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Prognosis and pain dissection
of novel signatures in kidney
renal clear cell carcinoma
based on fatty acid
metabolism-related genes

Ruifeng Ding1†, Huawei Wei1†, Xin Jiang1†, Liangtian Wei2,
Mengqiu Deng1 and Hongbin Yuan1*

1Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical
University, Shanghai, China, 2Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical
University, Xuzhou, China
Renal cell carcinoma (RCC) is a malignant tumor that is characterized by the

accumulation of intracellular lipid droplets. The prognostic value of fatty acid

metabolism-related genes (FMGs) in RCC remains unclear. Alongside this

insight, we collected data from three RCC cohorts, namely, The Cancer

Genome Atlas (TCGA), E-MTAB-1980, and GSE22541 cohorts, and identified

a total of 309 FMGs that could be associated with RCC prognosis. First, we

determined the copy number variation and expression levels of these FMGs,

and identified 52 overall survival (OS)-related FMGs of the TCGA-KIRC and the

E-MTAB-1980 cohort data. Next, 10 of these genes—FASN, ACOT9, MID1IP1,

CYP2C9, ABCD1, CPT2, CRAT, TP53INP2, FAAH2, and PTPRG—were identified

as pivotal OS-related FMGs based on least absolute shrinkage and selection

operator and Cox regression analyses. The expression of some of these genes

was confirmed in patients with RCC by immunohistochemical analyses.

Kaplan–Meier analysis showed that the identified FMGs were effective in

predicting the prognosis of RCC. Moreover, an optimal nomogram was

constructed based on FMG-based risk scores and clinical factors, and its

robustness was verified by time-dependent receiver operating characteristic

analysis, calibration curve analysis, and decision curve analysis. We have also

described the biological processes and the tumor immune microenvironment

based on FMG-based risk score classification. Given the close association

between fatty acid metabolism and cancer-related pain, our 10-FMG

signature may also serve as a potential therapeutic target with dual effects on

ccRCC prognos i s and cancer pa in and , the re fo re , war ran t s

further investigation.
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Introduction

Renal cell carcinoma (RCC) originates in tubular epithelial cells,

occupying approximately 2%–3% of adult malignancies (1). For

several decades, the incidence andmortality ofRCChave beenon the

rise. According to the International Agency for Research on Cancer,

431,288 new cases of clear-cell RCC (ccRCC) were diagnosed and

179,368 deaths related to this cancer were recorded worldwide in

2020 (2). The majority of deaths associated with kidney cancer are

caused by ccRCC, which is the most common subtype (3). The

survival rate after treatment for early-stage RCC is 60–70%, while

advanced RCC usually has a poor prognosis, of which the 5-year

survival is<10% (4). Therefore, it is clinically significant to predict

prognosis and provide guidance for personalized treatment by

exploring potential markers to improve overall survival of patients.

More and more evidence shows that metabolic changes play

an explanatory role in tumor progression (5). Although

increased lipid synthesis has received less attention than

aerobic glycolysis, it has recently been recognized as another

important metabolic abnormality required for carcinogenesis

(6). There is growing evidence to suggest that upregulation of

several enzymes involved in fatty acid metabolism is a universal

metabolic marker in cancer cells (7). In many cancers, lipids are

ingested and stored to meet the energy needs of tumor cells,

which are supplied with energy by fatty acids through the

process of b-oxidation (8). ccRCC is characterized by a high

rate of mutation of genes that control metabolism; therefore, this

cancer is also thought to be driven by metabolic changes (9). In

fact, it is known that ccRCC cells accumulate a large amount of

lipids and exhibit abnormal fatty acid metabolism, which is

correlated with clinical outcomes (10).

Pain is one of the most common and bothersome symptoms

in cancer patients. Across all stages of cancer, 50.7% of patients

experience pain; in particular, 66.4% of cancer patients in the

advanced stage experience pain (11). Uncontrolled pain can

contribute to poor physical and emotional well-being. It is

widely accepted that cancer pain is caused by nociceptive,

inflammatory, and neuropathic mechanisms (12). It is

essential to note that fatty acid metabolism not only has an

impact on cancer development but also has an effect on pain

development. As shown in the study by Koundouros et al., an

increase in the levels of arachidonic acid and eicosanoids can

promote cell proliferation (13). Furthermore, the role of

arachidonic acid and its metabolite prostaglandin in

inflammation and pain has been demonstrated (14). Both

anandamide hydrolase and monoacylglycerol lipase are

endocannabinoid-degrading enzymes, and inhibitors of these

enzymes can reduce pain by blocking the metabolism of

anandamide and 2-arachidonic glycerol, while increasing

endogenous levels of fatty acid amides. Interestingly, inhibitors

of these enzymes, on their own or in combination with other
Frontiers in Oncology 02
drugs, have shown therapeutic potential in a variety of cancers

(15, 16). Thus, further investigation of the role of fatty acid

metabolism-related genes (FMGs) in ccRCC might be useful for

better prediction of patient prognosis and pain management.

In this study, we constructed a fatty acid-related signature to

evaluate the prognosis of RCC. Potential relationships between

this signature and the immune microenvironment were

investigated. Moreover, we attempted to determine the

potential association between these genes and cancer pain, as

this could provide new insights into personalized cancer therapy.
Materials and methods

Data source

Transcriptome sequencing (mRNA) data, along with

detailed clinical information about RCC patients, were

acquired from The Cancer Genome Atlas (TCGA) database,

the E-MTAB-1980 cohort (17) in the EMBL-EBI database, and

the GSE22541 cohort in the Gene Expression Omnibus (GEO)

database. Altogether, we obtained data for 535 samples from the

TCGA-KIRC database, 101 samples from the E-MTAB-1980

cohort, and 68 samples from the GSE22541 cohort.
Screening of FMG-associated genes

A predefined set of FMGs was obtained from the Molecular

Signature Database (MSigDB, v7.4) (18). We identified three

relevant sets of FMGs, namely, KEGG fatty acid metabolism

pathway genes, hallmark fatty acid metabolism genes, and

reactome fatty acid metabolism genes. After deleting duplicates

from these three sets of genes, 309 reliable records were

obtained. Furthermore, we performed intersection analysis of

these 309 genes with three ccRCC cohorts, and finally obtained

291 genes for follow-up studies (Supplementary Figure 1,

Supplementary Table 1).
Identification of mutated and
differentially expressed genes

The UCSC Xena database (19) was used to obtain the copy

number variation (CNV) information of the TCGA-KIRC

patients. Then, we calculated and summarized the most

significant results of CNV frequencies for these FMGs.

Differential expression genes (DEGs) between normal kidney

group and KIRC group were analyzed by “limma” package in R,

and genes with fold change > 1.50 and P< 0.05 were considered

to be differentially expressed.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1094657
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ding et al. 10.3389/fonc.2022.1094657
Construction and validation of
risk scores

Univariate Cox regression analysis was used to identify

FMGs associated with overall survival (OS) in the TCGA-

KIRC and E-MTAB-1980 datasets (P< 0.01), and the least

absolute shrinkage and selector operation (LASSO) analysis

was used to analyze overlapping gene sets with the “glmnet”

package in R (20). The prognostic genes were determined by the

best penalty parameter l, and 10 optimal FMGs were screened

out. The expression levels between normal kidney group and

KIRC group and Kaplan-Meier (K-M) analysis results were also

respectively shown base on TCGA-KIRC cohort. Furthermore,

the fatty acid metabolic index (FMI) was calculated by adding

the expression and corresponding coefficients of the FMGs for

each RCC patient. In order to make the results more intuitive,

MinMax variation was used to adjust FMI by using the following

formula.

Adjust   FMI =
xi −min xið Þ

max xið Þ −min xið Þ
The median cut-off value of FMI was used to classify

patients, and prognostic performance was evaluated by K-M

analysis and time-dependent receiver operating characteristic

(ROC) analysis.
Comprehensive assessment of FMI
in patients

The association of FMG-based risk scores with clinical

features was analyzed based on adjusted FMI values to assess

the clinical usability of FMGs. The factors included age, T/N/M

stage, and tumor grade.
Construction and evaluation of an FMG-
based clinicopathologic nomogram

Univariate and multivariate Cox regression analyses were

performed to explore the prognostic value of FMI. A nomogram

combining the clinical features of RCC and FMG-based risk

score was developed. To evaluate the performance of nomogram,

calibration curve, ROC curve and decision curve analysis (DCA)

were performed.
Functional enrichment analysis of the
FMI groups

To further characterize the biological processes in different

FMI groups, gene set enrichment analysis (GSEA) was
Frontiers in Oncology 03
performed. Enrichment results with P< 0.05 as well as FDR<

0.1 were considered statistically significant.
Evaluation of the immunogenomic
landscape of RCC

Immune checkpoints are new target molecules in

immunotherapy for RCC. In this study, the immune

checkpoints were compared between the FMI groups in the

three cohorts to evaluate the potential application of these

immune checkpoints for FMI-based immunotherapy. The

candidate checkpoints identified were PDCD1, IL2RA, MICB,

SELP, CX3CL1 and EDNRB.

Since the tissue samples used in transcriptome sequencing

are not composed of single cells, the heterogeneity of these

samples is inevitable. Therefore, the gene expression profile data

may also reflect changes in the cell components in the tissue. In

this study, xCell tool was used to predict the immune

microenvironment typing of gene expression profile data, and

further compared the expression differences of cell subsets

between different groups.
Analysis of sensitivity to chemotherapy

Based on the Genomics of Drug Sensitivity in Cancer

(GDSC) database, we performed the “pRRophetic” package in

R to predict semi-inhibitory concentrations (IC50) of ccRCC

chemotherapeutic drugs between different groups.
Validation of genes included in the
risk model

Immunohistochemical (IHC) staining was performed with

antibodies against FASN (D162701, BBI), ACOT9 (D121491,

BBI), FAAH2 (D122328, BBI), and PTPRG (GB114422,

Servicebio) to validate the expression of risk model-related

genes in 10 paired tumor and normal tissues from the Naval

Medical University cohort. The procedure for IHC was based on

a previous protocol (21). Three independent blind observers

analyzed the images by using ImageJ Software (ImageJ,

Marlyand, USA), and sum of area and integrated option

density (IOD) were measured. The mean integrated option

density was calculated by dividing the IOD sum by the area sum.
Statistical analysis

Unless otherwise stated, statistical significance was

considered significant at P< 0.05 and two-sided tests.
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Results

Construction of the FMG-related
signature for ccRCC

The CNVs and DEGs from the 309 FMGs were detected in the

TCGA-KIRC cohort. As a result of exploring the incidence of CNVs,

FMGswere found havemassive CNV alterations.We have listed the

top 10 genes with amplified or deleted CNVs (Figure 1A). A total of
Frontiers in Oncology 04
34DEGswere detected in 535 ccRCC samples when compared to 72

normal renal samples. The 10 significantly augmented FMGs were

among theDEGs identified in theccRCCsamples,while24havebeen

attenuated essentially (Figures 1B, C). The OS-related FMGs were

screened in TCGA-KIRC and E-MTAB-1980 datasets (Figures 1D,

E). In total, 160 and 67 significant OS-related FMGs were retrieved

respectively.Furtheranalysisof52overlappingOS-relatedFMGswas

conducted by combining the results of the two cohorts (Figure 1F).

Partial likelihood deviation analysis was performed on the results of
A

IH

B

D F

E

G

C

FIGURE 1

Construction of a fatty acid metabolism-related signature in ccRCC patients. (A) The frequency of the top 10 genes with amplified or deleted
CNVs of FMGs in the TCGA-KIRC cohort. (B) Heatmap analysis of 34 DEGs among FMGs. (C) Volcano plot depicting the distribution of DEGs.
(D) 160 prognostic FMGs in the TCGA-KIRC dataset. (E) 67 prognostic FMGs in the MTAB dataset. (F) Venn plot identifying 52 overlapping
prognostic FMGs. (G) LASSO Cox regression analysis of the 52 prognostic FMGs. (H) Plot depicting partial likelihood deviance of the LASSO
regression. (I) Corresponding coefficients of the 10 FMGs.
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LASSO regression (Figures 1G, H). We calculated the coefficient for

the prediction of the prognosis of ccRCC by the OS-related

FMGs (Figure 1I).
Effect of expression levels of each of
the 10 FMGs in the signature on
prognosis of RCC

A prognostic gene signature was constructed by identifying

10 pivotal OS-related FMGs, namely, FASN, ACOT9, MID1IP1,

CYP2C9, ABCD1, CPT2, CRAT, TP53INP2, FAAH2, and
Frontiers in Oncology 05
PTPRG. The expression level and prognostic potential of the

10 selected genes were evaluated individually. Boxplots were

used to depict the expression level of the 10 prognostic FMGs in

tumors and normal tissues (Figure 2A), and K-M curves were

drawn for analysis of OS (Figure 2B). As shown in the figures, a

significant decrease was observed in the expression of MID1IP1,

CYP2C9, CPT2, CRAT, TP53INP2, FAAH2, and PTPRG, while

a moderate increase in the expression of ABCD1 was observed in

the ccRCC samples. As noted in the separate K-M analyses of

OS, high expression of FASN, ACOT9, MID1IP1, CYP2C9, and

ABCD1 and low expression of CPT2, CRAT, TP53INP2,

FAAH2, and PTPRG were associated with more impaired OS.
A

B

FIGURE 2

Analyses of the effect of expression levels of each of the 10 FMGs in the signature on prognosis. (A) Expression level of the 10 prognostic FMGs
in tumor and normal samples. (B) K-M overall survival curves of ccRCC patients according to relative expression of the 10 FMGs. *P< 0.05; **P<
0.01; ***P< 0.001; ns means no significance.
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Evaluation and validation of the
10-FMG signature

Based on the expression level of the 10 FMGs, the FMI was

calculated using the following formula. FMI = Sum of the

expression of each gene × coefficients = FASN × 0.204117 +

ACOT9 × 0.151747 + MID1IP1 × 0.149099 + CYP2C9 ×

0.147525 + ABCD1 × 0.106468 − CPT2 × 0.20157 − CRAT ×

0.222481 − TP53INP2 × 0.240641 − FAAH2 × 0.278899 −

PTPRG × 0.314233.
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According to their median FMI values, ccRCC patients could

be classified as low-risk or high-risk group. Further, FMI was

normalized for easy visual representation of the data. According

to the data for the TCGA-KIRC cohort, patients in the high-risk

group were more likely to die than those in the low-risk group

(Figure 3A). The prognostic significance of FMI was confirmed

in two additional cohorts (Figures 3B, C). K-M analyses revealed

that the high-risk group had significantly worse OS and disease-

free survival (DFS) than the low-risk group in TCGA-ccRCC

cohort (Figures 3D, E). The two additional cohorts showed that
A B

D
E

F G

C

FIGURE 3

Evaluation and validation of the 10-FMG signature. Distribution plots of the patients’ normalized FMI and OS status TCGA-KIRC (A), E-MTAB-
1980 (B), and GSE22541 cohorts (C). K-M analyses of OS (D) and DFS (E) in the TCGA-KIRC cohorts. K-M analyses of OS (F) and DFS (G) in the
E-MTAB-1980 and GSE22541 cohorts respectively.
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OS deteriorated more among those at high risk than those at low

risk, consistent with the TCGA-ccRCC cohort (Figures 3F, G).
Correlation between FMI and clinical
features of ccRCC

The clinical parameters survival status and clinicopathologic

T/N/M were correlated with FMI to varying degrees (Figure 4A,

P< 0.05 for all). That is, higher FMI was associated with greater

severity of these clinical characteristics. The E-MTAB-1980

cohort also showed conspicuous differences in various clinical

parameters, including tumor stage and grade (Figure 4B). In

addition, FMI was found to be associated with gender and age:

specifically, male patients and patients older than 65 years had

higher FMI than female patients and patients younger than 65

years in the E-MTAB-1980 and GSE22541 cohorts (except for

age in the GSE22541 dataset) (Figures 4B, C). Figure 4D presents

a heatmap of the overall distribution of the 10 FMGs with

clinical parameters in the TCGA-KIRC cohort.
Establishment and assessment of an
FMG-based clinicopathologic nomogram

According to univariate Cox analysis, age, T/N/M stage,

tumor grade, AJCC stage, and FMI showed a remarkable

association with OS (Figure 5A, P< 0.001 for all). Multivariate

Cox analysis of these variables showed that only age, N, M, and

FMI were independent predictors (Figure 5B, P< 0.01 for all).

According to the above results, an individual OS prediction

nomogram was developed using FMI and the six clinical features

that were associated with prognosis according to univariate Cox

regression analysis (Figure 5C). In the calibration plot, the

nomogram was similar to an ideal curve in terms of predictive

value, and this was indicative of perfect stability (Figure 5D).

According to the results of DCA, the nomogram had a better

predictive effect than any individual clinical feature (Figure 5E).

Additionally, the area under the ROC curve values for the

nomogram for 2-year, 4-year, and 5-year survival were 0.853,

0.851, and 0.844, respectively, and it had better efficiency than

each of the other clinical factors in predicting OS (Figures 4F, G,

H). Thus, the predictive nomogram for OS appears to be fairly

accurate, and it could be used to assist decision-making in the

clinical setting.
GSEA analysis based on FMI grouping

The GSEA analysis results from the GO database,

demonstrated in Figures 6A and B, indicate that B-cell-
Frontiers in Oncology 07
mediated immunity, interferon−gamma production, NIK/NF

−kappaB signaling, phagocytosis, engulfment, and regulation

of tumor necrosis factor superfamily cytokine production were

considerably enriched in the group with high FMI (Figure 6A).

In addition, the results from the KEGG database showed that

antigen processing and presentation, the B cell receptor signaling

pathway, the cell cycle, PD−L1 expression and PD−1 checkpoint

pathway, and the TNF signaling pathway were enriched in the

high-FMI group (Figure 6B).
Immune microenvironment of ccRCC

In TCGA cohort, the immune score and tumor

microenvironment score were higher in the high-FMI group,

whereas the stroma score was markedly lower (Figures 6C, D, E,

P< 0.05 for all). The tumor microenvironment analysis results

demonstrated that the number of B cells, plasma B cells, M1 and

M2 macrophages, monocytes, central and effector memory CD4+

T cells, naive CD4+ T cells, Th1 and Th2 CD4+ T cells, CD8+ T

cells, central and effector memory CD8+ T cells, naive CD8+ T

cells, and natural killer (NK) T cells was significantly higher in the

high-FMI group (Figures 6F, G). Additionally, the immune

microenvironment analysis results of E-MTAB-1980 and

GSE22541 cohorts are shown in Supplementary Figure 2. The

results revealed that B cells, plasma B cells, M1 macrophages, Th2

CD4+ T cells, and NK T cells were notably strengthened in the

high-FMI group in all three cohorts.

Immunotherapy has shown great promise in cancer

treatment, and immune checkpoint blockade is a promising

anti-tumor strategy. Accordingly, the expression of six candidate

immune checkpoints were assessed. The results revealed that

PDCD1, IL2RA andMICB exhibited significant augmentation in

the high-FMI group, whereas SELP, CX3CL1 and EDNRB

exhibited significant augmentation in the low-FMI group. All

results were consistent across all three datasets (Figures 7A, B,

C). These findings indicate that the efficacy of immunotherapy

against different targets for patients with ccRCC may differ

according to whether they have high or low FMI.
Prediction of chemotherapeutic
drug sensitivity

According to the predicted results of the “pRRophetic”, we

observed differences in drug sensitivity between different groups

(Figures 8A-F). The results showed that there were no difference

in response for pazopanib and axitinib (P > 0.05 for all), and the

low-FMI group was more sensitive to sorafenib (P< 0.05), while

the high-FMI group were more sensitive to paditaxel,

rapamycin, and temsirolimus (P< 0.05 for all).
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A

B

D

C

FIGURE 4

Correlation analysis of clinical features and FMI. Association between adjusted FMI and different clinical parameters in the TGCA-KIRC. (A), E-
MTAB-1980 (B), and GSE22541 (C) cohorts. Heatmaps of the correlations between FMI and clinical parameters in the TGCA-ccRCC cohort (D).
*P < 0.05; **P < 0.01; ***P < 0.001; ns means no significance.
Frontiers in Oncology frontiersin.org08

https://doi.org/10.3389/fonc.2022.1094657
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ding et al. 10.3389/fonc.2022.1094657
Clinical validation of the expression
of genes

The protein expression of four genes (FASN, ACOT9, FAAH2,

and PTPRG) in the identified FMG signature was validated with

IHC in 10 ccRCC samples and 10 paired normal samples. The

results showed that all the four genes expressed in higher amounts

in normal samples than in tumor samples (Figures 9A, B). In

pa r t i cu l a r , t o ou r know l edge we eva l ua t ed the

immunohistochemical expression of FAAH2 in ccRCC for the

first time. The protein expression of other 4 genes (ABCD1,

CPT2, CRAT and MID1IP1) in the identified FMG signature

could be assessed using the Human Protein Atlas (http://www.
Frontiers in Oncology 09
proteinatlas.org/) database, and we summarized the representative

images of these genes in Supplementary Figure 3.
Pain dissection of the FMGs signature

Considering that themajority of cancer patients experience pain

during cancer progression or treatment, we further dissected the

associationof FMGs signaturewith cancerpain.As shown inTable 1,

we first provided literature evidence for 10 signatures associatedwith

fatty acids, and further we summarized the literature-reported

evidence for pain-related genes, including gene FASN, CYP2C9,

ABCD1, CPT2, and FAAH2.
A B

D

F G H

EC

FIGURE 5

Development and evaluation of a clinicopathologic nomogram based on the identified FMGs. (A, B) Univariate and multivariate Cox regression
analyses. (C) Development of a prognostic nomogram based on age, T stage, N stage, M stage, tumor grade, AJCC stage, and FMI.
(D) Calibration curve showing the predicted OS versus actual OS. (E) DCA of the clinical usefulness of the constructed nomogram.
(F, G, H) Receiver operating characteristic (ROC) analysis of the nomogram for predicting 2-, 4-, and 5-year OS in the TCGA-KIRC cohorts. **P
< 0.01; ***P < 0.001.
frontiersin.org

http://www.proteinatlas.org/
http://www.proteinatlas.org/
https://doi.org/10.3389/fonc.2022.1094657
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ding et al. 10.3389/fonc.2022.1094657
Discussion

There is considerable evidence that fatty acid metabolism is

severely disrupted in ccRCC; further, the dysregulation of

various lipid metabolism pathways that drive lipid deposition

is closely related to ccRCC (22). For example, it has been

appreciated that elevated lipid storage levels can maintain cell

membrane fluidity, thereby enhancing metastatic capacity (23).

Timely intervention with therapeutic approaches, such as

tyrosine kinase inhibition with sunitinib, pazopanib, and

nivolumab, has been found to significantly improve survival in

patients with advanced RCC (24). However, the complexity of

the tumor microenvironment in ccRCC and the high

heterogeneity of individual gene regulation are associated with
Frontiers in Oncology 10
inadequate treatment response and drug resistance. Given the

close association between ccRCC and fatty acid metabolism, a

systematic analysis of the role of FMGs in RCC could be helpful

for understanding the mechanism of disease progression and for

treatment decision-making.

In this study, we first identified FMGs and later confirmed

the significant role of FMGs in RCC based on the identification

of DEGs with CNV alterations. Based on data from the TCGA-

KIRC and E-MTAB-1980 cohorts, univariate Cox analysis along

with LASSO Cox regression analysis were used to identify a

novel robust prognostic signature of FMGs. Subsequently, the

signature was used to classify RCC patients into low- and high-

FMI groups and was validated in the three cohorts. Further, each

ccRCC patient was further stratified by constructing a risk score
A B

D E

F G

C

FIGURE 6

Gene set enrichment analysis and landscape of the immune microenvironment in the TGCA-KIRC. GO (A) and KEGG pathway (B) analyses of
the high- and low-FMI groups. (C, D, E) Evaluation of the tumor microenvironment of ccRCC. (F) The correlation of infiltrating immune cells.
(G) Violin diagram of the proportions of different tumor-infiltrating cells in the high- and low-FMI group. *P < 0.05; **P < 0.01; ***P < 0.001. ns
means no significance.
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model, and the groups showed significant differences in survival

and various clinicopathological parameters. In addition, ROC

analysis demonstrated the superior performance of our model

and indicated that it might be useful for formulating follow-up

treatments. We further used xCell to construct the

immunogenomic landscape of RCC and explore differences in

the distribution of immune cells. Altogether, the results above

revealed the prognostic signature of our FMGs has a great

promise in ccRCC.

The signature we constructed contains 10 fatty acid

metabolism genes, some of which have previously been

reported to be associated with multiple cancers. FASN encodes

fatty acid synthase, which primarily regulates the deposition of

animal liposomes by synthesizing long-chain fatty acids from

acetyl-coenzyme A (CoA) and malonyl-CoA. All esterified fatty

acids in most tumor cells are synthesized de novo. FASN is

dysregulated in a variety of cancers, including kidney, liver, lung,

and colorectal cancer, and this dysregulation is thought to be

associated with the aggressiveness and poor prognosis of cancers

(25, 26). The ACOT9 gene encodes acyl-CoA thioesterase 9,

which is a well-known key regulator of cellular utilization and
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regulates intracellular acyl-CoA/fatty acid levels. A recent study

found that ACOT9 promoted tumor metastasis and growth by

reprogramming lipid metabolism pathways in hepatocellular

carcinoma (27). Interestingly, we found that the FASN and

ACOT9 genes were significantly downregulated in RCC

patients. In the future, we will further study its potential

mechanisms in ccRCC. Protein tyrosine phosphatase receptor

gamma (PTPRG) is a well-known tumor suppressor in various

neoplasms (28). For example, Shu et al. found that PTPRG may

play an inhibitory role in breast tumorigenesis by upregulating

the p21(cip) and p27(kip) proteins through the ERK1/2 pathway

(29). In line with this finding, PTRPG expression was

significantly reduced in ccRCC according to the IHC results of

this study. In addition, the results of this study revealed that low

expression of PTRPG could predict poor prognosis. According

to recent reports, other genes, such as MID1IP1 (30), ABCD1

(31), CPT2 (32), and TP53INP2 (33), are closely associated with

the progression of ccRCC. However, our study is the first to

demonstrate that FAAH2 is inhibited in ccRCC and is an

indicator of poor prognosis. In general, the above results

confirm the reliability of our signature to a certain extent, but
A

B

C

FIGURE 7

Expression levels of immune checkpoints in the high- and low-FMI group. Expression level of PDCD1, IL2RA, MICB, SELP, CX3CL1 and EDNRB in
TCGA-KIRC (A), E-NTAB-1980 (B), and GSE22541 (C) cohorts. *P < 0.05; **P < 0.01; ***P < 0.001.
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the specific influencing mechanism and prognostic value in

clinical practice need to be further studied.

In order to further investigate the role of the signature genes,

GSEA analyses were conducted in two FMI groups. Noticeable

NIK/NF-kB signaling enrichment was observed in the high-FMI

patients. Growing body of research suggests that dysregulation

of NF-kB signaling pathway activity can lead to inflammatory

diseases as well as cancer and NF-kB has long been proposed as a

potential therapeutic target (34). Meteoglu et al. reported that

NF-kB was associated with markers of angiogenesis and

apoptosis in ccRCC, including VEGF, EGFR, and p53 (35). In

addition, it has also been reported that activation of the NF-kB
pathway is associated with ccRCC cell migration and invasion

(36). Further, drugs that target NF-kB have been found to have

therapeutic and preventive effects in a variety of cancers (37, 38).

The results of our study suggest that patients with high FMI

could benefit more from NF-kB-targeted therapy than patients

with low FMI. Similarly, it is now widely accepted that

immunotherapy is an effective method for treating cancer, and

an increasing number of immunotherapy drugs are being

evaluated in clinical trials (39). As an indispensable strategy in

immunotherapy, immune checkpoint inhibitors have gained

attention for their potential to improve the long-term

outcomes of cancer patients (40). However, the effectiveness of
Frontiers in Oncology 12
this treatment varies, as it is only effective in certain subsets of

cancer patients (41). Therefore, we compared six immune

checkpoint genes to explore potential immune therapeutic

targets in different FMI groups. In the high-FMI group,

PDCD1, IL2RA and MICB were significantly elevated, whereas

in the low-FMI group, SELP, CX3CL1 and EDNRB were

significantly elevated. These results indicate that FMI should

be considered when making decisions about immune checkpoint

inhibitor therapy for ccRCC patients. Brahmer et al. has reported

that PD-L1 inhibitors could promote tumor regression and

prolong survival in patients with advanced cancers including

ccRCC (42). Accordingly, ccRCC patients with higher FMI

might be more likely to benefit from anti-PD-L1 therapy, since

they have higher expression levels of PDCD1.

Notably, the majority of cancer patients experience pain

during cancer treatment and after curative treatment (55% and

40%, respectively) (43). For cancer survivors, the long-term

sequelae of pain after cancer treatment should not be ignored,

as cumulative reports have found that opioid abuse is associated

with increased mortality (44). Therefore, there is an urgent need

to explore other effective pain management options. Basically,

cancer cells are abnormal cell growth and proliferation, and fatty

acid metabolism changes significantly in the rapid proliferation

of cancer cells. Accordingly, interventions to prevent fatty acid
A B

D E F

C

FIGURE 8

Predictive results of chemotherapeutic responses. (A-F) The differences of chemotherapeutic response in the high- and low-FMI group. *P <
0.05; ***P <0.001.
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synthesis, increase fatty acid degradation through oxidation, and

decrease fatty acid release from storage are commonly used to

manage the abnormal proliferation of lipids and arrest cancer

progression (45). Among the 10 fatty acid metabolism genes

associated with prognosis that were identified in this study,

FASN has been previously reported as a therapeutic target. That

is, studies have confirmed that inhibition of FASN reduced

triacylglycerol and phospholipid levels and inhibited lymph

node metastasis of prostate carcinoma (46). Similarly, down-

regulation of CPT2 also inhibited fatty acid b-oxidation in the

tumor microenvironment and promoted cancer progression
Frontiers in Oncology 13
through acylcarnitine accumulation (47). Interestingly, fatty

acid metabolism interventions may not only alter cancer cell

proliferation but also help reduce pain during the disease. Recent

studies have found that specialized pro-resolving lipid mediators

(SPMs) can reduce fatty acid levels and effectively relieve chronic

pain, and this mechanism of pain regulation is currently believed

to be associated with the activation of immune cell receptors in

the lipid environment, changes in pro-/anti-inflammatory

pathways, and changes in peripheral nociceptor sensitivity

(48). For example, SPMs can activate the immune cell receptor

N-formyl peptide receptor 2 (ALX/FPR2), induce cell cycle
A

B

FIGURE 9

Clinical Validation of the risk model based on IHC. (A) Representative IHC images of the four selected gene. (B) The quantitative expression
levels of each gene. **P < 0.01; ***P < 0.001.
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arrest, and prevent phosphorylation of the nuclear factor kappa

B (NF-kB) pathway (49). Moreover, altered fatty acid

metabolism may also prevent the formation of neutrophil

extracellular traps, thus promoting inflammation resolution

and exerting an analgesic effect (48). In a nutshell, our results

and the aforementioned studies might indicate that

interventions targeting fatty acid metabolism-related genes

may have a dual effect on improving prognosis and pain that

warrants further investigation.
Conclusions

In summary, we integrated multiple bioinformatic analysis

methods to construct a reliable 10-gene prognostic signature of

ccRCC based on fatty acid metabolism and established a

nomogram that can be used in clinical practice. The signature
Frontiers in Oncology 14
may also serve as a potential therapeutic target with dual effects

on both ccRCC prognosis and cancer pain, but further studies

are needed to support the conclusions.
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TABLE 1 The summary of the pain dissection of the FMGs signature.

Gene Association with fatty acid Association with pain

FASN FASN is a key enzyme regulating the de novo synthesis of fatty acids,
which can catalyze acetyl-CoA and malonyl-CoA to produce palmitate.
(PMID: 26519059)

Palmitate can activate NF-kB transcription factors and regulate the expression of
NMDA receptor subunits. FASN can be used as a therapeutic target to reduce
neuropathic pain. (PMID: 25855977)

ACOT9 ACOT9 regulates fatty acid synthesis by catalyzing the hydrolysis of fatty
acyl-coenzyme A to form free fatty acid (FFA) and coenzyme A (CoA).
(PMID: 36004563)

NA

MID1IP1 The change of MID1IP1 expression can affect the expression of fatty acid
synthase (FASN) and induce phosphorylation of Acetyl-CoA carboxylase
(ACC), thereby affecting the biosynthesis of fatty acids and triglycerides.
(PMID: 34153683, 35916211)

NA

CYP2C9 CYP2C9 is a cytochrome P450 enzyme that has cyclooxygenase activity
and catalyzes the oxidation of polyunsaturated fatty acid arachidonic acid
to eicosatrienoic acids. (PMID: 30012669)

CYP2C9 can predict the analgesic effect of tramadol and ketorolac. (PMID:
34246203)

ABCD1 ABCD1 gene encodes peroxisome transport protein, which is involved in
transporting saturated very long chain fatty acids to peroxidase for b-
oxidation. (PMID: 32017990)

Absence of ABCD1 will lead to mechanical allodynia mediated by
mechanosensitive ion channels and dysfunction of satellite glial cells. (PMID:
35681537)

CPT2 Fatty acid oxidation (FAO) is a process in which carnitine
palmitoyltransferase 1 and 2 (CPT1 and CPT2) transport long-chain fatty
acids to the mitochondrial matrix, and then oxidize them to acetyl-CoA,
NADH and FADH2 and generate energy. (PMID: 33027638)

CPT2 deficiency may lead to metabolic disorder in the body, causing patients to
have diffuse muscle pain symptoms. (PMID: 27034144)

CRAT Carnitine acetyltransferase (CRAT) is the basic enzyme in carnitine
metabolism, which regulates the metabolic flexibility of muscle and
increases exercise ability. Carnitine can promote fatty acids to enter
mitochondria for oxidative decomposition during fat metabolism, which is
helpful to promote the balance of fat metabolism. (PMID: 29444428)

NA

TP53INP2 TP53INP2 mediates peroxisome proliferator-activated receptor gamma
(PPARG) regulates macroautophagic/autophagic-dependent mechanism
that induce brown fat differentiation and thermogenesis. (PMID:
35947488)

NA

FAAH2 Fatty acid amide hydrolase (FAAH1 and FAAH2) can inactivate
endogenous cannabinoid, and monoacylglycerol lipase can hydrolyze to 2-
arachidonic glycerol. (PMID: 30070030)

Fatty acid amide hydrolase (FAAH) plays an important role in the hydrolysis
and inactivation of endogenous arachidonic ethanolamide (AEA). AEA can
protect neurons from inflammatory injury by activating cannabinoid receptors
(CB1R and CB2R) and transient receptor TRPV1. FAAH inhibitors may become
a safe and reliable new analgesic. (PMID: 34364309, 29017758)

PTPRG PTPRG is a negative regulator of insulin signal transduction, and insulin
can promote the synthesis and storage of fat and reduce free fatty acids in
blood. (PMID: 29180649)

NA
NA, missing references.
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