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We consider the unbiased random walk on the Sierpinski network (Sn◦N) and
the half Sierpinski network (HSn◦N), where n is the generation. Different from

the existing works on the Sierpinski gasket, Sn◦N is generated by the nested

method andHSn◦N is half of Sn◦N based on the vertical cutting of the symmetry

axis. We study the hitting time on Sn◦N and HSn◦N. According to the complete

symmetry and structural properties of Sn◦N, we derive the exact expressions of

the hitting time on the nth generation of Sn◦N and HSn◦N. The curves of the

hitting time for the two networks are almost consistent when n is large enough.

The result indicates that the diffusion efficiency of HSn◦N has not changed

greatly compared with Sn◦N at a large scale.
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1 Introduction

In recent decades, complex networks have attracted great interest in the scientific

community [1,2] and are considered valuable tools for describing real-world systems in

the nature and society [3]. They also have a significant impact on mobility patterns,

network sampling, community detection, signal transmission, virus spreading, epidemic

control, and link prediction [4,5]. In recent years, complex networks have not only been

studied in the field of mathematics due to their intersectionality and complexity but also

more scholars in other disciplines have begun to pay attention to them, which involves

system science, statistical physics, computer and information science, etc. [6–9] Common

analysis methods and tools include the graph theory, combinatorial mathematics, matrix

theory, probability theory, and stochastic process.

A fractal is a rough or fragmented geometric shape that can be divided into multiple

parts, and each part is approximately a reduced-version copy of the whole. According to

this definition, a fractal feature is a property known as self-similarity, which means that a

fractal has self-similarity [10–13]. In recent years, fractals have attracted a surge of

attention in various scientific fields [14,15]. The fractal theory [16,17] has always been a

very popular and active theory. This is due to the self-similar structure that exists and the

crucial impact of the idea of fractals on a large variety of scientific disciplines, such as

molecular biology, pharmaceutical chemistry, optics, economics, and ecology [18]. In

addition, many complex networks and real networks are generated by the self-similar

fractal network [19–22]. There are many classical fractal models, such as the Cantor set,
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the Koch curve, and the Sierpinski gasket [23,24]. These

structures have obviously become the focus of research, and

many potential characterizations have been discovered. In 25–36,

the network evolved from the Sierpinski carpet and some vital

properties of the Sierpinski gasket were considered.

It has a great theoretical and practical significance to

study the hitting time of random walks, which is the mean of

the first-passage time of a random walker starting from any

site on the network to a trap (a perfect absorber). It can

characterize various other dynamical processes taking place

on the network, such as mobility patterns and virus

spreading. For example, in the communication and

information industry, the hitting time of a random walk

model can be used to study and simulate information

transmission and latency, data collection, quantification

and the prediction of communication and search costs, etc.

In the field of biology, random walk models can be used to

study and describe the spread of infectious diseases and

metabolic fluxes among organisms. In the computer

industry, the study of characteristics results in community

detection, computer vision, collaborative recommendation,

and image segmentation. It also describes the diffusion

efficiency of different networks. Kozak and Balakrishnan

[37,38] studied random walks on a two-dimensional

Sierpinski gasket, three-dimensional Sierpinski tower, and

d-dimensional Sierpinski model and gave the analytical

expression of the hitting time. Wu [39] studied the

random walk on the half Sierpinski gasket and gave the

formula for the hitting time. Qi [40] got the expression of

the hitting time for several absorbing random walks on

Sierpinski graphs and hierarchical graphs.

In this paper, we study random walks and discuss the hitting

time on the Sierpinski network model (Sn◦N) and the half

Sierpinski network model (HSn◦N) obtained by vertically

cutting Sn◦N based on the symmetry axis. Compared with

Sn◦N, the global self-similarity structure of HSn◦N is lost, and

only the local self-similarity is preserved. We expect to obtain the

exact expression of the hitting time onHSn◦N from the complete

symmetry of Sn◦N and show whether there is any effect on the

diffusion efficiency of the cut network. The mathematical

combination method and fractal theory are applied. The

remainder of this paper is organized as follows: in Section 2,

we introduce our models. In Section 3, we have a detailed

calculation of the hitting time of Sn◦N. Also, the detailed

calculation of the hitting time of HSn◦N is given in Section 4.

In the last section, we draw the conclusion.

2 Preliminaries

In this section, we introduce the structure of Sn◦N and

HSn◦N and some concepts about several types of random

walks, which will be used in the following.

2.1 The structure of Sn◦N and HSn◦N

Actually, Sn◦N can be constructed in a nested manner

with a self-similar structure. We separately define a triangle

and a 3-regular graph as S and N. As shown in Figure 1, we

can make three copies of the 3-regular graph N and then

embed N into S by nodes to obtain the initial generation,

which is recorded as S1◦N. Making three copies of S1◦N and

then embedding the initial generation S1◦N into S to produce

the second generation is known as S(S1◦N). For the

convenience of the following description, the second

generation is abbreviated as S2◦N. We get the nth

generation S(Sn−1◦N) by repeating the aforementioned

process, making three copies of Sn−1◦N and then

embedding the (n−1)th generation Sn−1◦N into S, which is

abbreviated as Sn◦N. Specifically, Sn◦N is divided into three

parts marked as S(i)n−1◦N with i = 1, 2, and 3, according to the

structure and iteration method. The upper half of Figure 2

shows the first two generations of Sn◦N. It should be noted

that all nodes will be labeled sequentially from the top to the

bottom by the site index i. The corner node 1 is the trap node,

also called the target node. Otherwise, the corner node 1, the

left-hand corner node, and the right-hand corner node of the

bottom row on Sn◦N are represented by the set A. Therefore,

it is convenient to refer to these three corner nodes as 1, L,

and R, respectively. Also, the hitting time is represented by

T(n)
1 , T(n)

L , and T(n)
R , where n is the generation.

As shown in the lower half of Figure 2, HSn◦N is obtained by

cutting the corresponding Sn◦N along the vertical symmetry axis.

The cutting method of the network cannot equally divide all the

nodes because vertices on the partition line will be retained

during segmentation.

From the aforementioned construction, we can easily derive

the total number of nodes on Sn◦N and HSn◦N to be

Nn � 5 · 3n + 3
2

, (1)

Hn � Nn − n + 2( )
2

+ n + 2( )
� 5 · 3n + 2n + 7

4
.

(2)

The three connecting vertices C1, C2, and C3, which are

named after connecting the three regions S(i)n−1◦N (i � 1, 2, 3) on
Sn◦N, are marked separately by the numbers as follows:

C1 � 5·3n−1+3−2n
2 , C2 � C1 + 2n−1 � 5·3n−1+3

2 , and

C3 � C2 + 5 · 3n−1 � 5·3n+3−2n
2 . According to the position of the

three connecting nodes relative to the trap node 1, we divide

them into two categories, denoted by sets Ω1
n and Ω1

n, i.e.,

Ω1
n � C1, C2{ }, (3)
Ω2

n � C3{ }. (4)

In addition, we use Ωf
n to denote the set of n non-trap nodes

on the vertical secant line, except site 2.
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2.2 Calculation of intermediate quantities

The hitting time is the mean of the first-passage time of a

random walker starting from any site on the network to a trap

node. In order to determine the hitting time for Sn◦N, we
introduce the following intermediate quantities, all of which

are the probability of a Markov chain on Sn◦N ending at

corner node 1. In the process, the chain starts at a certain

vertex and stops whenever it visits any of the three corner

nodes of Sn◦N, where n is the generation.

pn: The starting state is a corner node other than site 1. At

least one transition is performed.

p1(n): The starting state is a special vertex belonging to Ω1
n.

p2(n): The starting state is a special vertex belonging to Ω2
n.

pn+1 � pnp2 n + 1( ) + pnp1 n + 1( ),
p1 n + 1( ) � 1

2
pn + 1 − pn( )p1 n + 1( )[ ]

+1
2

pnp2 n + 1( ) + 1 − 2pn( )p1 n + 1( )[ ],
p2 n + 1( ) � 1

2
pnp1 n + 1( ) + 1 − 2pn( )p2 n + 1( )[ ]

+1
2

pnp1 n + 1( ) + 1 − 2pn( )p2 n + 1( )[ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

The first equality of the equation group is explained. A

random walk in Sn+1◦N, starting from the corner node L and

ending whenever the walker reaches any three corner nodes

of Sn+1◦N, is limited to jumping at least one step. By

definition, the walker stops at the corner node R or 1 with

probability pn+1. In addition, the walker must first reach a

connecting vertex C1 or C3 in order to reach one of the corner

nodes R or 1. By definition and symmetry, the probability of

reaching each of the connecting vertices C1 or C3 is pn, where

the connecting vertex C1 belongs to Ω1
n+1 and the other

connecting vertex C3 belongs to Ω2
n+1, and the walker has

the remaining probability 1−2pn returning to the corner node

L, where it stops walking. Therefore, the first equality is

obtained.

We next certify the second equality in the equation system

(Eq. 5). Considering a random walk in Sn+1◦N, which starts from
the connecting vertex C1 and ends whenever the walker reaches

any three corner nodes of Sn+1◦N, it jumps at least one step. By

definition, the probability that the walker stops at corner node

1 is p1(n + 1). The probability of getting in S(1)n ◦N and S(2)n ◦N is
1
2. If it enters S

(1)
n ◦N, it has a probability of pn to arrive at corner

node 1, where the walker stops jumping. Also, the walker reaches

the other two corner nodes of S(1)n ◦N with probability 1−pn,

i.e., connecting vertices C1 and C2 belonging to Ω1
n+1. As a result,

we can write the first item on the right side of the second equality.

Similarly, if it enters S(2)n ◦N, it reaches the corner node L or the

connecting vertex C3 with the same probability pn. When it

reaches the corner node L, it stops walking. When it reaches the

connecting vertex C3, it will continue to walk to the target node.

Then, the walker has a probability 1−2pn of returning to the

connecting vertex C1. Therefore, we can write the second item on

the right side of the second equality. From these analyses, the

aforementioned equality is obtained.

Ultimately, we testify to the third equality of the system of

Eq. 5. A random walk in Sn+1◦N, starting from the connecting

vertex C3 and ending whenever the walker reaches any three

corner nodes of Sn+1◦N, jumps at least one step. By definition,

the probability that the walker stops at corner node 1 is p2(n +

1). The probability of getting into S(2)n ◦N and S(3)n ◦N is 1
2. If it

enters S(2)n ◦N, the probability of the walker reaching the

corner node L is pn, and the walker will stop walking at

this point. In addition, the probability of the walker

reaching the connecting vertex C1 is pn, and the probability

of returning to the starting site C3 is 1−2pn. As a result, we can

draw up the primary item on the right side of the last equality

in the system of Eq. 5. Due to the complete symmetry of

Sn+1◦N, the random walk on S(3)n ◦N is the same as that of

S(2)n ◦N. Therefore, the last equation is true.

It is easy to know that the initial value p1 � 4
15. Through

simplification, the final solution is obtained:

FIGURE 1
Generation process of the initial generation S1◦N.
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pn � 4
15

3
5

( )n−1
,

p1 n( ) � 2
5
,

p2 n( ) � 1
5
.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(6)

We next define the corresponding hitting time. Corner

nodes 1, L, and R are represented by set A, where site 1 is set as

the trap node; connecting vertices C1, C2, and C3 are indicated

by set I.

TL→1(n): The hitting time from the corner node L to the

corner node 1 in the nth generation.

TL→A(n): The hitting time from the corner node L to any

node in set A in the nth generation.

TI→A(n): The hitting time from any vertex in set I to any node

in set A in the nth generation.

FIGURE 2
First two generations of Sn◦N and HSn◦N for n = 1 and 2.
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TL→1 n( ) � TL→A n( ) + 1 − pn( )TL→1 n( ),
TL→A n + 1( ) � TL→A n( ) + 2pnTI→A n + 1( ),
TI→A n + 1( ) � 1

2
TL→A n( ) + 1 − pn( )TI→A n + 1( )[ ]

+1
2

TL→A n( ) + 1 − pn( )TI→A n + 1( )[ ].

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(7)

We now attest to the first equality in the equation system (Eq.

7). TL→1(n) is the hitting time for a randomwalk in Sn◦N starting

from the corner node L and ending at the trap node 1. According

to the structure of Sn◦N, the walker must first reach any of the

three corner nodes of Sn◦N in order to reach trap node 1, taking

expected timesteps TL→A(n). In such a process, the probability of

reaching destination node 1 is pn, where the walker stops

jumping. Also, the probability of reaching corner nodes R and

L is 1−pn, from which the walker must continue to bounce

TL→1(n) steps to reach trap node 1. Thus, we get the first

expression.

Subsequently, we prove the second equality in the equation

system (Eq. 7). TL→A(n + 1) is the hitting time for a random walk

starting from the corner node L to any of the three corner nodes of

Sn+1◦N for the first time, under the limitation that the walker jumps

at least one step. In order to reach any of corner nodes in Sn+1◦N,
the walker starting from the corner node Lmust first visit one of the

corner nodes in Sn◦N. It is worth noting that these points belong to
S(2)n ◦N. This process is expected of TL→A(n) timesteps. In this

process, there is the same probability of reaching the connecting

vertices C1 and C3, which is pn. The probability of returning to the

corner node L is 1−2pn, stopping at this point. If the walker reaches

any of the connecting vertices C1 and C3, it will continue to jump

TI→A(n + 1) steps to visit any of the corner nodes of Sn+1◦N.

Ultimately, we testify to the third equality of the system in

Eq. 7. Consider a random walk, which starts from any one of

the connecting nodes C1, C2, and C3 and ends whenever it

reaches any corner nodes on Sn+1◦N. By definition, the hitting
time is TI→A(n + 1). We now study the random walk from the

connecting vertex C3, which may perform the following two

processes. Both processes happen with the probability of 12. In

the first process, the walker goes inside S(2)n ◦N, taking

TL→A(n) timesteps to reach the three corner nodes of

S(2)n ◦N. The probability of reaching the corner node L is

pn, where the walking process is over. Also, the probability

of reaching the other two corner nodes belonging to S(2)n ◦N is

1−pn, i.e., the connecting vertices C1 and C3. The walker needs

to take further TI→A(n + 1) timesteps before being absorbed.

According to the symmetry of Sn◦N, the second process is the

same as the first one.

By substituting the value of pn � 4
15 (35)n−1 into the

aforementioned equation and simplifying it. In addition, it is

easy to know TL→A(1) = 4, so we can get the following:

TL→1 n( ) � 3 · 5n,
TL→A n( ) � 4 · 3n−1,
TI→A n( ) � 3 · 5n−1.

⎧⎪⎨⎪⎩ (8)

3 Formula of hitting time on Sn◦N

The Sierpinski network in any given generation n, using

arrays (a, b, c) to represent a piece of interior points, for instance,

(2, 5, 6) or (10, 16, 17), as shown in Figure 3; let (I1, J1, K1) label

the three vertices of the smallest triangle containing the three

interior points (a, b, c), simultaneously, for instance, (1, 7, 9) or

(7, 20, 22). According to the numerical results, the hitting time

can be rewritten as follows:

Ta n( ) + Tb n( ) + Tc n( ) � TI1 n( ) + TJ1 n( ) + TK1 n( ) + 9. (9)

Let (i1, j1, k1) label the three sites, which are one of any

minimum size 1 lacunary triangle on Sn◦N. For example, (3, 4, 8)

or (12, 13, 21); (I1, J1, K1) also label the three vertices of the

triangle containing (i1, j1, k1) as its central lacunary region, such

as (1, 7, 9) or (7, 20, 22), referring to Figure 3. According to the

numerical results, it is easy to see the following:

Ti1 n( ) + Tj1 n( ) + Tk1 n( ) � TI1 n( ) + TJ1 n( ) + TK1 n( ) + 9 · 50.
(10)

In the same way, we now let (i2, j2, k2) denote the three

vertices of a lacunary region of size 2 in the network, such as (7, 9,

22) or (35, 37, 63); (I2, J2, K2) label the three vertices of the

triangle containing (i2, j2, k2) as its central lacunary region, such

as (1, 20, 24) or (20, 61, 65). It then follows the scaling derived

previously that is as follows:

FIGURE 3
Generation of the n = 3 Sierpinski network.
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Ti2 n( ) + Tj2 n( ) + Tk2 n( ) � TI2 n( ) + TJ2 n( ) + TK2 n( ) + 9 · 51.
(11)

Therefore, moving up the hierarchy, if (ir, jr, kr) are the

sites demarcating a lacunary triangle of size r in

the ascending order of size, starting from the smallest in

size 1, and if (Ir, Jr, Kr) label the vertices of the triangle with

(ir, jr, kr) as the central lacunary region, then

Tir n( ) + Tjr n( ) + Tkr n( ) � TIr n( ) + TJr n( ) + TKr n( ) + 9 · 5r−1.
(12)

The foregoing suggests how the hitting time Ttotal(n)

may be computed for the arbitrary n. This is carried out by

suitably regrouping the terms in the sum ∑Nn
i�2Ti(n) and

systematically and repeatedly using Eq. 12 as one moves

upward through triangles of increasing sizes. It needs some

combinatorics and involves the enumeration of the number

of lacunary triangles of each size in the network. The final

result can be expressed entirely in terms of the known

numerical factors and the combination

(T1(n) + TL(n) + TR(n)). Since T1(n) ≡ 0, while TL(n) =

TR(n) = 3 · 5n, this leads directly to the desired

expression for Ttotal(n). As an illustration of the

procedure, consider the network of generation n = 3,

with Nn = 69. Dropping for a moment the generation

superscript for brevity and with L = 61 and R = 69, as

shown in Figure 3, we obtain the following:

Ttotal 3( ) � ∑69
i�2

Ti 3( )

� 3 T1 + TL + TR( ) + 32 · 9 + 32 · 9 · 50
+ 5 30 T1 + TL + TR( ) + 31 · 9 · 51 + 31{
T1 + TL + TR( ) + 30 · 9 · 52[ ]}. (13)

Thus, Ttotal(3) has been recast in terms of the sum (T1 + TL +

TR) of the hitting time from the three primary sites. The meaning

of 32 of the second term on the right side of the equation is that

there are nine pieces of interior points in S3◦N. It should be noted
that the modulus 32 of the third term represents the number of

regions of size 1, the coefficient 31 of the factor multiplying 9 · 51
is the number of lacunary triangles of size 2, and 30 of the factor

multiplying 9 · 52 is the number of lacunary triangles of size 3 on

the n = 3 network.

We may now carry out a similar procedure for the case of

general n. The analog of Eq. 13 yields the following:

Ttotal n( ) � ∑Nn

i�2
Ti n( )

� 3 + 5 · ∑n−2
m�0

3m⎛⎝ ⎞⎠ T1 n( ) + TL n( ) + TR n( )( )

+ 2 · 3n−1 · 9 + 3n−2 · 9 · 5( ) ∑n−1
m�1

5m. (14)

The numerical value is substituted to get the following result:

Ttotal n( ) � 25
4
· 5n · 3n + 3 · 5n − 1

4
· 3n. (15)

Therefore, the hitting time on Sn◦N is as follows:

�T n( ) � 1
Nn − 1

Ttotal n( )

� 1
Nn − 1

∑Nn

i�2
Ti n( )

� 25 · 5n · 3n + 12 · 5n − 3n

2 3n · 5 + 1( ) .

(16)

4 Formula of hitting time on HSn◦N

We divide the random walk into two processes on Sn◦N
and HSn◦N, except node 2. The first process is that a walker

starts from the starting point to node 3 or 4, which is the sum

of the hitting time called Tg(n). The second procedure is a

random walk from node 3 or 4 to the trap node, which is called

T3(n). In addition, T2(n) denotes the hitting time from site 2 to

trap node 1.

Similarly, the first process of HSn◦N is a random walk from

any site to node 3, and the hitting time of this process is recorded

as Hg(n). The second process is recorded as H3(n), and H2(n)

FIGURE 4
Labeling method of nodes on Sn◦N.
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represents the hitting time from site 2 to trap node 1 on HSn◦N.
Thence, we have the following equations:

Ttotal n( ) � Tg n( ) + Nn − 2( )T3 n( ) + T2 n( ),
Htotal n( ) � Hg n( ) + Hn − 2( )H3 n( ) +H2 n( ).{ (17)

Let Tr(n) be the mean of the first return time for a random

walker starting from node 3 in the first process of HSn◦N. Then,
Tr(n) can also be the mean of the first return time to node 3 or

4 in the first process of Sn◦N. Therefore, according to the

structure of HSn◦N and Sn◦N, we have the following

relationship:

T3 n( ) � 1
6
+ 1
6

1 + T2 n( )[ ] + 1
6

1 + T3 n( )[ ] + 3
6

Tr n( ) + T3 n( )[ ],
H3 n( ) � 1

5
+ 1
5

1 +H2 n( )[ ] + 3
5

Tr n( ) +H3 n( )[ ].

⎧⎪⎪⎨⎪⎪⎩
(18)

Moreover, from the numerical results, we have T2(n) = 3 · 3n
and H2(n) = 2 · 3n. So, we get the following relation:

T3 n( ) −H3 n( ) � 1
2

3n + 1( ).

Because the nodes on the cut line are retained, the hitting

time Ti(n) from any node i on the secant line to the goal node 1 is

also divided into two parts. The first process is a random walk

from node i to node 3 or 4, which is denoted as Ti→3,4(n). The

hitting time of the second process is denoted as T3(n), which

represents a random walk from site 3 to destination node 1.

Therefore, Ti(n) can be rewritten as follows:

Ti n( ) � Ti→3,4 n( ) + T3 n( ). (19)

Consequently, the formula for the hitting time of nodes that

belong to Ωf
n is as follows:

Tf n( ) � ∑
i∈Ωf

n

Ti→3,4 n( ) + T3 n( )( )
� �T

f
n( ) + n · T3 n( ).

(20)

In Sn◦N, in addition to the nodes on the secant line, other

nodes are evenly divided on both the sides in the segmentation

process. HSn◦N contains the nodes on the left half of the secant

line and the nodes in set Ωf
n . Therefore, it can be obtained by the

following:

Hg n( ) � 1
2

Tg n( ) − �T
f
n( )[ ] + �T

f
n( ). (21)

Eqs 17 and 20 are inserted into the aforementioned formula

to get the following solution:

Hg n( ) � 1
2

Ttotal n( ) − Nn + n − 2( )T3 n( ) − T2 n( ) + Tf n( )[ ].
(22)

Then, substituting the aforementioned expression (Eq. 22)

into the second formula in the equation group (Eq. 17), we get the

following:

Htotal n( ) � Hg n( ) + Hn − 2( )H3 n( ) +H2 n( )
� 1
2

Ttotal n( ) − Nn + n − 2( )T3 n( ) − T2 n( ) + Tf n( )[ ]
+ Hn − 2( )H3 n( ) +H2 n( )

� 1
2

Ttotal n( ) − 3n + 1
2

Nn + n − 2( ) + 3n + Tf n( )[ ].
(23)

We focus on solving the expression of Tf(n). In order to

facilitate the calculation, we rewrite the three connecting

vertices C1, C2, and C3 of Sn◦N as dn, en, and fn,

respectively. According to the structural characteristics of

Sn◦N, the sites dn and en in the nth generation can be

labeled as the corner nodes Ln−1 and Rn−1 in the (n−1)th

generation. The labeling method of nodes on Sn◦N can be seen

in Figure 4.

If corner nodes 1, Ln, and Rn are set as goal nodes, then the

walker starting from site fy(y = 1, . . ., n) is captured by the

trap set A after 3 · 5y−1 random walks on average in Sn◦N,
which can be seen from the analysis of the equation group

(Eq. 7) and results. In addition, the arriving node Ly or Ry has

a probability of 2
5. Thus, Tfy(n)(y � 1, . . . , n) can be denoted

as follows:

Tfy n( ) � 3 · 5y−1 + 2
5
TLy n( ) + 2

5
TRy n( )

� 3 · 5y−1 + 4
5
TLy n( )

� 3 · 5y−1 + 4
5
Tdy+1 n( ).

Similarly, starting from the point dy+1(y = 1,. . ., n) and

getting to the site Ly or Ry has a probability of 2
5 after 3 · 5y

random walks on average. Then, the walker is captured by the

trap set A. In addition, there are 2
5 and

1
5 probabilities reaching

FIGURE 5
Numerical simulation diagram of �T(n) and �H(n).
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nodes Ly+1 and Ry+1, respectively. Therefore, the aforementioned

equation can be expressed as follows:

Tfy n( ) � 3 · 5y−1 + 4
5

3 · 5y + 2
5
TLy+1 n( ) + 1

5
TRy+1 n( )[ ]

� 3 · 5y−1 + 4
5
· 3 · 5y + 4

5
· 3
5
TLy+1 n( )

� /

� 3 · 5y−1 + 4 · 5y−1 ∑n−y
k�1

3k + 4
5
· 3

5
( )n−y

TLn n( )

� 3 · 5y−1 + 4 · 5y−1 ∑n−y
k�1

3k + 4
5
· 3

5
( )n−y

· 3 · 5n

� 18 · 5y−1 · 3n−y − 3 · 5y−1.

(24)

Here, TLn(n) � 3 · 5n and the expression for the hitting time

of nodes that belong to Ωf
n is as follows:

Tf n( ) � ∑
i∈Ωf

n

Ti n( )

� ∑n
y�1

Tfy n( )

� ∑n
y�1

18 · 5y−1 · 3n−y − 3 · 5y−1( )
� 33

4
· 5n + 9 · 3n + 3

4
.

(25)

Therefore, substituting Eq. 15 and Eq. 25 into Eq. 23, the

expression of Htotal(n) is as follows:

Htotal n( ) � 1
2

25
4
· 5n · 3n + 45

4
· 5n − 37

4
· 3n − 5

4
· 32n − n 3n + 1( )

2
+ 1[ ].

(26)

Then, the hitting time on HSn◦N is as follows:

�H n( ) � 1
Hn − 1

Htotal n( )

� 1
Hn − 1

∑Hn

i�2
Hi n( ) � 2

5 · 3n + 2n + 3

25
4
· 5n · 3n + 45

4
· 5n − 37

4
· 3n − 5

4
· 32n − n 3n + 1( )

2
+ 1[ ].
(27)

In order to compare it with the exact formula for the hitting

time of a random walk on Sn◦N and HSn◦N, we draw the

numerical simulation diagram of �T(n) and �H(n) for n = 1, 2,

. . ., 7, as shown in Figure 5. The figure shows that the difference

in the hitting time between Sn◦N and HSn◦N is small when n is

large enough. Therefore, the curves of both the networks are

nearly merged for large scales, which indicate that the diffusion

efficiency of HSn◦N is consistent with Sn◦N for a large scale.

5 Conclusion

In this paper, we study analytically the unbiased random

walk on the Sierpinski network (Sn◦N) and the half Sierpinski

network (HSn◦N), which is obtained by vertically cutting Sn◦N
along the symmetry axis. After cutting, the global self-similarity

of Sn◦N is destroyed, but only the local self-similarity is

maintained. We have analytically obtained the closed-form

expression of the hitting time for a random walk on the nth

generation HSn◦N, which is �H(n) � 2
5·3n+2n+3

[254 · 5n · 3n + 45
4 · 5n − 37

4 · 3n − 5
4 · 32n − n(3n+1)

2 + 1]. However, the

hitting time of Sn◦N is found to be �T(n) � 25·5n ·3n+12·5n−3n
2(3n ·5+1) . The

hitting time is the quantity that characterizes the diffusion

efficiency of the network. The curves of the two networks

show that the hitting time of HSn◦N is practically similar

compared with Sn◦N when n is large enough, and our results

show that the diffusion efficiency of HSn◦N has little effect

compared with Sn◦N at a large scale. Our work is further

helpful in understanding the properties of Sierpinski

networks.
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