, y( ) � �����������∑N
i�1 xi − yi( )2

N

√
(17)

The following evaluation indicators were used to estimate the

performance of cell clustering: adjusted rand index (ARI),

adjusted mutual information (AMI), normalized mutual

information (NMI), completeness score, and silhouette

coefficient score. The other cell clustering metrics have been

published previously (Wang et al., 2021). We used the Louvain

clustering method with the default parameters. The higher the

values of the following metrics, the better the clustering

performance.
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The similarity between the current clustering results and the

previously assigned cell pairs is expressed by calculating the ARI:

ARI � RI − E RI[ ]
max RI( ) − E RI[ ] (18)

The unadjusted rand index (RI) is defined as:

RI � a + b
C2

n

(19)

where a represents the number of correctly labeled cells in the

same set, b represents the number of correctly labeled cells in

different sets, andC2
n represents the total number of possible pairs.

AMI is similar to ARI and uses information entropy. A

higher AMI indicates a higher similarity.

AMI x, y( ) � MI x, y( ) − E MI x, y( )( )
Avg H x, y( )( ) − E MI x, y( )( ) (20)

where x and y represent the inferred and standard clustering

results, respectively. H represents the number of uncertain

clusters in a partition set, which is defined as follows:

H x( ) � ∑ x| |
i�1 P i( )log P i( )( ) (21)

where P(i) � |xi|/N. MI is defined as:

MI x, y( ) � ∑ x| |
i�1 ∑ y| |

j�1 P i, j( )log P i, j( )
P i( )P j( )( ) (22)

NMI is another adjusted form of mutual information (MI).

NMI is defined as:

NMI x, y( ) � MI x, y( )
mean H x( ), H y( )( ) (23)

whereH (x) andH (y) are the entropy of x and y, respectively.

The completeness score (CS) measures how much all class

members are assigned to the same cluster. Higher CS ∈ [0, 1]
means a higher similarity.

Completeness � 1 − H K/C( )
H K( ) (24)

The silhouette coefficient score indicates how similar an object

is to its cluster compared to others. Unlike ARI, it does not require

the real label. The silhouette coefficient score is defined as:

Silhouette � b − a
max a, b( ) (25)

where a represents the average distance between the object and

other objects, and b represents the average distance between the

object and all points in the nearest cluster.

Results

To evaluate the dropout imputation and cell clustering

performance of different methods for analyzing single-cell

data sets, we compared scGAEGAT results with those of five

other models, including single-cell variational inference (scVI)

(Lopez et al., 2018), generative adversarial networks for scRNA-

seq imputation (scIGANs) (Xu et al., 2020b), single-cell impute

(scImpute) (Li and Li, 2018), deep count autoencoder network

(DCA) (Eraslan et al., 2019), and DeepImpute (Arisdakessian

et al., 2019). Each method was used to analyze data from four

scRNA-seq data sets (Kolodziejczyk, Klein, Zeisel, and Chung)

with gold standard cell labels (Klein et al., 2015; Kolodziejczyk

et al., 2015; Zeisel et al., 2015; Chung et al., 2017). The scVI model

is based on a hierarchical Bayesian model and uses deep neural

networks to define conditional probabilities, which can

accurately recover gene expression signals as well as impute

zero-valued entries, potentially enhancing cell clustering

without adding artifacts or false signals. The scIGANs

generate data for a set of realistic single cells instead of

directly borrowing information from observed cells to impute

the dropout events, which helps avoid over-fitting for the

abundant cell type in a population while maintaining enough

imputation power for rare cells. DCA takes the count

distribution, overdispersion, and sparsity of the data into

account using a negative binomial noise model with or

without zero inflation, and nonlinear gene-gene dependencies

are captured. The scImpute model automatically identifies likely

dropouts and only performs imputation of those values without

introducing new biases into the data; it also detects outlier cells

and excludes them from imputation. The DeepImpute model

uses several sub-neural networks to impute groups of target genes

using signals (genes) strongly associated with the target genes.

Results of gene imputation

The synthetic dropout was adopted to simulate the

imputation effects based on the same leave-one-out strategy

used in scVI. The dropout rate was set at 10% and 30%,

respectively, by randomly flipping a number of the non-zero

entries to zeros. Cosine similarity, median L1 distance, and

RMSE between the original data set and the imputed values

for these synthetic entries were calculated to compare

scGAEGAT dropout performance with that of scVI, scIGANS,

scImpute, DCA, and DeepImpute.

Figure 3 shows the results of cosine similarity (Cosine),

median L1 distance (Median L1), and RMSE for Klein data

sets (Figures 3A–C) and Zeisel data sets (Figures 3D–F) under

dropout rates of 10% and 30%, respectively. Klein and Zeisel are

large-scale data sets. The cosine similarity of scGAEGAT ranked

highest with 10% and 30% dropout rates (Figure 3A), achieving

values of 0.9633 and 0.9603, respectively. The results were better

than those achieved using scVI (0.1782 and 0.1879), scIGANS

(0.9136 and 0.8885), scImpute (0.8883 and 0.8605), DCA

(0.9216 and 0.9273), and DeepImpute (0.9042 and 0.9017).

The scVI had the worst imputation performance. The results
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FIGURE 3
Gene imputation performance comparison of cosine similarity, median L1 distance, and RMSE scores between the scGAEGAT model and the
five existing imputation methods, with settings of 10% and 30% dropout rate. (A–C) Results for Klein data sets. (D–F) Results for Zeisel data sets.
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of DCA were slightly worse than those generated by scGAEGAT.

Figure 3B shows that the scGAEGAT model obtained the best

results for median L1 distance (0.3776 and 0.5814), and the

median L1 distance values generated using the DeepImpute

model (1.2251 and 1.2612) were far greater than those from

the scGAEGAT model, and therefore the worst results.

According to Figure 3C, scGAEGAT demonstrated the best

RMSE results (0.067 and 0.050) among the six methods

tested. The results for the Zeisel and Klein data sets were

similar. Figures 3D–F indicate that the scGAEGAT model had

the best imputation performance. For large-scale data sets,

scGAEGAT achieved the best results in recovering gene

expression among the tested models, as demonstrated via

cosine similarity, median L1 distance, and RMSE at the 10%

and 30% synthetic dropout rates, respectively.

Results of cell clustering

The purpose of imputation is to improve the downstream

analysis of scRNA-seq data. Therefore, we continued to evaluate

the clustering performance of scGAEGAT to estimate the

FIGURE 4
(Continued).
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downstream analysis by the Louvain clustering algorithm. The

results of cell clustering are illustrated in Figure 4. We used four

metrics, including AMI, CS, NMI, and silhouette coefficient score

(Silhouette), to compare scGAEGAT performance with five

existing methods, including scVI, scIGANS, scImpute, DCA,

and DeepImpute, using the Chung, Kolodziejczyk, Klein, and

Zeisel data sets. The results are shown in Figures 4A–D. The

greater the values of AMI, CS, NMI, and Silhouette, the better the

model’s performance. We can see from Figures 4A–D that the

scGAEGAT model had the best results. For the large-scale Klein

data set, the completeness score was 0.9398. The cell clustering

effect of scGAEGAT was significantly better than the other

methods, which strongly supports the capability of

scGAEGAT to capture real cell-cell communications and

interactions. As shown in Figures 4A–C, the scVI model had

the worst clustering performance, whereas the results from the

scIGANS and scImpute models were better than those from scVI,

DCA, and DeepImpute. Figure 4D demonstrates that, except for

the scGAEGAT model, the clustering effect of the models tested

was unsatisfactory. Using the scGAEGAT model, the Silhouette

reached 0.65538 and 0.66105, respectively, in clustering small-

scale data sets (Chung and Kolodziejczyk), which far exceeded

the second- and third-ranking methods DCA and scVI

(0.28653 and 0.24004, respectively).

Figure 4E demonstrates use of the UMAP method to more

intuitively show the clustering effect of scGAEGAT, compared with

the five other models, on four data sets. The results illustrate that the

distance between cells and clusters within-group is the least using

scGAEGAT, and the between-group distance is the most significant.

When other models are used, cells are more separated between

FIGURE 4
(Continued).
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clusters, which intuitively shows that scGAEGAT has a strong

capacity for capturing the relationships between cells.

Analysis of the graph autoencoder
mechanism of the scGAEGAT model

To address the significance of using the graph autoencoder in

scGAEGAT, we performed the experiment with and without the

GAE. Table 1 and Table 2 show the imputation results when the

dropout rate was 10% and the head was 3 for the large-scale Klein

data sets and small-scale Chung data sets, respectively. Table 3

and Table 4 show the results of clustering for the Klein and

Chung data sets. Five evaluation metrics were used to estimate

imputation performance: Mean L1 distance (L1Mean), Median

L1 distance (L1Median), Max L1 distance (L1Max), cosine

similarity (Cosine), and RMSE. Nine evaluation metrics were

used to estimate the clustering performance of scGAEGAT:

Silhouette, Davies Bouldin score (DBS), ARI, AMI, NMI, CS,

Fowlkes mallows score (FMS), V measure score (VMS), and

homogeneity score (HS). Bold numbers in all the tables indicate

the best results. The data in Table 1 and Table 2 demonstrate that

four values, the L1Mean, L1Median, L1Max, and RMSE, showed

greater improvement with GAE than without. However, as

indicated by the data in Table 3 and Table 4, the clustering

effect of scGAEGAT with GAE was significantly better than that

FIGURE 4
(Continued). Cell clustering performance comparison of adjusted mutual information (A), completeness score (B), normalized mutual
information (C), and silhouette coefficient score (D) between the scGAEGATmodel and the five existing imputation methods using four data sets. (E)
UMAP visualizations show the clustering effect of scGAEGAT compared with the other five models across four data sets.
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of scGAEGAT without GAE, in both large-scale and small-scale

data sets. Although there was dramatic improvement of the

model with GAE present (versus without GAE) according to

nine evaluation metrics, the GAE is not fully involved in the

imputation process in the scGAEGAT model because it is only

used to reconstruct the cell graph and capture cell relationships.

Analysis of the graph attentionmechanism
of the scGAEGAT model

To verify the imputation performance using GAT in

scGAEGAT, we performed the experiment with and without

GAT. As shown in Figure 5, we evaluated the performance of

five models on the large-scale Klein and Zeisel data sets. They are

scGAEGAT without GAT (head = 0), with 1 attention head,

3 attention heads, 5 attention heads, and 8 attention heads.

According to L1Mean (Figure 5A), L1Median (Figure 5B),

Cosine (Figure 5C), and RMSE (Figure 5D) data (smaller values

indicate better imputation performance), use of the scGAEGAT

model with GAT produces better results than without GAT.When

the attention head is 8, the effect of imputation is best for the Klein

data set. For the Zeisel data set, imputation has a comparative

advantage when the attention head is 3. We also found that the

performance of scGAEGAT with the single-head attention

mechanism (1 attention head) was not stable, which suggests

that use of a multi-head attention mechanism with the

scGAEGAT model will provide the best results.

In the same way, we used the above five models to evaluate the

effect ofGATon cell clustering. Table 5 andTable 6 display Silhouette,

DBS, ARI, AMI, NMI, CS, FMS, VMS, and HS results for the small-

scale Chung and large-scale Klein data sets. Figure 6 displays the

results of clustering by UMAP. Taken together, the data indicate that

the performance of the scGAEGAT model using the attention

mechanism is superior to use of the model without attention.

Overall, when the head is 3, clustering performance is optimal.

Discussion

Today, researchers are still exploring dimensional reduction,

gene imputation (dropout events), and cell clustering of scRNA-seq

TABLE 1 Imputation performance of scGAEGAT with and without GAE for Klein data sets.

L1Mean L1Median L1Max Cosine RMSE*102

With GAE 0.4216 0.3776 4.8041 0.9633 0.0670

Without GAE 0.4244 0.3797 4.9719 0.9633 0.0674

The bold values are the best results.

TABLE 2 Imputation performance of scGAEGAT with and without GAE for Chung data sets.

L1Mean L1Median L1Max Cosine RMSE*102

With GAE 1.6959 1.4889 9.6577 0.9294 0.7785

Without GAE 1.7250 1.5458 9.6577 0.9301 0.7919

The bold values are the best results.

TABLE 3 Clustering performance of scGAEGAT with and without GAE for Klein data sets.

Silhouette DBS ARI AMI NMI CS FMS VMS HS

With GAE 0.3878 1.2023 0.9601 0.9264 0.9365 0.9398 0.9713 0.9365 0.9332

Without GAE 0.2129 1.7219 0.6463 0.6899 0.6902 0.6815 0.7430 0.6902 0.6993

The bold values are the best results.

TABLE 4 Clustering performance of scGAEGAT with and without GAE for Chung data sets.

Silhouette DBS ARI AMI NMI CS FMS VMS HS

With GAE 0.6553 0.7125 0.5534 0.7082 0.7137 0.5973 0.6805 0.7137 0.8866

Without GAE 0.1736 1.8295 0.5457 0.6873 0.6932 0.5794 0.6744 0.6932 0.8626

The bold values are the best results.
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FIGURE 5
Performance of imputation of scGAEGAT without graph attention (head = 0) and with graph attention (head = 1, head = 3, head = 5, head = 8)
according to evaluation metrics L1Mean (A), L1Median (B), cosine similarity (C), and RMSE (D).

TABLE 5 Clustering performance of scGAEGAT with and without GAT for Chung data sets.

Silhouette DBS ARI AMI NMI CS FMS VMS HS

Without GAT 0.6574 0.6706 0.5250 0.6670 0.6733 0.5616 0.6577 0.6733 0.8406

1 attention head 0.5950 0.7318 0.5495 0.7005 0.7062 0.5910 0.6772 0.7062 0.8770

3 attention heads 0.6553 0.7125 0.5534 0.7082 0.7137 0.5973 0.6805 0.7137 0.8866

5 attention heads 0.6534 0.7088 0.5468 0.6944 0.7003 0.5859 0.6751 0.7003 0.8701

8 attention heads 0.6735 0.6479 0.5530 0.7024 0.7080 0.5922 0.6803 0.7080 0.8801

The bold values are the best results.
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data. However, solving issues related to the heterogeneity of single

cells is still a difficult challenge. This study demonstrated the

development and testing of scGAEGAT, a model based on graph

neural networks, in cell clustering and imputation of data to

represent missing genes. Multi-modal GAEs and GAT

mechanisms were added to the basic graph convolution neural

(GCN) network to improve the accuracy of single-cell data analysis.

Our results show that the scGAEGAT model delivered the best

performance according to various evaluation metrics. Moreover, the

scGAEGAT model showed better results than any of the existing

models in analysis of both large-scale and small-scale data sets.

GAE is an unsupervised learning framework, which aims to

learn low-dimensional node vectors through an encoder, and then

reconstruct graph data through a decoder. AGAT network is similar

to GCN and seeks aggregation function to fuse adjacent nodes in the

graph. The attention mechanism has almost become a standard

configuration in sequential tasks. Its value lies in focusing on the

essential part of the object. The contributions of the attention

mechanism to the graph neural network are three-fold: assigning

attention weights to different neighbors when aggregating feature

information, integrating multiple models according to attention

weights, and using attention weight to guide random walk.

Therefore, the GAT mechanism of the scGAEGAT model can

add different weights to different cells and focus on the most

relevant parts, which enhances the likelihood of discovering

potential node relationships. With GAEs, the scGAEGAT model

has improved capacity to discover relationships between similar cells

in aggregate. Compared with other imputation methods,

scGAEGAT demonstrated advantages in data sets of different

sizes (especially in large data sets), suggesting scGAEGAT is a

generalizable method with potentially widespread applicability.

In future studies, we will investigate scRNA-seq data analyses

based on deep learning to identify an optimal framework. This

deep learning framework is also significant in its potential use for

data analysis in other omics specialties to promote the

development of bioinformatics.

TABLE 6 Clustering performance of scGAEGAT with and without GAT for Klein data sets.

Silhouette DBS ARI AMI NMI CS FMS VMS HS

Without GAT 0.3733 1.5436 0.8352 0.8187 0.8189 0.8078 0.8803 0.8189 0.8303

1 attention head 0.3447 1.2099 0.7826 0.8275 0.8278 0.8514 0.8470 0.8278 0.8054

3 attention heads 0.3878 1.2023 0.9601 0.9364 0.9365 0.9398 0.9713 0.9365 0.9332

5 attention heads 0.3866 1.4118 0.8361 0.8255 0.8257 0.8133 0.8809 0.8257 0.8386

8 attention heads 0.4043 1.1677 0.8143 0.8209 0.8211 0.8263 0.8669 0.8211 0.8160

The bold values are the best results.

FIGURE 6
Performance of cell clustering of scGAEGAT without graph attention (head = 0) and with graph attention (head = 1, head = 3, head = 5, head =
8). (A) Chung data sets. (B) Klein data sets.
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