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Abstract. For engineering problems, the correlation exists among the 
common random variables. For those with highly correlated variables 
accompanying the high nonlinearity, large error would be induced if 
ignoring the influence of their correlation matrix. Considering correlated 
variables, an executing mode of polynomial response surface method based 
on Nataf transformation and univariate decomposition is introduced in this 
paper, called as N-UDPRSM. The correlated variables can be converted 
into the independent standard normal space and all of the univariate 
component polynomials can be determined separately. Besides, high order 
terms can be adopted into N-UDPRSM to balance the accuracy and
efficiency for high nonlinear engineering problems. The corresponding 
practical implementation for engineering reliability analysis is designed in 
detail. A typical engineering structure is studied. The results indicate that it
performs well in balancing accuracy and efficiency, and it also preserve 
some superiority contrast with other state-of-art methods.

1 Introduction

For the engineering reliability analysis, the basic problem is to compute the structural 
failure probability Pf , namely
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in which Θ = (Θ1, Θ2, …, Θm) represents the structural random variables; F(Θ)
represents the performance function which express the relationship between Θ and the 
structural limit state; pΘ(Θ) represents the combined probability density function of Θ.

Generally, it is difficult to obtain the closed solution of Eq. (1) through direct numerical 
integration methods. Surrogate models have been proposed to compute this probability [1, 
2]. The response surface method (RSM) is frequent-used and reliable for its own merits of 
satisfactory accuracy, efficiency and implementation. The basic idea of RSM is to 
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approximate the implicit function F(Θ) by an implementable function [3-6]. The 
polynomial RSM may be the most easy-to-implement. One of its tasks is to calculate the 
undefined coefficients [7].  However, the dimensions of equation increase much faster than 
that of random variables, and it is the so-called “curse of dimension” question. For the high 
dimensional or high nonlinear systems, the difficulties of evaluating the undetermined 
coefficients and balancing the accuracy and efficiency still exist.

The univariate decomposition method (UDM) was used to reduce the computational 
cost for Eq. (1), which can decompose a multi-dimensional integration into separate 
integrations [8]. Combining the polynomial RSM and UDM, a new executing mode of 
adaptive polynomial RSM [9-10] has been developed, in which all of the univariate 
component polynomials can be determined separately. On the other hand, the correlation 
generally exists among common variables. For the highly correlated variables 
accompanying high nonlinearity, large error would be induced if ignoring the correlation 
for the engineering reliability analysis. The common way is to transform the correlated 
variables into independent standard normal space. Nataf transformation [11] is a widely and 
feasible used method for normal-to-non-normal transformation, when only the marginal 
PDFs and the considered correlation factors of the random variables are known.

In order to settle the problems with correlated variables for engineering reliability 
analysis with balancing the accuracy and efficiency, an execution for polynomial RSM 
based on Nataf transformation and UDM is introduced in this paper.

2 Univariate decomposable polynomial response surface model

2.1 The univariate decomposition method

Supposing F(Θ) is continuous, real-valued and differentiable, F(Θ) can be expressed in the 
Taylor series expansion, namely
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where Θ = (Θ1, Θ2, …, Θm) is random vector of the input; c = (c1, c2, …, cm) is the selected
reference point; F(c) is the value of F(Θ) at c; Ω represents the residual error of omitting 
cross terms.

Based on UDM, F(Θ) can be approximated in a summary of univariate functions,
namely
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where F(c1, c2, …, ci-1, Θi, ci+1, …, cm) represents the component function with respect to Θi

and it can be expanded at c
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Substituting Eq. (3) into Eq. (2) yields
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Comparing Eq. (1) with Eq. (4), only Θ differs, which is so small that it can be 
neglected [8].

2.2 Univariate decomposable polynomial response surface model - UDPRSM

Based on RSM, a univariate polynomial gi(Θi) can be adopted to approximate F(c1, c2, …,
ci-1, Θi, ci+1, …, cm) in Eq.(3), i.e.,

1 1 1 ,
0

( , , , , ) ( )
N

n
i i i m i i i n i

n

F c c c c gΘ Θ Θa− +
=

⋅ ⋅⋅ ⋅ ⋅⋅ ≈ = ∑                                (6)

where N is the pre-set highest order and ai,n is the undefined coefficient.
Selecting V = N+1 samples around reference point, i.e., Θi,1 = ci+γ1rσi, Θi,2 = ci+γ2rσi, …, 

Θi,V-1 = ci+ γV-1rσi, and Θi,V = ci+γVrσi, and determining the corresponding V samples of F(Θ), 
i.e.,  gi,1, gi,2, gi,3, …, gi,V-1,  gi,V, the coefficients ai,0, ai,1, ai,1,…, ai,N can be confirmed by 
solving the simultaneous equations directly. Herein, r is the sample domain parameter, r =
3 empirically; γv (n=1, 2, …, V) is the interpolation coefficient, and the Chebyshev nodes 
are recommended in this work; σi is the standard deviation of Θi.

Therefore, substituting all determined gi(Θi) (i=1, 2, …, m) into Eq. (3) generate the 
total model G(Θ), namely

1

( ) ( ) ( ) ( 1) ( )
m

i i
i

F G g Θ m F
=

≈ = − −∑Θ Θ c                               (7)

It is noteworthy that although Eq. (7) is a polynomial as a whole, it is decomposed into 
m component response surface functions; for every component function gi(Θi), its 
undefined coefficients are solved separately instead of simultaneously for the whole 
function.

3 Structural reliability analysis by UDPRSM considering variable 
correlation

For structure reliability analysis, RSM is used to approximate the structural implicit limit 
state function F(Θ) by an implementable function G(Θ). Therefore, the structural failure 
probability Pf can be rewritten as

{ } { }Prob ( ) 0   Prob ( ) 0f fP F P G= ≤ ⇔ = ≤Θ Θ                (8)

Besides, in Section 2, UDPRSM provides a convenient model based on UDM. However, 
due to its inherent character, it seems that it is adverse for those cases with correlated 
variables. In order to settle this question, Nataf transformation [11] is introduced here.

3.1 Nataf transformation and its inversion

Supposing that Y = (Y1, Y2, …, Ym) is standard normal random vector with the correlation 
matrix ρ0=(ρ0ij)m×m and the random vector Θ = (Θ1, Θ2, …, Θm) is with the correlation 
matrix ρ=(ρij)m×m, by the isoprobabilistic transformation, the relationship between Θ and Y
can be expressed as

( )1     1, 2,...,i Θi iΘ F y i m−= =  Φ                                          (9)
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where FΘi(•) is the marginal cumulative distribution function of Θi, and F-1
Θi(•) is the 

inverse function of FΘi(•).
Generally, ρ = (ρij)I×I can be determined beforehand and for some common distribution 

types, ρ0=(ρ0ij)I×I can be approximated by the following empirical formula

0ij ijρ F ρ= ⋅                                                       (10)

where F ≥ 1 and it is the function of FΘi(•) and ρij.
Then, by Cholesky decomposition, there is

0 0 0
T=ρ L L                                                          (11)

where L0 is the lower triangular decomposition matrix of ρ0. Left multiplying by L0
-1, Y can 

be converted into independent standard normal random vector Z = (Z1, Z2, …, Zm), i.e.,

1
0
−=Z L Y                                                            (12)

From the above, the forward process T of Nataf transformation can be briefly expressed 
as the following form
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By simple back analysis, its inversion T-1 can be obtained, expressed as
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Therefore, by the forward process T, Θ can be transformed into the independent 
standard normal random vector Z, and by its inversion T-1, Z can be transformed into Θ.

3.2 Practical implementation for engineering reliability analysis

Combined with Nataf transformation and its inversion, the implementation procedure of 
UDPRSM for engineering reliability analysis is designed, denoted as N-UDPRSM in this 
work. N-UDPRSM can be divided into the following five stages.

Stage 1. The preparatory work.
(1) Select the random vector Θ = (Θ1, Θ2, …, Θm), which can influence the structure or 

its response uncertainty; and determine their probability distribution and the correlation 
coefficient matrix ρ.

(2) Select the pre-set degree N of polynomial, i.e., determine the response surface model.
Stage 2. The initial response surface establishment.
(1) Take the mean point of Θ as the reference point, i.e., c = μ, and then calculate F(μ). 
(2) For each Θi (i=1, 2, ..., m), run the following sub-steps to determine the component 

response surfaces.
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Stage 1. The preparatory work.
(1) Select the random vector Θ = (Θ1, Θ2, …, Θm), which can influence the structure or 

its response uncertainty; and determine their probability distribution and the correlation 
coefficient matrix ρ.
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(1) Take the mean point of Θ as the reference point, i.e., c = μ, and then calculate F(μ). 
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response surfaces.

(I) Select V=N+1 samples Θi,v (v=1,2,..., V) and meanwhile the other random variables 
Θj (j≠i) are set to their reference values cj, i.e., Θi,v=(c1, c2, …, ci-1, Θi,v, ci+1,…, cm); and 
calculate their corresponding response values F(Θi,v)=gi,v, (v=1,2,..., V);

(II) By Nataf transformation Eq. (13), transform those V vector samples Θi,v into Zi,v =
(z1, z2, …, zm), which are obey to the random vector Z = (Z1, Z2, …, Zm) in the standard 
Gaussian space; 

(III) Taking the above Zi,v and F(Θi,v) as the input and output factors respectively, fit the 
component response surface function gi(Zi) by solving Eq.(6), in which variable Θ is 
replaced by Z.

(3) Substitute all gi(Zi) (i=1, 2, ..., m) and F(c) into Eq.(7), and yield the initial response 
surface model with respect to Z in the standard normal space, noted as G0(Z).

Stage 3. Searching the new reference centre.
(1) Based on G0(Z), search for the design point Z* by the first order reliability method 

(FORM) in the standard normal space.
(2) By the inverse Nataf transformation Eq. (14), transform Z* into Θ*, which would be 

taken as the new reference centre in the physical space.
Stage 4. Establishment of the final response surface.
(1) Set c= Θ* and calculate F(c).
(2) Repeat the Stage 2-(2) step to approximate all of gi(Zi) (i=1,..., m) again.
(3) Substitute all of gi(Zi) (i=1,..., m) and F(c) into Eq. (7), and yield the final response 

surface model in the standard norm space, noted as G(Z).
Stage 5. Estimation of the reliability index β associated with G(Z) by FORM.

4 Case study

As Fig.1 shown, a frame structure is studied in this section. This example includes some 
unique features, such as correlation matrix highly correlated, high uncertainties, high 
dimensionality and highly nonlinear response. 

There are 35 members in this frame structure and their properties are referred to [3], [4], 
[5], [6], etc. The coefficients of correlation among all loads Fi (i=1, 2, 3) are ρF = 0.95, 
those of all cross-section Ai, (i=1, 2, …, 8) are ρAiAj = 0.13, those of Ii (i=1, 2, …, 8) are ρIiIj

= 0.13, that between E1 and E2 is ρE = 0.9, and all other variables are mutually independent. 
The limit horizontal displacement ∆x of the structural top is set to 0.061 m, with regarding 
to the serviceability failure state. The corresponding performance function is

( ) 0.061g x= − ∆Θ                                      (15)

where Θ is the random vector concluding all the above physical parameters and forces.
Herein, the generalized reliability index β is present in order to provide a visualized 

result, i.e., β = -Φ-1(Pf). For this case, through Importance sampling, the reference β was 
obtained in Ref. [5], i.e., β=3.51 with Pf=2.24×10-4. Table 1 shows the results, in which N-
UDPRSM-j means the pre-set order of the univariate polynomial is j in Stage 1 of Section 
3.2. The pre-set order is set to1~4, respectively.

For N-UDPRSM, as the pre-set order increases, the number of samples increases, the 
calculated reliability index β decreases and the corresponding error decreases. It is revealed 
that the surrogate model in N-UDPRSM performs well in fitting the performance function 
g(Θ) and the relatively higher order can improve the accuracy with some loss of efficiency. 
Besides, the pre-set order 2 is good enough for this case.

The sparse polynomial chaos expansions (PCE) [4], the sparse polynomial RSM [5] and 
the sparse Kriging-based model [6] are used to study the reliability of this structure, 
respectively. Contrast with these surrogate models, N-UDPRSM-3 performs the best 
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considering both accuracy and efficiency; further, the advantages of the proposed N-
UDPRSM-2 in efficiency are superior enough while keeping better precision.

Fig. 1. A frame structure layout (length unit, m).

Table 1. Computational results of the three-bay five-story frame reliability.

Method Number of samples β Error of β /%
N-UDPRSM-1 45 3.866 10.14

N-UDPRSM-2 87 3.398 -3.20

N-UDPRSM-3 129 3.565 1.56

N-UDPRSM-4 171 3.559 1.40

Full PCE [4] 3724 3.60 -2.56

Sparse PCE [4] 450 3.61 -2.85

Sparse polynomial RSM [5] 149 3.63 -3.42

Sparse Kriging-based model - 1 [6] 166 3.718 -5.93

Sparse Kriging-based model - 2 [6] 222 3.732 -6.33

Reference value [5] 500,000 3.51 --

5 Conclusions

In this paper, by combining Nataf transformation with univariate decomposable polynomial 
RSM, N-UDPRSM is proposed to analyse the engineering structural reliability considering 
correlated variables. By applying the general model of UDPRSM and Nataf transformation 
and its inversion, the detailed procedure of practical implementation for engineering 
reliability analysis is designed. Moreover, a typical example is investigated to evaluate the 
performance of the proposed method. It is revealed that the proposed method could be well 
applied to the practical engineering with satisfactory accuracy and efficiency, and it also
preserve some superiority by contrast with other state-of-art methods.
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