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Frequent outbreaks of agricultural pests can reduce crop production severely

and restrict agricultural production. Therefore, automatic monitoring and

precise recognition of crop pests have a high practical value in the process

of agricultural planting. In recent years, pest recognition and detection have

been rapidly improved with the development of deep learning-based methods.

Although certain progress has beenmade in the research on pest detection and

identification technology based on deep learning, there are still many problems

in the production application in a field environment. This work presents a pest

detector for multi-category dense and tiny pests named the Pest-YOLO. First,

the idea of focal loss is introduced into the loss function using weight

distribution to improve the attention of hard samples. In this way, the

problems of hard samples arose from the uneven distribution of pest

populations in a dataset and low discrimination features of small pests are

relieved. Next, a non-Intersection over Union bounding box selection and

suppression algorithm, the confluence strategy, is used. The confluence

strategy can eliminate the errors and omissions of pest detection caused by

occlusion, adhesion and unlabeling among tiny dense pest individuals to the

greatest extent. The proposed Pest-YOLO model is verified on a large-scale

pest image dataset, the Pest24, which includesmore than 20k images with over

190k pests labeled by agricultural experts and categorized into 24 classes.

Experimental results show that the Pest-YOLO can obtain 69.59% for mAP and

77.71% for mRecall on the 24-class pest dataset, which is 5.32% and 28.12%

higher than the benchmark model YOLOv4. Meanwhile, our proposed model is

superior to other several state-of-the-art methods, including the SSD,

RetinaNet, Faster RCNN, YOLOv3, YOLOv4, YOLOv5s, YOLOv5m, YOLOX,

DETR, TOOD, YOLOv3-W, and AF-RCNN detectors. The code of the

proposed algorithm is available at: https://github.com/chr-secrect/

Pest-YOLO.

KEYWORDS

YOLOv4, Pest-YOLO, pest detection and counting, dense and tiny pest individuals,
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1. Introduction

China is one of the largest agricultural production countries,

but pests pose severe threats to agricultural production. Pests are

diverse, have a high impact, and often cause outbreaks. The

scope and severity of pest occurrence can cause significant losses

to China’s national economy, especially agricultural production

(Lima et al., 2020). Therefore, early and accurate detection and

recognition of pest populations are essential to assess the size of

pest populations, understand the occurrence law, and effectively

control pests in the field (Høye et al., 2021). However, this is still

challenging due to the enormous variety of pests and their

different forms.

In the late 1980s, classical machine vision techniques were

applied to pest detection and recognition tasks. These techniques

can partially solve the problems of high time consumption,

massive labor, and a lack of professional technicians for

manual monitoring. Classical machine vision techniques have

been mainly used to manually select pest features, such as size,

shape, color, and texture. The selected features are then input

into a pre-designed classifier for pest recognition. In the early

stages of the development of machine vision technology, due to

the need for a large number of feature extraction work and data

set size limitations, mostly for single or few pest detection tasks

[Ridgway et al. (2002); Fina et al. (2013); Xia et al. (2015);

Espinoza et al. (2016); Ebrahimi et al. (2017); Xuesong et al.

(2017)]. For example, Xuesong et al. (2017) first used the Ostu

threshold method to segment an aphid image and then the edge

detection method to extract the edge information of the aphid

and finally identified and counted the aphids according to their

characteristics. This method can ensure accurate counting of

aphids collected on yellow sticky plates in both greenhouse and

outdoor environments. The counting accuracy of aphids in a

greenhouse is over 95%, and that of aphids in an outdoor

environment is 92.5%. However, this model can identify only

one type of pest, aphids, and the scale of the database is also

small, so it is difficult to meet the requirements of practical

applications. With the development of machine vision

technology, more and more feature extraction methods have

been proposed, and the size of the data set has gradually become

larger, which has improved the types and quantity of pest

detection [Solis-Sánchez et al. (2011); Wen and Guyer (2012);

Bisgin et al. (2018); Rustia et al. (2020)]. For example, Wen and

Guyer (2012) proposed a combined detection model based on

the local and global feature models, which can classify eight pests

in orchards with an accuracy of 86.6%. However, this model

requires a manual design of 54 global features and 100 local

features, and a large amount of computation. In summary,

classical machine vision methods still require manual

intervention in feature design and lack end-to-end adaptive

tuning of diverse features with respect to the detected object’s

characteristics (Wen et al., 2009; Khan et al., 2016).
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With recent improvements in computer hardware

performance, a series of excellent deep learning-based object

detection models with many advantages in terms of feature

extraction ability and detection accuracy has been proposed.

In recent years, deep learning has gradually attracted attention in

the field of pest detection and recognition. As we all know, deep

learning is driven by data, and the detection ability of the model

is greatly affected by data. The network trained with data sets

with relatively single category and small scale is highly targeted,

such as [Selvaraj et al. (2019); Fuentes et al. (2017); Li et al.

(2021); Júnior et al. (2022); Wang et al. (2022)]. These methods

can achieve excellent detection results on specific pest data sets

with single or few categories. For example, Júnior et al. (2022)

proposed a system for automatic insect detection from scanned

trap images in the lab. This system resizes the anchor frame of

the Mask R-CNN and defines two new parameters to adjust the

ratio of false positives by classes. In addition, this system enables

the enumeration of aphids, and parasitic wasps and their R2

values can reach 0.81 and 0.78, respectively. For the detection

tasks using large-scale and multi-class pest datasets, the

generalization performance of the model is better, and the

practicability in the field of agricultural pest control has also

been improved [Wang et al. (2020a); Jiao et al. (2020); Wang

et al. (2020b); Wang et al. (2021a); Wang et al. (2021b)]. For

example, Jiao et al. (2020) combined an anchor-free

convolutional neural network (AF-RCNN) with the Faster R-

CNN for pest detection on the Pest24 dataset; the mAP and

mRecall of this model were 56.4% and 85.1%, respectively. Wang

et al. (2020b) used four detection networks, the YOLOv3, SSD,

Faster RCNN, and Cascade RCNN, to detect 24 common pests

in fields; the YOLOv3 achieved the highest mAP value of 63.54%

in pest detection among all models.

Although deep learning-based methods have achieved some

progress in pest detection and recognition, there are still many

problems in their applications in field environments. First, the

difficulty of sample collection in the field environment can

greatly affect the detection and identification performance of

deep learning-based models. This is because the distribution of

pest classes and numbers observed in different regions, periods,

and meteorological conditions is significantly uneven. Also,

because the pixels of the pests to be identified are small in size

compared to the whole image, the features that can be extracted

are limited, which can greatly increase the difficulty of model

feature extraction. Therefore pests with smaller number and less

feature information in the dataset will become hard samples that

affect the model training. In the field of deep learning, Girshick

et al. (2014) implemented the Hard Example Mining (HEM)

method into the RCNN model to solve this problem. The main

idea was to regard false positives with higher scores in the

training process as hard negatives and use them for network

training, thereby enhancing the network’s ability to discriminate

false positives. Shrivastava et al. (2016) proposed the Online
frontiersin.org
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Hard Example Mining (OHEM) algorithm based on the HEM

method. The OHEM algorithm selects hard negatives according

to the class loss and ROI loss of region proposals and enhances

the training performance in regions where hard negatives exist.

Although the OHEM algorithm increases the weight of hard

negative samples, it ignores the easy classification samples,

limiting the model’s ability to learn difficult samples. Thus, the

hard sample problem in model training remains a challenge. In

addition, occlusion and adhesion between pest individuals in the

pest dataset can occur, and in some dense pest areas, it is very

easy to suppress the candidate boxes of neighboring pests. This

poses a great challenge to the candidate boxes screening

algorithm of the model.

To address the problems mentioned above, this paper

proposes a model for large-scale multi-class dense and tiny

pest detection and counting named the Pest-YOLO. First, the

YOLOv4 model, which has good extraction performance and

speed, is used as the benchmark model of the Pest-YOLO for

dense and small objects’ feature extraction in the pest detection

task. Second, the focal loss (Lin et al., 2017) is introduced to

improve the loss function. Our proposed I-confidece loss

(improve confidence loss) reduces the loss assigned to easily

classified samples and focuses more on learning hard samples.

Finally, a non-IoU bounding box selection and suppression

algorithm, the confluence strategy (Shepley et al., 2020), which

is superior to the NMS, is introduced. This algorithm uses a

meritocratic incentive proximity metric to minimize the

problem of false and missed detections caused by occlusion

and adhesion between tiny, dense pest individuals during the

pest detection and identification process (Shepley et al., 2020).

The main contributions of this paper are as follows:
Fron
1. A model for large-scale multi-class dense and tiny pest

detection and counting named the Pest-YOLO is

developed. This work is currently one of the few to be

used for pest monitoring in the field production

environment. The pest dateset is very challenging due

to the small, dense and a large number of missing labels.

2. Compared with the YOLOv4 model, our Pest-YOLO

proposes two improvements to solve the challenge of the

pest dataset. Our proposed I-confidence loss (improve

confidence loss) is a focal loss algorithm introduced in

confidence loss, which can effectively solve the problem

of hard samples. We also introduce a confluence

strategy to optimize the selection of candidate boxes

for pest detection.

3. The network we have developed has achieved

impressive results. In terms of detection performance,

Pest-YOLO outperforms the current mainstream SOTA

detectors such as YOLOv5s, YOLOv5m, YOLOX, DETR

and TOOD. Specifically, our network achieves 69.59%

and 77.71% for mAP and mRecall, respectively. Also we

counted the results of Pest-YOLO for more accurate
tiers in Plant Science 03
statistics. We manually labeled and counted 50 images

to test the counting ability of the model. The final results

show that the RMSE of Pest-YOLO can reach 0.44,

which is higher than other comparison models.
2. Materials

2.1 Image data acquisition

During the construction process of the Pest24 dataset, a

special automatic pest image acquisition device manufactured by

the Institute of Intelligent Machines of the Chinese Academy of

Sciences was used to collect pest image data. The pest trapping

and image acquisition processes were as follows. First, pests were

trapped with multispectral traps using their sensitivity to specific

spectral bands, and the wavelength of the light source varied

according to their habits. Pests attracted by the light source fell

into an insect collection funnel by hitting the baffle and, through

the tubing linked to the funnel, ended up at the bottom of the

insect collection tray. A high-definition camera was placed above

the pest collection tray to capture images at a fixed interval. After

this, the pests were periodically removed from the pest collection

tray to avoid excessive accumulation and overlap. The device

captured images with a resolution of 2095 × 1944 pixels

and stored them in JPG format. The acquired pest images

were manually screened; abnormal data, such as foreign

object occlusion and blurred images, were removed; finally,

a total of 25,378 images were collected. The collected images

contained 24 types of crop pests required to be monitored by the

Chinese Ministry of Agriculture. The dataset was annotated by

plant protection specialists and agronomic technicians using the

labelImg software. The annotations were generated as XML files

according to the PASCAL VOC standard, and annotation

information contained the location coordinates and classes of

pests. The final annotation types, the number of annotated

images, and the number of annotation examples are presented

in Table 1 (Wang et al., 2020b).
2.2 Pest dataset characteristics

The characteristics of the pest dataset were analyzed.

In the pest dataset, different categories had an uneven

distribution of the number of samples, as shown in Table 1.

The largest number of annotations in the pest dataset had

Category 20, Anomala corpulenta, with 53,347 samples. The

least number of annotations in the pest dataset had Category

18, Holotrichia oblita, with only 108 samples. The large

gap in the number of images and sample annotations greatly

affects the detection and counting performance of the models

and methods.
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The pests to be recognized were tiny in size compared to the

whole image. This study analyzed the relative scale of all labeled

pests, which was calculated as a ratio of pixels occupied by pest

annotations to the pixels of the whole image. The statistical

results are shown in Figure 1, where it can be seen that the

number of annotated samples with the largest relative scale of

0.249% appeared 50,829 times. In addition, the numbers of pest

annotations with a relative scale of 0.13% and 0.281% were

28,968 and 27,350, respectively. The relative scales of most of the

pest types in the dataset were less than 0.4%, which led to a very

limited number of pest features that the detection models

could extract.
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As shown in the left image in Figure 2, many pest individuals

were identified in a single image, and the individuals were severely

obscured and adhered to each other. Due to the difficulty of

identification, time consumption, and laborious pest labeling, pest

annotations can be missing in an image, as shown in the right

image in Figure 2. According to the statistics of the dataset, the

average number of pest annotations in a single image was 7.6,

which was larger than the average number of annotations (2.5) in

a single image of the COCO dataset (Jiao et al., 2020). Also each

image is labeled with multiple classes of pests. In summary, it is a

very challenging task to perform simultaneous detection and

counting of pests in a field environment.
FIGURE 1

Relative size and the number of pests in the dataset. Relative scale represents the ratio of the pest pixel size to the whole image size; number
represents the number of pests.
TABLE 1 Number of images and instances of each pest type in the Pest24 dataset.

Index Pest type Number of
images

Number of
instances

Index Pest type Number of
images

Number of
instances

1 Rice
planthopper

316 1,511 13 Spodoptera cabbage 1,707 2,302

2 Rice Leaf Roller 944 1,240 14 Scotogramma trifolii
Rottemberg

3,223 4,679

3 Chilo
suppressalis

454 1,285 15 Yellow tiger 1,388 1,686

4 Armyworm 3,824 8,880 16 Land tiger 369 475

5 Bollworm 9,049 28,014 17 Eight-character tiger 154 168

6 Meadow borer 5,526 16,516 18 Holotrichia oblita 90 108

7 Athetis lepigone 7,520 30,339 19 Holotrichia parallela 3,111 11,675

8 Spodoptera
litura

1,588 1,951 20 Anomala corpulenta 5,228 53,347

9 Spodoptera
exigua

3,614 7,263 21 Gryllotalpa orientalis 3,629 6,528

10 Stem borer 1,357 1,804 22 Nematode trench 118 167

11 Little Gecko 2,503 4,279 23 Agriotes fuscicollis Miwa 1,814 6,484

12 Plutella
xylostella

531 953 24 Melahotus 239 768
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3. Large-scale multi-class dense
and tiny pest detection and
counting model

With the development of object detection, the YOLO series

(Redmon et al., 2016; Redmon and Farhadi, 2017; 2018;

Bochkovskiy et al., 2020) have experienced a trade-off between

the speed and accuracy in real-time applications. They employ

the most advanced detection technologies to optimize their

implementation. Currently, the YOLOv4 model is one of the

most widely used models due to its excellent performance in

object detection (Bochkovskiy et al., 2020). However, this model

faces great challenges in pest detection, such as imbalanced

samples, dense and tiny individuals, and inter-individual

adhesion in acquired pest images. These challenges have been

causing the main problems in the experiments on the pest

dataset. This paper proposes a large-scale multi-class dense

and tiny pest detection and counting model named the Pest-

YOLO to solve these problems. The Pest-YOLO model is the

improved YOLOv4 that uses the original YOLOv4 as the

baseline model. The structure diagram of the pest detection

and counting task framework proposed in this paper is shown in

Figure 3. First, we statistically analyze the acquired and labeled

images, based on the statistical results and perform data

enhancement for very few of the categories. Next, the image

size is resized to 416×416 and input to the backbone network

CSPDarknet53 (Cross Stage Partal Darknet53) to perform

feature extraction of the image. In which the feature maps

extracted from the C5 layer are passed to the Spatial Pyramid

Pool (SPP) module to obtain a feature map of size 13×13×1024,

with the aim of extracting a fixed size feature vector for the

multi-scale features. Then, multi-scale feature fusion is

performed using path aggregation network (PAN) for C3
Frontiers in Plant Science 05
(52 × 52 × 256), C4 (26 × 26 × 512) and C5 (13 × 13 × 1024),

and the output yields three feature maps of different sizes for F3

(52 × 52 × 255), F4(26 × 26 × 255) and F5(13 × 13 × 255). After

that, the loss is calculated on the feature maps of different sizes of

F3, F4 and F5 respectively using the loss function, where the I-

confidence loss in the loss function is proposed by us

introducing the idea of focall loss based on the confidence loss

of YOLO-v4 and by improving the optimization parameters.

The improved loss function can focus more on the learning of

hard samples during the training process. Finally, To address the

problem of occlusion and adhesion between pest individuals, the

confluence method is introduced in the task of bounding box

selection and suppression in object detection. The confluence

model uses confidence weighted Manhattan distance-inspired

proximity measure to evaluate bounding box coherence to

replace the NMS and its variants (Zheng et al., 2020).
3.1 Loss function improvement

The class imbalance problem occurs during the training of

deep learning networks affects the cross-entropy loss, where

easily classifiable negative samples make up the majority of the

loss and dominate the direction of the gradient (Lin et al., 2017).

Confidence loss in YOLOv4 is the key to determine whether an

object is a positive or negative sample, where confidence loss is

calculated using cross-entropy to calculate the loss of positive

and negative samples (Redmon et al., 2016; Bochkovskiy et al.,

2020). However, the cross-entropy loss requires the model to be

very confident in its prediction, and when the imbalance

between positive and negative samples is large, the loss of

easily classified samples accounts for the majority of the

overall loss and dominates the gradient, thus ignoring the

training of hard samples (Kull et al., 2019).
FIGURE 2

The left image shows masking and adhesion between pests. The right image shows incomplete image annotation.
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In the pest detection tasks, hard samples denote one of the

main factors contributing to the low efficiency of model learning.

Hard samples are caused by an imbalanced number of pest classes

and low discrimination of tiny individual features. Considering

the problem of hard samples, this study introduces focal loss to

improve the confidence loss of the baseline model and uses it as

the confidence loss of Pest-YOLO. Therefore, our proposed I-

confidece loss (improve confidence loss) reduces the loss assigned

to easily classified samples and focuses more on learning hard

samples. The focal loss is improved based on the cross-entropy

loss, which adds an automatically adjustable modulation factor to

the cross-entropy loss. The weight coefficients converge to zero for

easily classified samples. In this way, even if the proportion of

easy-to-classify samples is large, such as a larger number of

annotations and annotated samples with a relatively larger scale,

they will not dominate the model training. The focal loss (FL) is

defined as follows:

FL(pt) = −at(1 − pt)
g log (pt) (1)
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at =
p,         if   y = 0

1 − p,   otherwise :

(

pt =
a ,         if   y = 0

1 − a ,   otherwise :

(
8>>>>><>>>>>:

where p ∈ [0,1] is the model’s estimated probability for a

class y; a ∈ [0,1] is a weighting factor; g ∈ [0,5] is the focusing

parameter, which is used to adjust the rate at which easy samples

are down-weighted smoothly; and at and pt are convenient

notations for simplifying the focal loss expression.

Considering the advantages of the focal loss in dealing with

imbalanced samples, a loss function of the Pest-YOLO model is

derived. This loss function is given by Eq. (2), where it can be

seen that it includes three parts, namely, the bounding box

regression loss Eq. (3), the classification loss Eq. (4), and the

confidence loss Eq. (5). The confidence loss function is modified

by introducing the focal loss function.

Loss(object) = Loss(coord) + Loss(cls) + Loss(conf ) (2)
FIGURE 3

Structure diagram of the pest detection and counting framework based on the Pest-YOLO model.
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    Loss(coord)  =  lcoord o
K*K

i=0
o
M

j=0
Iobjij (2  −  w*i hi)½LCIOU � (3)

Loss(cls) =   − o
K*K

i=0
Iobjij o

c∈classes

½p̂ i(c) log (pi(c)) +

(1 − p̂ i(c)) log (1 − pi(c))�

(4)

Loss(conf )   =  o
K*K

i=0
o
M

j=0
Iobjij Lf (Ĉ i,Ci)

− lnoobjo
K*K

i=0
o
M

j=0
Inoobjij Lf (Ĉ i,Ci) (5)

Lf (Ĉ i,Ci) = −a½Ĉ g
i log (Ci) + (1 − Ĉ i)

g log (1 − Ci)�

In Eqs. (2)–(5), K is the number of grids to be divided, M is

the number of anchor boxes of each grid, i represents the ith grid

of the feature map, j represents the jth box of the anchor box. Iobjij

indicates whether there is an object in the ith grid, if there is an

object in the jth anchor box of the ith grid, the value of I is one,

otherwise, it is zero. wi and hi represent the width and height of

ground truth, respectively. LCIOU is the bounding box regression

loss function.pi is the probability of a sample i being predicted as

a positive class, p̂ i   is the label of a sample i. Ĉi denotes the

desired output, Ci represents the actual output after the

activation function. a is the weighting factor used to balance

the number of samples, and g is the tunable focusing parameter,

which is used to reduce the weight of easily classified samples.

The focusing parameter g is adjusted smoothly when the

weights of simple samples are increased. When g=0, the

focal loss is equal to the cross-entropy loss and the confidence

loss does not change; when g increases, the modulating

factor (1 − Ĉ i)
g also increases relatively. The adjustment factor

reduces the loss contribution of simple samples and extends

the range of simple samples receiving low losses (Lin et al.,

2017). For example, with g=2, a sample with Ĉi = 0.9 will have

100 times lower loss compared to cross-entropy loss, while Ĉi ≈

0.96 will have 1000 times lower loss. The modulating factor is

matched with the weighting factor a Better results can

be achieved.

Since a ∈ [0,1] and g ∈ [1,5], 10 and 5 points were selected in

the intervals of a and b, respectively; then, two hyperparameters

were permuted and combined to conduct experiments on the

test set; finally, 50 experimental results were plotted as line

graphs for statistics. The results show that when a=0.1 and g=0.2,
the confidence loss substantially reduces the loss of easy-to-

classify samples, and the model that improves the focus on hard

samples, while Pest-YOLO obtains the best detection results

on the test set. The experimental results are shown in

Supplementary Figure 1.
Frontiers in Plant Science 07
3.2 Optimal prediction box selection

The pest types to be identified in the dataset are numerous

and tiny, and there is mutual obscuration and adhesion between

them, severely affecting the optimal selection of target candidate

boxes in the detection model. For target detection tasks, some of

the proposed solutions have optimized the position of prediction

boxes using the instance bounding box filtering, such as the

NMS, Soft-NMS (Bodla et al., 2017), Softer-NMS (He et al.,

2018), and DIoU-NMS (Zheng et al., 2020). All of these works

rely on the IoU or maximum confidence scores for screening

candidate boxes. However, in the process of pest detection and

identification, the NMS and its variants suppress the bounding

boxes in dense areas of pests due to mutual occlusion and

adhesion between individual pests, which can make the

network miss-detect the pests in dense areas. The confluence

method is a non-IoU strategy that is superior to the NMS

proposed by Shepley et al. (2020). It does not rely on the

confidence scores when selecting an optimal bounding box,

and it does not rely on the IoU to eliminate false detections.

The confluence strategy focuses on selecting optimal bounding

boxes by calculating the degree of overlapping between

bounding boxes using the Manhattan distance. Therefore, the

confluence strategy is used in this work to solve the problem of

suppressed prediction boxes caused by the adhesion in the pest

dataset and to alleviate the problem of missing annotations in

the Pest-YOLO model.

The confluence method is a two-stage algorithm that retains

optimal bounding boxes and removes false positives. In the first

stage, this method uses the Manhattan distance to evaluate the

degree of proximity P between two adjacent bounding boxes,

which are used to detect pests, as given in Eq. (6). The value of P

indicates whether adjacent boxes are attributable to the same

pest or not.

P(u,v,m,n) = MH(u,v) +MH(m,n) (6)

MH(u,v) = (x1 − p1)j j + (y1 − q1)j j

MH(m,n) = (x2 − p2)j j + (y2 − q2)j j
In Eq. (6),u(x1, y1), v(p1, q1), m(x2, y2), and n(p2, q2) denote

the upper left and lower right vertices of the bounding boxes in

Figure 4; andMH is the Manhattan distance or L1 norm. Due to

the varying sizes of objects and their bounding boxes, a

normalization algorithm is used to scale the bounding box

coordinates between 0 and 1 to preserve their relationships

before calculating the value of P. Meanwhile, this calculation

will involve a large number of dense confluent bounding boxes

of pests.

In the second stage, the cluster bounding boxes

are obtained around the same pest or to one or more high-
frontiersin.org
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density pests after the aforementioned calculation process.

Therefore, the next step is to select an optimal box from

the intra-cluster boxes through the bounding box retention

and removal. The criterion for determining the optimal

bounding box is obtained by calculating the weighted

proximity WP in the same cluster using the confidence score c

and the corresponding P values. The weighted proximity WP

is calculated as follows:

WP(u,v,m,n) =
P(u,v,m,n)

c
(7)

where c ∈[0.05,1] is a value that provides a bias favorable to
high-confidence bounding boxes.

All bounding boxes with confidence values below 0.05 are

discarded. In this way, the bounding boxes with largeWP values

are suppressed, and an optimal box is selected from the boxes

with small WP values.
3.3 Model training

The Pest-YOLO was used for the pest detection and

counting task. First, all images were resized to 416×416, and

data enhancement was performed. Before starting to pass the

data into the model for training again, the dataset is pre-trained

using the k-mean clustering algorithm, with the aim of obtaining

9 sets of multi-scale anchor boxes. The CSPDarknet53 was used

as the backbone network for feature extraction, and the extracted

feature maps were input to the Spatial Pyramid Pooling (SPP) to

extract multi-scale features with a fixed scale. Second, the PANet

was used for the aggregation of feature maps generated by

different backbone levels, namely, C3, C4, and C5, and
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different detector levels. Finally, more accurate bounding boxes

were obtained by the convergence strategy. The main steps of the

Pest-YOLO are as follows:
ALGORITHM 1 Pest-YOLO model.

Input: Training set,hyper-parameters

Output: Detection box coordinates, Predicted number

1 for E=1, Etotal do

2 Data enhancement for imbalance classes

3 The dataset is pre-trained using K-means clustering algorithm to get 9
Anchors:
(12, 16),(19, 36),(40, 28),(36, 75),(76, 55),(72, 146),(142, 110),(192, 243),
(459, 401)

4 Training set and augmented data are used as input data for training and
features are extracted by the backbone network CSPDarknet53

5 Obtain the multi-scale features(C3,C4,C5) by SPP

6 Using PAN to fuse the multi-scale features to generate three feature maps:
(13*13*255),(26*26*255),(52*52*255)

7 Calculate the Loss (object) from to Eq.(3)

8 Iterate over all detection boxes and normalize according to Eq.(8)

9 Calculate P according to Eq.(7)

10 if P< 2 then

11 confluence  confluence ∪ Proximity

12 end if

13 if confluence< optimal Confluence then

14 Optimal Confluence  confluence

15 end if

16 return Detection box coordinates, Predicted number

17 End
The detailed network structure of Pest-YOLO shown

in Table 2.
FIGURE 4

Adjacent block diagram detection; (x, y) and (p, q) are the coordinates of the bounding boxes’ vertices.
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Table 2. Architectures for Pest-YOLO.

Module Structure Output Size Pest-YOLO

CSPDarknet53 Convolutional 256×256 3×3,32

Convolutional 128×128 3×3, 32, stride 2

1×Cross Stage Partial

Convolutional 1×1,32

Convolutional 3×3,64

Residual 128×128 　

Convolutional_1 64×64 3×3, 128, stride 2

2×Cross Stage Partial

Convolutional 1×1, 64

Convolutional 3×3, 64

Residual 64×64 　

Convolutional_2 32×32 3×3, 256, stride 2

8×Cross Stage Partial

Convolutional 1×1, 128

Convolutional 3×3, 128

Residual 32×32 　

Convolutional_3 16×16 3×3, 512, stride 2

8×Cross Stage Partial

Convolutional 1×1, 256

Convolutional 3×3, 256

Residual 16×16 　

Convolutional_4 8×8 3×3, 1024, stride 2

4×Cross Stage Partial

Convolutional 1×1, 512

Convolutional 3×3, 512

Residual 8×8 　

Convolutional 　 1×1, 512

Convolutional 3×3, 1024

Convolutional_5 8×8 1×1, 512

SPP+PAN p3_in 32×32 Convolutional_3(C3) ! 1×1,128

p4_in 16×16 Convolutional_4(C4) ! 1×1,256

p5_in 8×8 Convolutional_5(C5) !

maxpool, 5� 5

maxpool, 9� 9

maxpool, 13� 13

8>><>>:
Loss coord loss

1 − confidence loss

class loss

8>><>>:
Bounding box selection Confluence
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4. Experiments

4.1 Experimental setup

There was a severe imbalance in the number of pest types in

the dataset. Since there was also a high correlation between the

datasets enhanced through geometric transformations, only data

of three categories with the least amount of data samples, 17, 18,

and 22, were enhanced. Five random combinations were used as

enhancements: the horizontal flip, vertical flip, hue

transformation, rotation, and affine transformation, as shown

in Figure 5. The Pest dataset was randomly divided into training,

validation, and test sets, corresponding to 70%, 20%, and 10% of

all data.

All experiments were run on a Dell T7920 server with two

Intel Xeon Silver 4210R @ 2.4 GHz CPU with an Nvidia GeForce

RTX 2080Ti. The software environment included Ubuntu18.04,

Cuda10.0.130, Cudnn7.3.1, and Python3.7. The Pytorch was

used to construct the Pest-YOLO. Considering the GPU

memory limitation during training, the batch size was set to

50, and the input image scale was 416×416. The model was

trained with 200 epochs to analyze the training process better.

The cosine annealing decay was used to change the learning rate

to prevent the model from overfitting during training. The

original learning rate was set to 0.0001, the minimum learning

rate, and the maximum learning rate was set to 0.001. When the
Frontiers in Plant Science 10
learning rate increased linearly to the highest value, the learning

rate was kept constant over a period of time. The learning rate

decreased by following the trend of the simulated cosine

function. The cosine annealing equation is as follows:

lt = lmin +
1
2
(lmax − lmin) 1 + cos

Tcur

Ti
p

� �� �
(8)

where lmax and lmin denote the maximum and minimum

values of the learning rate, respectively; Tcur indicates how many

epochs have been currently executed; and Ti denotes the total

number of epochs trained by the model.
4.2 Network evaluation metrics

In the experiment, the Pest-YOLO performance was

evaluated using several indicators. In the following formulas,

TP is the number of true positives, the samples that are correctly

identified as pests; FN is the number of false negatives, the

samples that are incorrectly identified as the background; TN is

the number of true negatives, the samples that are correctly

identified as the background; and FP is the number of false

positives, the samples that are incorrectly identified as pests. The

precision measured the classification ability of the model by

calculating the ratio of the number of correctly detected targets
FIGURE 5

Image enhancement examples.
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to the overall number of detected targets, as follows:

Precision  ¼ TP
TP + FP

(9)

Recall is a measure of the model’s detection capability, which

is obtained by calculating the ratio of the number of correctly

detected targets to the total number of targets, and it is calculated

as follows:

 Recall   =
TP

TP + FN
(10)

AP is the average precision, which measures the detection

performance of a model by calculating the area under the

Precision-Recall curve, and it is calculated as follows:

AP =
Z 1

0
P(R)dR (11)

F1-Score is a measure of the classification problem; it

represents the summed average of precision and recall and is

given by:

F1 = 2 •
Precision•Recall
Precision+Recall

(12)

The 24-class mean of the above indicators was calculated,

and the mean average precision (mAP), mean Precision

(mPrecision), mean Recall (mRecall), and mean F1-Score

(mF1) were obtained.

The R2 and RMSE are defined as shown in Eq. (13), where yi
is the true value of the pest, ŷi is the predicted value of the pest,

and yi is the mean value of the true value of the pest.

R2 = 1 −oi(byi − yi)
2

oi(yi − yi)
2 (13)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ko

k
i=1(Np − Ng)

2

r

4.3 Results

4.3.1 Ablation experiments
The performance of the Pest-YOLO was verified by

experiments. The loss function was modified by using the I-
Frontiers in Plant Science 11
confidence loss mechanism and optimal bounding box by

introducing the confluence strategy. Comparison results of the

models obtained in the ablation experiments are shown

in Table 3.

As shown in Table 3, compared to the baseline model

YOLOv4, the mAP of YOLOv4+ ① with the I-confidece loss

increased by 5.09% and the mPrecision increased by 1.98%. The

mAP of YOLOv4+ ②, which introduced the confluence strategy,

increased by 2.27%, and the mRecall increased by 22.84%

compared to the baseline model YOLOv4. Further, compared

to the baseline model YOLOv4, the mAP of the Pest-YOLO

increased by 5.32%, and the mRecall increased by 28.12%.

To test the effect of the confluence strategy as an optimizing

strategy in the bounding box selection and suppression process,

four images were randomly selected to compare the results of the

bounding box selection with those of the DIOU-NMS. As shown

in Figure 6, when the DIoU-NMS was used, there were fewer

bounding boxes than regions of pests obtained by the confluence

strategy in the images. The red rectangles in Figure 6 denote the

pest bounding boxes suppressed by the DIou-NMS mechanism

and retained by the confluence strategy.

However, as shown in Table 3, which presents the results of

the ablation experiment, some of the performance evaluation

metrics decreased, such as mPrecision and mF1-score. The

validity of the evaluation indicators’ values in Table 3 was

further analyzed. There were a large number of unlabeled

pests in the dataset, which contributed a large number of FP

values in the visualization results of model detection. The

expected conclusions were verified through experiments to

obtain more reasonable indicators to objectively evaluate the

model’s performance. The mPrecision and mF1-score were

directly related to the FP values. Therefore they cannot truly

reflect the detection performance of the models

To further verify our conclusion, the number of TP and FP

were calculated for each pest category using the Pest-YOLO and

YOLOv4 models on the test set. As shown in Table 4, the TP

value detected by the Pest-YOLOmodel was closer to the ground

truth (annotation pests) than that of the YOLOv4 model. Due to

a large number of unlabeled pests, significantly more pests were

detected by the Pest-YOLO model than by the YOLOv4 model,

which may only be attributed to the large number of FP

produced. According to the mPrecision and mF1-score results,
TABLE 3 Results of the ablation experiments.

Model mAP mPrecision mRecall mF1

YOLOv4 64.27% 81.99% 49.59% 0.58

YOLOv4+ ① 69.36% 83.97% 44.76% 0.55

YOLOv4+ ② 66.54% 47.73% 72.43% 0.54

Pest-YOLO 69.59% 46.94% 77.71% 0.53
frontiersi
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it is more reasonable and accurate to use the mRecall to evaluate

the detection performance of the Pest-YOLO and YOLOv4

models. In summary, mAP and mRecall are considered the

final evaluation metrics, reflecting the detection performance

realistically and effectively.

We calculate the AP and Recall values for Pest-YOLO and

YOLOv4 on each category with a confidence threshold of 0.5,

respectively. The results are shown in Table 5. Among the 24

categories, Pest-YOLO’s AP values were increased on 20 of all

categories, and the largest improvement of AP was achieved on

category 18, with 16.18%. Meanwhile, the experimental results

show that Pest-YOLO’s Recall values improves on 23 pest

categories, especially for categories 18 and 13 by 80% and

61.85%. The ablation experiments show that the detection

performance of Pest-YOLO is more obviously improved

compared to the baseline model, YOLOv4, by introducing I-

confidence loss and Confluence mechanisms. Overall

Performance of State-of-the-art Detectors.

4.3.2 Overall performance of state-of-the-art
detectors

The proposed Pest-YOLO was compared with several state-

of-the-art object detectors, including the SSD (Liu et al., 2016),

RetinaNet (Lin et al., 2017), YOLOv3, YOLOv4, YOLOv5s,

YOLOv5m,YOLOX (Ge et al., 2021), DETR (Carion et al.,

2020), TOOD (Feng et al., 2021) and Faster R-CNN, on the

test pest dataset. Similar models, namely, the AF-RCNN model
Frontiers in Plant Science 12
proposed by Jiao et al. (2020) and the YOLOv3-W proposed by

Wang et al. (2020b), were also compared with the proposed Pest-

YOLO model; the results are shown in Table 6.

The mAP of Pest-YOLO was the highest, at 69.59%, and was

0.71% to 44.53% higher compared to other state-of-the-art

detectors. mAP of Pest-YOLO was also 1.23% higher than

TOOD, which is considered to be one of the best detectors

available. The mRecall of Pest-YOLO is also 2.69% to 66.49%

higher compared to other detectors, respectively. And the

mRecall of our proposed Pest-YOLO improved by 23.13% and

2.69% over YOLOX and TOOD, respectively.

The detection speed of the improved model was evaluated

and compared with those of the SSD, RetinaNet, YOLOv3,

YOLOv4, YOLOv5s, YOLOv5m, YOLOX, DETR, TOOD and

Faster R-CNN. The detection speed of Pest-YOLO is 46 FPS,

which is twice the speed of SSD detection and slightly slower

than the detection speed of YOLOv4 and YOLOv3 models.

However, compared to YOLOX, although the detection speed

of Pest-YOLO was 46 FPS, which was lower than YOLOX, the

mAP was improved by 3.96% and the recall rate was increased

by 13.45%. Thus, considering the speed and accuracy of

detection, the proposed method is the best choice among all

tested methods for accuracy and real-time detection of Pest24.

To validate the performance of the Pest-YOLO model and

the other comparative detectors on the pest dataset, each pest

category’s AP and Recall values were evaluated and compared to

those of the state-of-the-art detectors. The experimental results
FIGURE 6

YOLOv4 raw output, the DIoU-NMS output, and the confluence strategy output of four images. Blue rectangles represent bounding boxes; red
rectangles represent bounding boxes suppressed by the DIou-NMS.
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in Table 7 show that categories 17 and 18 denoted difficult tasks

for the detector, which had fewer instances in the pest dataset

with 168 instances and 108 instances. For category 17, Pest-

YOLO achieved an AP of 88.53%, which is the best result among

the comparison detectors. Compared to YOLOv5m, YOLOX

and TOOD, it was 9.11%, 2.1% and 1.43% higher, respectively.

Pest-YOLO achieved a recall rate of 95.15% for category 17,

which is much higher than SSD, and compared to the results of

YOLOX, DETR and TOOD, the recall rate increased by 22.76%,

3.15% and 17.69%, respectively. For category 18, the AP and

recall values of the Pest-YOLO reached 70.86% and 96.00%,

which were 2.16% and 5.1% higher than the second-best

performances, respectively. Overall, relative to the baseline

model YOLOv4, Pest-YOLO achieved an AP dominance

category ratio of 83.3% and a recall dominance category ratio

of 91.7%. Relative to the YOLOX, the AP dominance category

ratio was 54.1% and the recall dominance category ratio was

95.8%. Relative to TOOD, the AP dominance category ratio and

recall dominance category ratio were both 58.3%.

The average number of each type of pest in a single image was

calculated based on the number of instances of pests and the

number of images. The results indicated that categories 20, 1, 7, 19,
Frontiers in Plant Science 13
and 23 were the five most numerous pest categories in a single

image, and these categories had the most severe image shading

adhesion. Compared with the baseline model YOLOv4, the Pest-

YOLO model showed a significant increase in AP of the four pest

categories, accounting for 80% of the superior class ratio; the

highest increase was achieved for categories 7 and 23, reaching

71.52% and 83.22%, respectively. More importantly, the Pest YOLO

showed significant improvements in the recall for these five pest

types compared to the baseline model YOLOv4. The average recall

per pest type increased by 13.92%, reaching 80% of the superior

class ratio; the highest increase in the recall in Table 7 was for

categories 20, 19, and 23. The significant improvement in recall in

the dense pest detection was because the proposed model used the

confluence method to filter bounding boxes, which could effectively

prevent pests in dense areas from being missed by the model.

To represent the detection performance of the proposed

Pest-YOLO model more intuitively, the results of ten models,

namely, the SSD, RetinaNet, Faster R-CNN, YOLOv3, YOLOv4,

YOLOv5s, YOLOv5m,YOLOX, DETR, and TOOD were

compared with that of the Pest-YOLO. Since the YOLOv3-W

(Wang et al., 2020b) and AF-RCNN (Jiao et al., 2020) network

codes are not open-source, they were not compared in this
TABLE 4 Number of annotations per pest category in the dataset and the numbers of TPs and FPs detected by the YOLOv4 and Pest-YOLO
models.

Pest ID Ground-truth YOLOv4:TP Pest-YOLO:TP YOLOv4:FP Pest-YOLO:FP

1 1684 928 862 29038 23523

2 212 188 183 823 1124

3 264 230 246 602 1111

4 1707 1487 1621 1230 4741

5 5381 5187 5225 4594 7150

6 2978 2836 2864 5180 6794

7 5426 5026 5123 14127 19899

8 361 322 336 652 1246

9 1313 1150 1205 3719 5883

10 334 282 306 461 1324

11 779 708 741 539 1715

12 951 709 715 10848 9770

13 391 313 358 853 2579

14 798 679 720 3231 6064

15 1007 840 929 2103 3891

16 84 63 79 49 410

17 268 239 261 297 708

18 55 25 25 73 111

19 1935 1824 1867 1286 2681

20 6596 6440 6483 3800 5674

21 1248 1229 1225 347 388

22 22 18 15 31 76

23 997 899 913 3649 3894

24 62 43 48 137 364

Total 38096 35049 35592 87669 111120
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experiment. As shown in Figure 7, five images with a relatively

dense and large number of pest categories in the test set were

selected for detection. In Figure 7, pests missed by a model are

marked with a red box. Among the tested models, the Pest-
Frontiers in Plant Science 14
YOLO has the fewest red boxes in the graph of detection results,

indicating that this method was less likely to miss-detect the

pests. In particular, the Pest-YOLO model is more effective than

the other models in detecting pests in dense areas.
TABLE 5 AP and Recall for each type of pest in ablation experiments.

Pest ID AP Recall

YOLOv4 YOLOv4+① YOLOv4+② Pest-YOLO YOLOv4 YOLOv4+① YOLOv4+② Pest-YOLO

1 8.13 9.95 1.38 2.25 3.03 0.89 1.03 1.26

2 57.32 57.54 63.94 57.15 25.47 23.58 35.94 22.64

3 69.37 71.15 70.32 71.08 57.20 37.88 68.31 66.67

4 71.88 78.54 77.05 81.42 60.81 57.59 84.58 80.90

5 88.55 90.62 86.14 91.28 78.74 73.20 92.75 91.19

6 76.17 77.92 78.14 78.40 58.13 43.85 88.14 84.92

7 70.69 71.02 73.58 71.52 47.07 31.44 87.92 84.70

8 69.01 73.45 76.93 75.88 50.97 41.83 84.62 81.72

9 54.21 58.61 60.72 61.03 29.17 18.20 81.24 80.05

10 59.03 71.90 71.47 73.80 41.92 42.81 84.32 80.84

11 78.75 83.65 83.32 85.07 68.29 65.98 93.50 91.40

12 20.26 21.39 17.52 20.90 4.10 0.32 46.72 58.89

13 38.57 52.69 52.60 54.11 15.86 11.00 81.69 77.71

14 42.10 49.83 51.38 50.63 16.04 13.53 79.28 76.07

15 61.76 70.85 57.50 73.34 43.10 39.13 80.23 86.19

16 60.68 70.14 68.55 79.88 59.52 53.57 85.15 88.10

17 82.11 87.70 53.45 88.53 72.01 66.42 90.13 95.15

18 54.68 73.38 40.76 70.86 16.00 20.00 59.79 96.00

19 89.15 90.88 91.42 91.80 83.88 80.98 98.04 95.14

20 95.88 96.46 94.67 96.51 93.97 90.21 99.38 98.70

21 97.63 97.50 97.69 97.49 95.91 94.47 98.35 97.92

22 60.62 65.98 67.19 51.07 45.45 54.55 75.09 63.61

23 81.42 83.18 83.25 83.22 71.82 62.79 92.88 89.57

24 54.62 60.28 78.05 63.03 51.61 50.00 90.01 75.78

mean 64.27 69.36 66.54 69.59 49.59 44.76 78.30 77.71
f

(Unit: %)
TABLE 6 Comparison results of the proposed model and several state-of-the-art detectors.

Conf-thresh = 0.5 IoU = 0.5 mAP mRecall FPS

Faster RCNN 42.67% 54.00% 11

SSD 25.06% 47.06% 22

RetinaNet 26.11% 11.22% 18

YOLOv3 60.69% 44.44% 53

YOLOv3-W (Wang et al., 2020b) 63.57% / /

YOLOv4 64.27% 49.59% 50

YOLOv5s 65.54% 64.26% 57

YOLOv5m 66.89% 70.90% 53

YOLOX 68.88% 54.58% 81

DETR 37.84% 71.82% 35

TOOD 68.36% 75.02% 40

AF-RCNN (Jiao et al., 2020) 56.42% 85.10% /

Pest-YOLO 69.59% 77.71% 46
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TABLE 7 Comparison results of the pest categories (unit: %).

Pest
ID

AP Recall

TOOD AF-

RCNN

Pest-

YOLO

Faster-

RCNN

SSD Retina

Net

YOLOV3 YOLOV4 YOLOV5s YOLOV5m YOLOX DETR TOOD AF-

RCNN

Pest-

YOLO

15.10 13.2 2.25 0.32 7.30 0.00 0.32 3.03 0.16 1.71 0.06 6.00 2.90 55.1 1.26

40.40 45.3 57.15 55.79 48.11 0.00 31.40 25.47 58.09 70.75 49.06 67.00 69.30 96.4 22.64

66.70 53.5 71.08 46.64 42.80 0.38 29.41 57.20 67.71 75.32 52.27 71.20 78.90 97.7 66.67
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Faster-

RCNN

SSD Retina

Net

YOLOV3 YOLOv3-

W

YOLOV4 YOLOV5s YOLOV5m YOLOX DETR

1 0.01 0.01 0.01 0.84 0.6 8.13 3.76 7.88 7.19 0.20

2 25.05 5.65 0.00 61.53 51.7 57.32 59.29 68.82 62.58 13.80

3 27.98 8.96 1.48 63.97 72.1 69.37 71.12 76.58 69.40 12.50

4 63.68 21.49 38.79 77.03 82.9 71.88 69.58 69.10 78.57 43.40

5 71.43 39.07 25.91 91.51 91.7 88.55 80.00 76.83 89.35 52.90

6 53.39 24.64 20.18 78.70 80.7 76.17 72.61 74.43 78.78 43.30

7 35.02 11.29 0.37 70.57 68.9 70.69 59.43 61.27 63.23 19.10

8 66.04 37.73 47.04 76.10 76.8 69.01 79.84 83.54 80.30 48.20

9 18.94 10.28 0.86 52.15 52.5 54.21 51.00 55.06 53.37 17.00

10 52.03 35.02 16.89 68.01 75.9 59.03 70.21 76.22 72.80 25.80

11 76.72 35.38 62.45 87.13 88.7 78.75 75.88 72.00 85.22 61.30

12 0.33 0.93 0.00 1.64 1.6 20.26 14.90 17.06 24.73 9.90

13 35.76 13.73 13.18 44.90 60.4 38.57 56.23 61.91 55.69 20.10

14 29.88 9.89 6.65 47.18 51.5 42.10 49.12 56.33 54.57 18.90

15 29.56 32.52 42.83 32.41 50.2 61.76 69.36 69.75 73.50 52.60

16 49.85 36.36 59.55 47.79 74.2 60.68 77.45 78.89 76.25 71.30

17 0.64 55.12 69.21 0.00 1.5 82.11 86.20 79.42 86.43 68.50

18 34.59 6.02 28.48 48.35 61.4 54.68 53.51 47.40 67.19 31.40

19 68.75 40.62 32.67 93.10 93.3 89.15 88.14 87.84 88.24 60.30

20 77.09 54.84 35.83 96.59 97.3 95.88 91.57 89.51 94.99 66.90

21 96.27 86.03 96.33 98.65 98.2 97.63 97.51 97.90 98.06 90.20

22 40.81 15.50 25.57 63.06 40.4 60.62 65.35 73.42 64.85 40.60

23 47.39 20.23 2.38 82.55 79.7 81.42 68.90 67.53 73.49 18.50

24 21.32 0.30 0.00 72.81 73.6 54.62 62.00 56.68 54.31 21.40

mean 42.61 25.07 26.11 60.69 63.57 64.27 65.54 66.89 68.88 37.84
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4.3.3 Counting experiments
To test the counting ability of the models, we selected 50 images

with multiclass, dense and obscured attached individuals from the

test set for testing the performance of the models in counting pest
Frontiers in Plant Science 16
numbers. In this experiment, we plotted the count regression curves

and count errors for each model and calculated the R2 coefficient of

determination (R2) values of the regression curves and the root

mean square error (RMSE) of the different models for comparison.
FIGURE 7

Illustration of the detection results of different detectors. Red boxes represent pests missed by a model.
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We tested the real counting ability of the model in order to

avoid the problem of label loss affecting the results of counting

experiments. We conducted manual counts on 50 images that

were screened out. Our manual count of these 50 images resulted

in 3855 pests. A total of 3844, 3823, 3788, 3613, 3836, 3740,

3738, 3717, 3734, 3567, 3604, and 3594 pests were detected by

Pest-YOLO, TOOD, DETR, YOLOX, YOLOv5m, YOLOv5s,

YOLOv4, YOLOv3, SSD, Faster R-CNN, and RetinaNet,

respectively, on the re-labeled 50 images. Among all models,

the Pest-YOLO’s detection results were the closest to the number

of re-labeled pests, and the counting accuracy could reach 99%.

This indicates that the proposed method is more accurate for

pest counts than the comparison models.
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The counting results of the ten detection models and the

proposed Pest-YOLO model were statistically analyzed and

visually presented in Figure 8. For each detector, two visualization

plots are presented. The left figure in Figure 8 is a plot of the linear

regression results between the imaging-derived and manual counts,

and the right figure is a histogram of the counting error. The linear

regression line of Pest-YOLO counting results (red line) fits better

with the true value curve (green line), as seen in the linear regression

results graph.When both slopes were 1.00, the intercept of the linear

regression equation of the Pest-YOLO was larger than that of the

linear regression equation of the baseline model YOLOv4. This

indicated that the Pest-YOLO model was less likely to miss pests.

The RMSE of the Pest-YOLO was 0.44, which was 2.35 lower
FIGURE 8

Plot of the counting test results of the models. The left figure is a plot of the linear regression results between the imaging-derived and manual
counts; the red line represents the regression curve predicted by the model, and the green line represents the true number of pests. The right
figure is a histogram of the counting error, where the x-axis represents the counting error of the model, and the y-axis represents the number
of samples.
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compared to that of the benchmark model YOLOv4 and also lower

than that of the other detectors. This demonstrates that the Pest-

YOLO model had better counting stability than the other models.

The histogram of counting error shows that the counting error of the

Pest-YOLOmodel was concentrated in the ±5 interval. The baseline

model YOLOv4 is concentrated in the interval of ± 15, YOLOv5m is

concentrated in the interval of ± 10, YOLOX is concentrated in the

interval of ± 9, and tool is concentrated in the interval of -10 to 7.

This indicated that the counting error of the Pest-YOLO model was

smaller than those of the other models.
5. Discussion

Crop pests and diseases are one of the major agricultural

disasters and often cause significant losses to agricultural

production. Therefor it is possible to detect pests automatically

and quickly and accurately, which is crucial for predicting the

scale of pests in the field and for pest control. In this study, we

present a large-scale multiclass dense and tiny pest detection and

counting model, Pest-YOLO. Although this study has important

implications for pest prediction and control, some work needs to

be further investigated. The presence of some pests in the dataset

that lack labeling information leads to a large number of

additional FPs generated by the model during the training

process. However, Precision and F1-score are in turn directly

influenced by FP, thus leading to abnormal values of the two

evaluation indicators and also having some influence on mAP.

Although we analyzed this issue in 4.3.1 and did not use

Precision and F1-score as evaluation metrics for subsequent

experiments. But this can only reduce to some extent the

negative impact of the data set on the model. Better

algorithms need further research, and scientific development

must be spiral. Excellent algorithms can lead to innovation of the

whole technology, but there is always a limitation period. We

still have many excellent improved models that still need to be

tried. In our future work, reducing the impact of missing

labels on models for pest datasets will be the next focus of

our research, and we intend to try to use semi-supervised

training or few-shot learning to further weaken the impact of

labels on model training. Currently, this study is only

implemented in a server environment. If our model is

integrated on a hardware device, this also has stringent

requirements on the number of parameters of the model. How

to minimize the number of parameters while maintaining the

model detection performance is also the focus of the next

research direction.
6. Conclusions

This paper proposes the Pest-YOLO-based pest detection

method to solve the problem of large-scale multi-class dense and
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tiny pest detection and counting. The proposed method includes

two key parts: the I-confidence loss algorithm and the

confluence strategy. We propose the I-confidence loss based

on the fused Focal loss and confidence loss, which can effectively

solve the problem of hard sample training, arising from the

uneven number of pest categories and low discrimination of

individual minute features during the training process. The

confluence strategy is used to solve the problem of false and

missed detections caused by occlusion, adhesion, and unlabeled

between tiny dense pest individuals during the pest detection

and identification. By adopting the confluence strategy, the

proposed model can achieve 69.59% for mAP and 77.71% for

Recall. In the subsequent analysis, the counting RMSE was 0.44,

and the counting error was concentrated at ±5. Therefore, this

study’s findings can significantly help solve the problem of large-

scale multi-class intensive and minute pest detection and

enumeration and provide a technical reference for agricultural

pest prevention and control.
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