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Introduction: Student success in Science, Technology, Engineering, and

Mathematics (STEM) is a national concern. To increase engineering retention

and graduation rates at a small private institution, a university council

developed a binary classifier to identify high-risk students and proposed

interventions that included decoupling first-year Physics and Calculus courses,

support in introductory Calculus, and Spatial Visualization (SV) training. This

paper aims to validate the binary classifier used to identify the under-prepared

students entering their first year and assess the impact of the interventions.

We provide a comparative analysis of student success metrics for high-risk

engineering students across a decade of cohorts, including 5 years before

(2006–2010) and 5 years after (2011–2015) implementation of intentional

strategies.

Methods: We validated the binary classifier using an accuracy measure and

MatthewsCorrelationCoe�cient (MCC).We used the 2-population proportion

test to compare STEM retention and 4- and 6-year graduation rates of High-

Risk engineering students before and after interventions and compare student

performance in early foundation STEM courses across the same time frame.

Results: The binary classification model identified High-Risk students with an

accuracy of 63–70% and an MCC of +0.28 to +0.30. In addition, we found

statistically significant improvement (p < 0.001) in the STEM retention rates,

6-year graduation rates, and first part of Physics, Calculus, and Chemistry

sequences after the interventions.

Discussion: The methodology and strategies presented may provide e�ective

guidance for institutions seeking to improve the overall performance of

undergraduate students who otherwise might struggle in their first-year

engineering curriculum.
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1. Introduction

Recognition of the importance of Science, Technology,

Engineering, andMathematics (STEM) as a national concern has

been the subject of multiple reports over many years (Zumeta

and Raveling, 2001; National Science Board, 2007; National

Academy of Sciences, 2010; National Science Foundation,

2010a,b; Provasnik et al., 2012; National Research Council,

2013). At the highest level, the President’s Council of Advisors on

Science and Technology called for higher education institutions

to produce more STEM graduates in order for the United

States to remain competitive in the global economy (Olson

and Riordan, 2012). Considering that approximately half of

bachelor’s degree-seeking students who enter STEMfields switch

out of or fail to complete a STEM degree, increasing the

retention of students who have already entered the STEM

education pipeline is paramount to achieving this goal (Chen,

2013).

The reasons for students departing from STEM majors are

varied, and intersecting factors make analyses as complex as

the process of designing effective interventions. For example,

STEM attrition rates are greater for women, historically

underrepresented students of color, and first-generation

students (Anderson and Kim, 2006; Griffith, 2010; Hill et al.,

2010; Shaw and Barbuti, 2010). Non-cognitive factors such

as motivation and self-efficacy also impact student success

in STEM (Burtner, 2005; Al-Sheeb et al., 2019). Additionally,

students who are less prepared academically for the challenge of

a STEM curriculum have higher attrition rates (Astin and Astin,

1992; Shaw and Barbuti, 2010; Whalen and Shelley, 2010).

In this paper, we describe a methodology to identify and

help under-prepared students entering undergraduate majors in

STEM at a small technologically-oriented research university.

In Section 2.1, we describe a binary classifier developed using

student performance data over 5 years (2006 to 2010) to identify

students who may be at a higher risk of failing in one or more

early foundation STEM courses. We then used the classifier

to advise interventions for engineering students categorized

as “high risk” from 2011 to 2015. The primary intervention

directed these students along an alternative curriculum pathway,

intentionally decoupling the timing of first-year Calculus and

Physics courses, traditionally taken simultaneously during the

first semester. Additional interventions included mandatory

enrollment of students in a Co-Calculus support course taken

in tandem with Calculus and an optional training course offered

to students identified with low spatial visualization skills. We

investigate the following questions in this paper:

1. Is the binary classification methodology valid in identifying

high-risk students?

2. Did the interventions have a positive impact on the

graduation rates and STEM retention rates for high-risk

engineering students?

3. Did the interventions have a positive impact on student

success in the early foundation STEM courses?

1.1. First-year curriculum

The university uses a “Common-Core Curriculum” of first-

year courses that provides engineering students with relatively

flexible options for exploring and changing majors within

the engineering disciplines. This work only considers first-

year students without advanced placement credits for Calculus,

Physics, or Chemistry. For such students, the traditional

pathway through any discipline in engineering includes the

following early foundation STEM courses taken during the first

year: two sequential semesters each of Calculus (Calculus I and

II), Calculus-based Physics (Physics I and II), and Chemistry

(Chemistry I and II). Calculus is a co-requisite for Physics,

meaning students need to take it with or prior to taking Physics.

Physics and Chemistry have laboratory components and are,

consequently, 4-credit courses. Calculus is a 3-credit course;

however, Calculus I includes a complementary 2-credit Co-

Calculus support course.

1.2. Challenges faced by under-prepared
students in the first year

The rigid sequencing of required STEM courses in

engineering can present challenges for students trying to

navigate myriad pre and co-requisites successfully. The

‘common curriculum’ provides exploratory opportunities

across engineering disciplines for most students who complete

the core courses successfully and sequentially. However, the

standard sequence can present obstacles that inhibit on-time

progression for a portion of students who struggle during the

first semester. For example, students who fail Physics I in the

first semester typically retake it in the second semester, and if

successful during their second attempt, still find themselves one

course behind in their program. Such students have to face an

overloaded subsequent semester or take a summer make-up

course to avoid extending their time to degree completion. Even

more detrimental is the case for students who fail Calculus I in

the first semester. Even if they pass their Calculus-based Physics

I course, they must retake Calculus I in the second semester and

are prohibited from progressing to Physics II, which requires

Calculus II as a co-requisite. Such students find themselves

even further behind after just starting their engineering major.

Furthermore, students who pass but score below a C grade are

strongly encouraged by the engineering departments to retake

Calculus and Physics as these courses are prerequisites for future

courses in engineering and set the foundation for success in

those courses. For reference, from 2006 to 2010, the percentage
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of all STEM students failing to achieve a C grade or better in

their first semester of Physics and Calculus was approximately

25 and 33%, respectively (Jaspersohn, 2017).

1.3. Interventions recommended by the
first-year council

In 2010, the university formed a First-Year Council

to implement and coordinate strategies to improve student

performance and retention in STEM majors. The council

initiated a plan to identify each incoming student’s preparedness

for the first-year STEM experience by formalizing the collection

of the following pre-college or pre-entry survey data. We list

these instruments with generic labels for consistency in this

article, with their formal titles and references in parentheses.

1. Math Diagnostic Survey (Clarkson University Math Skills

Assessment) (Turner, 2008),

2. Physics Diagnostic Survey (FCI-Force Concepts Inventory)

(Hestenes et al., 1992), and

3. Spatial Visualization Survey (Rotations component of

the Purdue Spatial Visualization assessment) (Guay and

McDaniel, 1977).

The Physics Diagnostic Survey provides a measure of

conceptual understanding of Newtonian Physics without

mathematical calculations, while the Math Diagnostic Survey

assesses basic Mathematics skills relevant to beginning STEM

majors. Combined, they provide predictive evidence of student

performance in the early foundation STEM courses. The

council identified the most under-prepared or “high-risk”

students by comparing incoming student data (beginning in

2011) with historical data collected previously (2006–2010,

pre-intervention years) and leveraging existing analyses. It

used this information to inform the development of strategies

going forward. Pre-enrollment measures capable of identifying

each student’s risk level allowed for targeted placement

recommendations based on individual needs (2011–present,

intervention years). The council enacted the following strategies

in an attempt to improve student achievement in introductory

STEM courses and increase retention and graduation rates in

STEMmajors:

1. Alternative pathway: The council provided engineering

students identified in the high-risk category from Fall 2011

onward with an alternate schedule (strategic placement

recommendation). In this schedule, the council moved

Physics I to the second semester (and this consequently

moved Physics II to the third semester) and replaced it

with a required engineering course titled Engineering and

Society (Moosbrugger et al., 2012; Chapman et al., 2015).

The rationale was that by decoupling Physics I and Calculus

I from the same semester, the least prepared engineering

students would have a better chance of improving their

mathematics skills before taking Calculus-based Physics.

Essentially, this change delayed Physics by design for the

students in the high-risk category instead of necessity

(through failure, as was the case historically for many

of these students) without sacrificing time for degree

completion. Note that this change required some engineering

departments to consider additional or customized extensions

of the alternative pathway for their second-year courses that

require Physics II as a pre/co-requisite. However, with the

encouragement of the First Year Council, departments saw

value in accommodating students preemptively by design

as a proactive measure that reinforced the university’s

commitment to student success.

2. Co-calculus for all: Before 2011, the university automatically

scheduled only students who scored low on the pre-entry

Math Diagnostic Survey for the Co-Calculus support course,

a low-credit mathematics skills course that complements

Calculus. Since only low-scoring students were enrolled, a

negative stigma was associated with this approach. On the

council’s recommendations, beginning in 2011, the university

placed all Calculus students in Co-Calculus, regardless of

their pre-entry score. Students were given the choice of

remaining throughout the semester (to receive credit) or

testing out once they achieved a normalized score of 0.90

or higher on a subsequent competency test (given nearly

weekly), essentially shifting the course perception from a “fail

in” model to a more positive “pass out” model. From 2011 to

2015, approximately 19% of the 3961 students enrolled in the

first semester of Co-Calculus opted to forego credit and exit

the course after achieving successful scores, including 24% of

the 827 engineering students categorized as high-risk.

3. Optional spatial visualization (sv) training: Students whose

normalized score fell below a selected cut-off (typically

between 0.60 and 0.70) on the Rotations component of

the Purdue Spatial Visualization assessment prior to entry

were automatically scheduled for a one-semester SV training

course (meeting once per week) from Fall 2012 onward.

On the first training day, the students were encouraged

to participate but were not required to remain. Each

year, the cut-off varied to accommodate the reality of

scheduling constraints (section capacity). From 2012 to 2015,

approximately 13.6% of 1,851 incoming engineering students

participated in Spatial Visualization training, including 19%

of the 650 engineering students categorized as high-risk.

2. Materials and methods

2.1. Binary classification of student risk
levels

Building upon historical data collected over multiple

years (Turner, 2008), the First-Year Council initiated a

comprehensive assessment of first-year performance in the
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FIGURE 1

Sunflower plot of initial state data (Mathematics and Physics
diagnostic scores) from 2006 to 2010 with group labels, counts,
and percent of the total number of students. There were N =
1,982 total students considered during this period who took the
Mathematics and Physics diagnostic tests. The number n
(lowercase) in each subgroup (M+P+, M−P+, M−P−+, M−P−,
and M+P−) indicates the number of students in that subgroup.
We also indicate the percentage of these numbers out of the
total number N. Whenever data points with “S” and “U” grades
overlapped, we added a slight o�set for clarity.

introductory Calculus and Physics courses, supported by a

2009 grant from Procter & Gamble (P&G) (Schalk et al.,

2009, 2011). The results of a Principal Component Analysis

(PCA) of historical pre-entry or initial state data identified

the Mathematics and Physics Diagnostic scores as relatively

independent measures capable of explaining a significant

amount of variance in the data (Schalk et al., 2009). To

illustrate this, we created a sunflower plot (Figure 1) of historical

initial state data (Fall 2006–2010 cohorts) of paired normalized

Mathematics and Physics Diagnostic scores (N =1,982) for

incoming students co-enrolled in both Calculus I and Physics

I during their first semester. A solitary dot in the sunflower

plot represents a single data point, whereas multiple petals

represent multiple points at the same coordinate location.

The blue and red colors, respectively, distinguish between

students who were ultimately successful and those who were

unsuccessful in their first semester Physics I course (as defined

in Section 2.2).

The scatter in the data highlights the diversity of incoming

student preparation levels. The sunflower plot divides the

data into four quadrants based on students’ performance on

the Mathematics and Physics Diagnostic Surveys. We defined

“success” on the Physics Diagnostic Survey as scoring 50%

or more and “success” on the Mathematics Diagnostic Survey

as 65% or more. We detail the rationale for these cutoffs in

Section 3.2. Thus, the sunflower plot provides four general

groups or quadrants indicating relative preparedness levels in

Mathematics and Physics.

Each group, labeled with an “MP” for Math/Physics and “+”

or “−” designation denoting a relative strength or weakness,

respectively, represents a preparedness level. Thus, we have four

risk categories: M+P+, M+P−, M−P+, and M−P−. Students

considered to be well-prepared in bothMathematics and Physics

are categorized as Low-Risk (M+P+), while students who are

ill-prepared for both are considered High-Risk (M−P−). We

categorized the students who are well-prepared in one but ill-

prepared in the other as Medium-Risk (M+P− and M−P+).

As a logistical control mechanism for maximizing enrollment

in the Engineering and Society course during the intervention

years, a small number of M− students who were just above

the Physics cutoff were included in the Alternative Pathway

recommendation for the Fall 2012 cohort and beyond. This

additional group represents the highest risk students in the

M−P+ Medium-Risk category and is labeled as M−P−+,

shown as a wedge in Figure 1. Students in this subgroup

were relabeled as high-risk, thus expanding the total count

of students in the High-Risk category. Since the classification

aims to identify high-risk students, we combine the low

and medium-risk students into a single category, leading to

binary classification.

2.2. Evaluation criteria for the
classification model

Before using the classification model described in Section

2.1 in practice, we needed to validate the model’s predictive

capability. To this effect, we considered the final grades in the

first-year foundational STEM courses relative to the identified

risk categories for Fall 2006–2010 cohorts. We used the Receiver

Operating Characteristics (ROC) curve to display the paired

False Positive and True Positive Rates for students in Physics

I, obtained by varying each cutoff or threshold between 0

and 1 by increments of 0.01. We label students earning

a course grade of “C” or better in their first attempt as

successful (S), while students earning below a “C” (including

withdrawals, late withdrawals, and incompletes) in their first

attempt as unsuccessful (U). In Figure 1, successful students

appear blue, while unsuccessful students appear red. Since we

are interested in identifying the High-Risk students with the

classifier, the “Positive” instance is associated with identifying

an unsuccessful student. Consequently, classifying a student

into Low or Medium-Risk is labeled as a “Negative” instance.

In the context of this binary classification, we define the True

Positives (TP), False Positives (FP), True Negatives (TN), and

False Negatives (FN) as follows:
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True Positives (TP) = Students classified as

high-risk who received “U” grade

False Positives (FP) = Students classified as

high-risk who received “S” grade

True Negatives (TN) = Students classified as

low and medium risk who received “S” grade

False Negatives (FN) = Students classified as low and

medium risk who received “U” grade.

Consequently, we present the student counts as a set of 2×2
confusion matrices, where a “positive” instance is associated
with identifying an unsuccessful student. Each confusion matrix
includes the following model evaluation metrics (Swets, 1988;
Fawcett, 2006) defined below:

True Positive Rate (TPR) =
Number of True Positives (#TP)

Number of students with “U” grade

True Negative Rate (TNR) =
Number of True Negatives (#TN)

Number of students with “S” grade

False Positive Rate (FPR) =
Number of False Positives (#FP)

Number of students with “S” grade

False Negative Rate (FNR) =
Number of False Negatives (#FN)

Number of students with “U” grade

Positive Predictive Value (PPV)

=
Number of True Positives (#TP)

Number of students classified as high-risk students

Negative Predictive Value (NPV)

=
Number of True Negatives (#TN)

Number of students classified as low and medium risk

Accuracy (ACC) =

Number of True Positives (#TP)+Number of True Negatives (#TN)

Total number of students

Matthews Correlation Coefficient (MCC)

=
(#TP)·(#TN)− (#FP)·(#FN)

√
(#TP + #FP)·(#TP + #FN)+(#TN + #FP)·(#TN + #FN)

.

Accuracy (ACC) measures how well the classifier correctly

identifies the categories. Accuracy varies from 0 to 1, with 1

indicating exact classification. Since we typically have fewer

students in the High-Risk category than in the Low and

Medium-Risk categories combined, we also calculated the

Matthews Correlation Coefficient (MCC) (Matthews, 1975). The

MCC, on a scale of −1 to 1, provides a measure of the overall

quality of a binary prediction classifier. Positive values of the

MCC indicate better prediction quality.

2.3. Comparability of high-risk students
before and after intervention

Once the classificationmethodology was verified, as outlined

in Section 2.2, the First-Year Council applied it to subsequent

cohorts to make targeted placement recommendations. In

Sections 2.4 and 2.5, we quantify the impact of the intervention

on high-risk students from cohorts Fall 2011–2015 compared

to the high-risk students from cohorts Fall 2006–2010. Since

these cohorts are from different years, we needed to ensure

they are indeed comparable. For a fair comparison, we needed

the two groups to be similar with respect to their academic

performance at the beginning of the first year at the university.

We chose to use the SAT scores as a measure of the

similarity between the two groups. We analyzed the descriptive

statistics for math and verbal SAT scores of the two groups.

Furthermore, we used the two-tailed t-test (Neter et al., 1996)

on the SAT math and verbal scores of the two groups to

compare them.

2.4. Analysis of the retention and
graduation rates of engineering students

In this section, we narrow our analysis to just

the High-Risk engineering-major students since the

Alternative Pathway intervention was designed specifically

for these students. We evaluated the long-term impact

of the methodology and interventions implemented

for engineering students identified as high-risk for Fall

2011–2015 cohorts.

2.4.1. Control and treatment groups for
retention and graduation rates

For the analyses of the retention and graduation rates, we

define the “control group” and “treatment group” as follows:

The control group is the group of engineering students

identified as High-Risk students by the classifier described in

Section 2.1, from Fall cohorts 2006 to 2010.

The treatment group is the group of engineering students

identified as High-Risk students by the classifier described in

Section 2.1 from Fall cohorts 2011 to 2015 who have received

the treatment. To ensure that these students are only those

who received the “treatment,” we considered only the students

enrolled in Physics I in the second semester of their cohort year

and registered for the Engineering and Society course in the first

semester of their cohort year.

We define first-year STEM retention as the percentage

of first-year STEM major students enrolled in STEM majors

at the beginning of their second year. We define second-

year STEM retention similarly, as the percentage of first-

year STEM major students enrolled in STEM majors at the

beginning of their third year. We compared the first and second-

year retention rates and the 4- and 6-year graduation rates

before and after the interventions. All engineering programs

at the university are 4-year programs. We also note that

the 4-year graduation rate indicates an important “on-time”
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graduation rate metric, while the 6-year rate accounts for

graduation within 150% of a student’s program length. We

used the two-population proportion test (Neter et al., 1996)

to find the statistical significance of the difference between the

two groups.

2.5. Measuring the impact of the
interventions on early STEM courses

We wanted to quantify the effect of the interventions on

success rates in the early STEM foundation courses taken

by engineering students. Recall that we defined “success” as

achieving a “C” grade or better on the first attempt. We

compared the early STEM course performance of the students

from the control group to the course performance of the

students in the treatment group. We used the two-population

proportion test to determine the statistical significance of the

difference between the two groups.

2.5.1. Control and treatment groups for early
STEM course success

For the control group in Physics I, Calculus I, and

Chemistry I, we considered High-Risk engineering students in

the cohort years 2006–2010 who took the corresponding courses

in the first semester of their cohort years. Whereas, for the

subsequent courses, Physics II, Calculus II, and Chemistry II,

the ‘control group’ included High-Risk engineering students

in the cohort years 2006–2010, who registered for these

courses after passing the first part of the corresponding

course. We only considered their Success or Failure in their

“first” attempt at these courses for this study. The treatment

group in Physics I, Calculus I, and Chemistry I consists of

High-Risk engineering students in the cohort years 2011–

2015 who registered for the Engineering and Society course

in the first semester and Physics I course in the second

semester of their cohort year. An additional requirement for

students in treatment groups for Calculus I and Chemistry I

is that the students in these groups need to have registered

for these courses in the first semester of their cohort year.

Whereas, for the subsequent courses, Physics II, Calculus

II, and Chemistry II, the “treatment group” included High-

Risk engineering students in the cohort years 2011–2015 who

registered for these courses after passing the first part of the

corresponding course.

2.6. Coding language and libraries used

We used Version 4.0.0 of R programming language for

the coding with the following R libraries: readxl, dplyr, tidyr,

ggplot2, and ggpubr.

FIGURE 2

Receiver operating characteristics (ROC) curve for Satisfactory
(S)/Unsatisfactory (U) grades in Physics I by predicted risk
categories for Fall 2006–2010 cohorts.

3. Results

3.1. The binary classification model

In Figure 1 we depict the sunflower plot for all students

from the Fall cohorts from 2006 to 2010. This figure is for the

Mathematics Diagnostic survey cut-off of 0.65 and the Physics

Diagnostic survey cut-off of 0.5. The binary classification system

identified 745 students as high-risk students out of 1982. These

745 students include 585 students from the M−P− category

and 160 students from the M−P−+ category as explained in

Section 2.1.

3.2. Evaluation of the classification model

We depict the ROC curve for Physics I in Figure 2. Each

dot in this figure plots the False Positive Rate (FPR) and

True Positive Rate (TPR), corresponding to a pair of potential

cutoff values in the Mathematics and Physics diagnostic surveys.

This methodology implies that cutoffs may need to be decided

for every course and for every cohort group. However, the

primary intervention for engineering students involved shifting

the timing of the first physics course by one semester. Hence,

for practical and logistical reasons, the final cutoffs of 0.65 for

the Mathematics and 0.50 for the Physics Diagnostic surveys

were based on the ROC curve associated with Physics I, the

impact of the expanded high-risk category (M−P−+), and

guided by recommendations from the Mathematics and Physics

Departments. The red dot in Figure 2 shows the corresponding
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TABLE 1 Confusion matrices with student-counts demonstrating early STEM foundation course performance measured as Satisfactory

(S)/Unsatisfactory (U) grade, by predicted risk categories for Fall 2006–2010 cohorts for the Math Diagnostic cut-o� of 0.65 and Physics Diagnostic

cut-o� of 0.5.

STEM performance by risk categories

Predicted risk level Model evaluation metrics

Actual grades High Medium + Low TPR TNR FPR FNR PPV NPV ACC MCC

Physics I Grade U 285 (106 + 25)= 131 0.685 0.706 0.294 0.315 0.383 0.894 0.702 +0.329

S 460 (506 + 600) = 1106

Calculus I Grade U 340 (126 + 29)= 155 0.689 0.638 0.362 0.313 0.427 0.838 0.625 +0.294

S 456 (436 + 368) = 804

Chemistry I Grade U 283 (102 + 38)= 140 0.669 0.659 0.341 0.331 0.361 0.874 0.661 +0.277

S 501 (482 + 486) = 968

Success in coursework was defined as a letter grade of C (grade point 2.0) and above on the first attempt.

pair of FPR and TPR for these values and its proximity

between the coordinate location (0,1), representing a perfect

classifier, and the diagonal line representing a completely

random classifier.

Table 1 summarizes the confusion matrices for the courses

Physics I, Calculus I, and Chemistry I based on the final cutoff

values. The proportion of students receiving a U grade correctly

categorized as High-Risk (True Positive Rates) ranges from 0.67

to 0.69 for all three early STEM foundation courses, with False

Positive Rates ranging from 0.29 to 0.36. The proportion of

students receiving an S grade correctly categorized asMedium or

Low-Risk (True Negative Rates) ranges from 0.64 to 0.71, with

False Negative Rates ranging from 0.31 to 0.33. The proportion

of students categorized as High-Risk who received a U grade

ranges from 0.36 to 0.43, while the proportion of students

categorized as Medium or Low Risk who received an S grade

ranges from 0.84 to 0.89. The proportion of total students

correctly categorized (Accuracy) ranges from 0.63 to 0.70. Since

fewer students are typically in the high-risk category than in

the low-medium risk category, we computed the Matthews

correlation coefficient (MCC). We found that the MCC was

positive and ranged from +0.28 to +0.33.

3.3. Results of the comparability of the
high-risk students before and after
intervention

We used SAT scores to verify the comparability of the high-

risk students before and after the intervention. The mean SAT

math scores of high-risk students from Fall 2006 to 2010 was

559, as opposed to 546 for the high-risk students from Fall 2011

to 2015. The first quartile, median, and third quartiles for SAT

math scores were 550, 590, and 630, respectively, for the high-

risk students from Fall 2006 to 2010, whereas these statistics

were 540, 580, and 620, respectively, for the high-risk students

FIGURE 3

The comparison of the (A) SAT math scores, and (B) SAT verbal
scores of the high-risk students from Fall 2006–2010 and the
high-risk students from Fall 2010–2015. The t-tests yielded
p-value > 0.05 in both cases, indicating no statistically
significant di�erence between the two groups.

from Fall 2011 to 2015. The t-test showed that the SAT math

scores of the two groups were statistically similar (p = 0.126).

The mean SAT verbal score of high-risk students from Fall 2006

to 2010 was 506, compared to 503 for the high-risk students

from Fall to 2015. The first quartile, median, and third quartiles

for SAT verbal scores were 480, 530, and 570, respectively, for

the high-risk students from Fall 2006 to 2010, whereas these

statistics were 480, 530, and 580, respectively, for the high-risk

students from Fall 2011 to 2015. We summarize the descriptive

statistics in Figure 3. Furthermore, the t-test revealed that the

SAT verbal scores of the two groups were statistically similar
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FIGURE 4

The first row shows the High-Risk engineering students’ first and second-year retention rates in the STEM major for the cohort years Fall
2006–2015. The second row depicts the 4- and 6-year graduation rates. The percentage values for each year are indicated at the top of each
bar in the bar charts. The results from the pre-intervention years (Fall 2006–2010) are shown in blue, whereas those from post-intervention
years (Fall 2011–2015) are shown in green. The significance levels (p-values) indicating the di�erences in the pre-intervention and
post-intervention years are shown in the individual graphs. ∗∗∗p < 0.001, ∗∗p < 0.01, and ∗p < 0.05.

(p = 0.706). Since, in both cases, the p> 0.05, we could compare

the performance of these two groups.

3.4. Retention and graduation rate
comparison

Figure 4 shows the first and second-year retention and the 4-

and 6-year graduation rates for engineering students identified

as High-Risk for each Fall entry cohort from 2006 to 2015.

We can see that the High-Risk students’ overall retention and

graduation rates are better during the intervention years than

before the interventions. The plots also show the p-values for

the two-population proportion tests comparing the control and

treatment groups. We see that the treatment group performed

significantly better than the control group in the first and

second-year retention rates with p < 0.001. The 4- and 6-year

graduation rates in the treatment group were also significantly

better than the control group with p < 0.05 and p < 0.001,
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respectively. Table 2 shows the details of these tests, including

the overall percentage of students in each group.

3.5. Comparison of success rates in early
STEM courses

Figure 5 depicts the success rates in early STEM courses

for engineering students identified as High-Risk for each Fall

cohort from 2006 to 2015. From the bar chart for Physics I,

we can readily recognize that the treatment group performed

better than the control group. In fact, the minimum success rate

in the post-intervention years (71.8%) is significantly greater

than the maximum success rate in the pre-intervention years

(66.3%). However, we can not reach the same conclusion for

other courses without further investigation. Thus, we performed

the two-population proportion test to compare the two groups’

performances for each early STEM foundation course. We

display the p-values for the two-population proportion tests to

compare the control and treatment groups in Figure 5. Table 3

shows the details of these tests, including the overall percentages

and number of students in each group. Note that we used

the number of students attempting the courses for the first

time in these tests. The treatment group performed significantly

better (p < 0.001) in Physics I, Calculus I, and Chemistry I

than the control group. For Calculus II, we found a marginal

improvement (p < 0.05) in the success rate of the treatment

group over the control group. However, we found no statistically

significant difference between the two groups’ performance in

Physics II and Chemistry II.

4. Discussion

We used the historical data from the Fall cohorts from 2006

to 2010 to develop and refine a model classifier to identify

students at high risk of underperforming in the early STEM

courses. While the classification method has limitations and

room for improvement (see Section 4.1), as a low-dimensional

model based on only two relatively independent measures

easily captured at the pre-entry point of enrollment, the

results are promising. The relatively high accuracy for correct

categorization seems in contrast to the somewhat low Matthews

Correlation Coefficient for overall model quality. However, we

find much value in using this approach for identifying the

majority of genuinely high-risk students. The high Negative

Predictive Values suggest that in using this methodology as

a predictive tool, we should have high confidence that most

students we categorize as Medium/Low-Risk will likely do well

in the early foundation STEM courses. Furthermore, while

the Positive Predictive Values are much lower due to the

misclassification of a fair number of successful students as

TABLE 2 Success rates for the control group and the treatment group

along with the p-values for the two proportion tests.

Control group Treatment group p-

(N1 = 605) (N2 = 672) values

First-year STEM retention 86.1% 93.6% <0.001***

Second year STEM retention 76.4% 85.4% <0.001***

4-year graduation rate 50.9% 57.4% 0.011*

6-year graduation rate 68.8% 78.7% <0.001***

There were N1 = 605 students in the control group. Moreover, there were N2 = 672

students in the treatment group. See Section 2.4.1 for the definitions of the control and

treatment groups. ∗∗∗p < 0.001, ∗∗p < 0.01, and ∗p < 0.05.

High-Risk, the model correctly classifies more than 2/3 of the

unsuccessful students (in Physics I, Calculus I, and Chemistry

I) as High-Risk. From an intervention design perspective, this

aligns with a conservative approach in which we may offer more

students additional assistance or recommendations to enhance

their success than may be necessary.

After verification, we used the classifier to identify High-

Risk engineering students in the Fall cohorts of 2011 onward.

These students were then prescribed an alternative pathway,

decoupling the concurrent timing of the Calculus I and Physics

I courses. Additionally, all students were enrolled in a Co-

Calculus support course, and some were provided with an

optional SV training course. We found that these combined

interventions had a statistically significant (p < 0.01) positive

impact on the 4- and 6-year graduation rates and the first and

second-year STEM retention rates of the High-Risk students.

The interventions also improved the performance of the High-

Risk students (p < 0.001) in the courses Physics I, Calculus I,

and Chemistry I. The improvement in the Physics I success rate

could be attributed to these students completing the Calculus

I course before attempting Physics I. This finding contrasts

with the pre-intervention years when all students took Calculus

I and Physics I concurrently. We note that improvements in

the success rate in Calculus II were marginally significant and

not significant for Physics II and Chemistry II. However, this

observation may reflect the impact of increased retention of

more High-Risk students in the post-intervention years.

4.1. Limitations and future work

The approach presented is understandably limited in

that it does not directly account for non-cognitive factors

and demographic variables linked to overall student success.

However, it uses relatively easy-to-capture diagnostic data at

the pre-entry point of student enrollment. The resulting binary

classifier is admittedly “static” in that the cut-offs for the

Mathematics/Physics Diagnostic surveys are predetermined by
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FIGURE 5

The success rates of High-Risk engineering students in the early STEM courses from the cohort years Fall 2006–2015. The success rates in the
pre-intervention years (Fall 2006–2010) are shown in blue, whereas the post-intervention years (Fall 2011–2015) are in green. The significance
levels and the p-values indicating the di�erences in the pre-intervention and intervention years are shown in the individual graphs. ∗∗∗p < 0.001,
∗∗p < 0.01, and ∗p < 0.05.
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TABLE 3 Success rates for the control group and the treatment group

(as a percentage and raw numbers) along with the p-values for the two

proportion tests.

Control group Treatment group p-values

Success in Physics I 62.5% (378) 80.4% (540) <0.001***

Success in Calculus I 56.4% (332) 71.7% (466) <0.001***

Success in Chemistry I 62.9% (378) 75.3% (495) <0.001***

Success in Physics II 77.3% (371) 79.3% (456) 0.237

Success in Calculus II 64.0% (310) 69.2% (430) 0.039*

Success in Chemistry II 71.5% (352) 69.2% (413) 0.783

Success in coursework was defined as a letter grade of C (grade point 2.0) and above on

the first attempt. See Section 2.5.1 for the definitions of the control and treatment groups.
∗∗∗p < 0.001, ∗∗p < 0.01, and ∗p < 0.05.

the data from 2006 to 2010. In the short term, i.e., for the

period 2011 to 2015 considered in the paper, this model worked

reasonably accurately and as expected. However, in the future,

we will need to reexamine the long-term validity of the model

and make adjustments accordingly.

Moreover, students whose scores are near the intersection

of the Mathematics and Physics Diagnostic cut-offs shown

in the sunflower plot are similar in preparedness but could

essentially belong in any of the four categories. A revised

set of cut-offs with diagonal (negative slope) or curved

diagonal bands that broaden the Medium-Risk categories

into a single zone while simultaneously separating the

High and Low-Risk zones might improve the predictive

capability and enhance targeted recommendations for further

improving retention and graduation rates. Additionally, a

future study incorporating modeling techniques will examine

the extent to which each intervention strategy contributed to

student success.

5. Conclusion

In this paper, we designed a binary classifier to identify

students at higher risk of underperforming in early foundation

STEM courses. We used student performance data from 2006

to 2010 to design the classification model and validated it

using a classifier accuracy measure and Matthews Correlation

Coefficient. After the validation, we used this model to

identify the most underprepared engineering students from

subsequent incoming cohorts. Once identified, these students

were prescribed interventions (alternative pathways, a Co-

Calculus support course, and an optional SV training course)

to help them succeed in their engineering programs. We

observed that these collective interventions significantly

and positively impacted the STEM retention rates of these

students in the first 2 years of their academic careers and

improved their 4- and 6-year graduation rates. Moreover,

the performance of the High-Risk engineering students also

improved in the early foundation STEM courses, translating to

increased retention.

These findings provide an effective methodology for

identifying and supporting engineering students likely to

struggle in their undergraduate education. Institutional

profiles and student preparedness levels can vary significantly

from one university to another. Hence the methodology

and suggested interventions may not translate directly

with the same level of effectiveness for other institutions.

However, the overall improvement in the graduation,

retention, and success rates achieved in the early STEM

courses suggests that customized analysis and targeted

interventions can elevate student success. The strategies

presented in this article may provide effective guidance for

institutions seeking to improve the overall performance of

undergraduate students who otherwise might struggle in their

engineering curriculum.
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