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Fueled by the development of neuroscience and artificial intelligence (AI),

recent advances in the brain-inspired AI have manifested a tipping-point

in the collaboration of the two fields. AI began with the inspiration of

neuroscience, but has evolved to achieve a remarkable performance with

little dependence upon neuroscience. However, in a recent collaboration,

research into neurobiological explainability of AI models found that these

highly accurate models may resemble the neurobiological representation of

the same computational processes in the brain, although these models have

been developed in the absence of such neuroscientific references. In this

perspective, we review the cooperation and separation between neuroscience

and AI, and emphasize on the current advance, that is, a new cooperation, the

neurobiological explainability of AI. Under the intertwined development of the

two fields, we propose a practical framework to evaluate the brain-likeness of

AI models, paving the way for their further improvements.

KEYWORDS

artificial intelligence, brain, brain-inspired intelligence, neurobiological
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Introduction

Artificial intelligence (AI) starts with the notion of creating Turing-powerful
intelligent systems (Turing, 1936). He claimed that his desire was to build a machine
to “imitate a brain” and also to “mimic the behavior of the human,” which means
the likeness to both the brain and the behavior is requisite to realize such intelligent
systems. For this to happen, pioneers in the field (Rosenblatt, 1958; Fukushima and
Nixon, 1980; Bi and Poo, 1998; Masquelier and Thorpe, 2007) have drawn inspiration
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from the neurobiological representation to develop AI models.
However, early models or algorithms strictly mimicking the
neural processes in the brain have constantly failed to
deliver satisfactory performances, such as the perceptron
(Rosenblatt, 1958), Hebbian learning rules (Kempter et al.,
1999), and Sigmoid (Han and Moraga, 1995). Gradually,
computer scientists have strayed away from neuroscience and
turned to engineering and mathematical solutions to design
“outcome-driven” models. These models achieved remarkable
performance in many aspects, including but not limited to object
recognition (Riesenhuber and Poggio, 2000), speech and music
recognition (Kell et al., 2018; Sutskever et al., 2019), and motor
movement (Todorov, 2000).

Nonetheless, comparison between AI and the brain has
never stopped. Once optimized performance is achieved,
researchers (Yamins et al., 2014; Güçlü and van Gerven, 2015;
Eickenberg et al., 2017; Zhuang et al., 2021) begin to search
for the neurobiological explainability of these advanced models,
that is, the similarity of the neurobiological representation of
the same computational processes between AI models and
the brain. The authors wish that through unraveling the
neurobiological explainability of AI models, one could achieve
a better understanding of the brain and thus promote the
development of neuroscience (Lindsay, 2021). Interestingly,
in return, the evaluation of resemblance between current
AI models and the brain may also shed lights on how far
away these models are to the Turing-powerful (i.e., brain-like)
intelligent systems.

During the three stages (Figure 1) of AI development, the
role of neuroscience has experienced a shift from the “guide,”
who provides guiding principles to the design of AI models,
to the “judge,” who provide references for the evaluation of
AI models. In this review, we will look back to the mutual
development of AI and neuroscience, and propose a framework
to evaluate the brain-likeness of AI models that can serve AI
development in multiple ways.

The collaboration and separation
of artificial intelligence and
neuroscience

Brain is the most complex and efficient non-artificial
intelligent system known to humans. Throughout history,
the promise of creating machine intelligence with brain-
like ability has been a motivation of innovation (Roy et al.,
2019). One way to realize such intelligence is to scrutinize
the organization principles of brain’s structures and functions
and thus seek inspiration for the design of AI. Hassabis
et al. (2017) stated that if a new facet of neurobiological
representation were found, it would be considered as an
excellent candidate for incorporation into AI. Over the
years, AI models have been rapidly developed by drawing

inspiration from the brain neural networks, whereas algorithms,
architectures, and functions of models have benefited greatly
from mimicking such neurobiological representations (e.g.,
neuro-synaptic framework and hierarchical structure).

In the initial collaboration between AI and neuroscience,
the direct inspiration from neuroscience accelerated the start-up
of AI. The earliest application was the perceptron (Rosenblatt,
1958), a simple abstract of neurons, mimicking the simple
neuronal activity in visual cortex, such as the weights of
synapses, the biases of the thresholds, and the activation
function of the neural cells. Years later, inspired by Hubel
and Wiesel’s (1962) study in the visual cortex, Fukushima and
Nixon (1980) proposed an advanced model, Neocognitron, the
precursor of the modern convolutional neural networks (CNN),
which mimicked the organizations of neural cells in the visual
cortex. Apart from the inspiration of how neurons activate,
researchers also designed some brain-corresponding models
(e.g., topographic maps) inspired by how brain is organized. For
example, Burak and Fiete (2009) modeled the network topology
of the rats entorhinal cortex to form the neural substrate for
dead-reckoning.

Although AI is profoundly inspired by the neurobiological
representation of the brain, surprisingly, these brain-mimicking
models have never achieved a satisfactory performance, likely
due to their over-simplification of the real neural system.
For instance, Hebbian learning, a neurobiologically schemed
method, fail to produce models with adequate performance
as it does not take into consideration of the synapse’s
downstream effect on the network output (Lillicrap et al.,
2020). Gradually, researchers (Rumelhart et al., 1986; Hinton
et al., 2012; Lecun et al., 2015) started to turn to engineering
and mathematical solutions to maximize model performance
regardless of its underlying neurobiological relevance. In
these works, the authors replaced the former neurobiological
schemed methods with back-propagation, an algorithm without
a prior neurobiological relevance, and solved the low-efficiency
problem of synaptic modification (Lillicrap et al., 2020).
Moreover, replacing the former neurobiologically inspired
Sigmoid function (Han and Moraga, 1995) with the activation
function ReLu (Deng et al., 2010) has been demonstrated to
substantially improve the performance of deep neural networks
(DNNs) since Krizhevsky et al. (2012). Given such superior
performances, are these models operated in anyway similar
to the most efficient system we ever know, the brain, despite
they are not strictly structured to follow any neurobiological
principles?

Neurobiological explainability of
artificial intelligence

Despite of the turning of design principles from mimicking
neurobiological representation of the brain to optimizing
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FIGURE 1

Timeline of the development of the interaction between neuroscience and AI. During the development, the interaction between neuroscience
and AI has experienced 3 stages: (1) neuroscience guided the design of AI models; (2) implementations of engineering and mathematical tools
instead of neurobiological principles in the development of AI models have led to substantial improvement in model performances, but the
complex algorithms and huge parametric space behind the high performance pose a dilemma for the explanation of the underlying specific
decision-making of the models, which are also called “black box” models (Arrieta et al., 2020); (3) by comparing the predicted neurobiological
representation by modern AI models to the real neural processes in the brain, neurobiological explainability are provided to AI models.

performance with tools from engineering and mathematics,
AI and neuroscience have never really grown apart. With the
rapid development of AI, researchers (Yamins et al., 2014;
Güçlü and van Gerven, 2015; Eickenberg et al., 2017; Zhuang
et al., 2021) believe that these advanced models are capable to
promote the development of neuroscience in return. In specific,
they advocate for seeking for the neurobiological explanations
for AI models as an alternative way to better understand the
organization principles of the brain.

Early studies exploring the neurobiological explainability of
AI models have mainly focused on visual recognition. Yamins
et al. (2014) first examined the similarity between real brain
activities and predicted activations from CNN model. The
authors trained CNN model to match human performances
on various visual recognition tasks. The results showed that
the third and the fourth (top) layer of the model could
effectively predict the inferior temporal activity recorded with
functional MRI during image recognition. Other findings
(Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014;
Güçlü and van Gerven, 2015) also confirmed that deep neural
network (DNN) models trained for visual recognition have
remarkable predictability for the neural responses in the human
visual system as well. Moreover, Cichy et al. (2016) found
that the predicted brain activities by DNN trained for object
categorization are highly resemble to the brain activations
recorded via both fMRI and MEG during the same cognitive
process, not only in the physical space domain (i.e., matching
the hierarchical topography in the human ventral and dorsal

visual streams), but also in the temporal domain (i.e., matching
the time course over visual processing).

In addition to visual recognition, models designed for
other utilities also showed similar predicted neurobiological
representations with the real activities in the corresponding
neural systems. A recent heavily focused area is the
neurobiological explainability of AI models for language
processing, including syntax processing (Gauthier and Levy,
2019), semantic processing (Pereira et al., 2016; de Heer
et al., 2017), and comprehension (Schrimpf et al., 2021).
Adding to these evidence, highly corresponded mappings
between predicted (by the AI) and recorded (in the brain)
neurobiological representations have also been found in other
cognitive systems, such as the auditory system (Kell et al.,
2018), the motor system (Sussillo et al., 2015), and even the
hippocampal formation (Whittington et al., 2021).

Quantify the progress toward
Turing-powerful intelligence

Such demonstration of neurobiological explainability of
AI models has opened the door for new contributions from
neuroscience, to provide alternative tools to quantitatively
evaluate the progress we made toward the Turing-powerful
intelligent systems. Normally, evaluation to the distance to such
intelligent systems concentrates at the behavioral level, where
the performance of models would be evaluated, such as model-
model comparison and model-to-human behavior comparison.
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However, the neurobiological explainability gives us cues to
evaluate the brain-likeness of the models, which mainly focused
on whether they can solve the same problems as the brain.
Evaluation at the both behavioral and neurobiological gives us
a more comprehensive insight to evaluate the distance to the
Turing-powerful intelligent systems. Besides, the improvements
of the algorithm can also indicate the advancement toward
the Turing-powerful intelligent systems. To further elaborate
on this new role of neuroscience in AI development, here, we
capitalize on the Marr’s (1982) widely recognized computational
framework, and discuss such applications in three levels.

Evaluation at the computational level

In Marr’s theory, the first level, computational level,
concerns the problems that models can solve. The evaluation
of the performance of the models can be categorized into
two ways: model-to-model comparison and model-to-human
behavior comparison. The model-to-model comparison literally
compares performances of different models for the same task.
For instance, Xu et al. (2021) compared supervised models
to unsupervised models and found that the latter trained
with 10 min of labeled data, could rival the best supervised
model trained with 960 h of labeled data. The model-to-human
behavior comparison contrasts AI performance to human
performance during the same task. For instance, Rajalingham
et al. (2018) compared the ANNs’ (Artificial neural networks)
accuracy in the visual categorization task with the behavioral
results from 1,477 primates (1,472 humans and 5 monkeys),
and evaluated that the models could not achieve the human-like
behavioral performance.

Evaluation at the algorithmic level

The second level of Marr’s theory, algorithmic level,
concerns the processes that models go through. During the
exploration into the neurobiological explainability of models,
the training methods for models displayed a positive shift,
implying that models turned out to be more intelligent. First,
the training methods for models in the earlier studies aimed
to map the computational models into the corresponding brain
activity (Mitchell et al., 2008) when receiving the same stimuli,
or to use the brain responses to constrain the models (Cadieu
et al., 2014). And then the artificial neural response generated
from models and the unlearned brain data were compared.
However, in more recent studies, researchers (Yamins et al.,
2014; Kell et al., 2018; Schrimpf et al., 2021) start to train AI
models with only behavioral (e.g., objects and their labels) but
not any neuroimaging data. Interestingly, while the models were
not optimized to fit brain signals in the first places, they can still
predict the brain responses during the same cognitive process

proficiently. These findings suggest that the computational
processes of these models can be brain-like enough to generate
neurobiological representation without explicit training.

Furthermore, the shift of paradigm from supervised to
unsupervised models during the prediction of neurobiological
representation can also be seen as a step-forward toward brain-
like intelligence, since the latter is considered to be more
similar to human learning pattern which is constantly exposed
to unlabeled environments (Mitchell, 2004), which could even
automatically learn the human bias from image classification
(Steed and Caliskan, 2021). In earlier studies, models used to
predict neurobiological representation were mostly supervised
models (Cadieu et al., 2014; Yamins et al., 2014; Güçlü and
van Gerven, 2015). A study even suggested that unsupervised
models could not predict the brain responses (Khaligh-Razavi
and Kriegeskorte, 2014). However, with the improvement of
unsupervised models during the decade (Xu et al., 2021), recent
studies have found evidence that unsupervised models could
successfully predict the neural response as well. For instance,
Zhuang et al. (2021) found that the unsupervised models
achieved a high prediction accuracy in the primate ventral
stream that equaled and even surpassed the performance of the
best supervised model. Thus, the recent success of unsupervised
models in predicting brain representation suggests that AI
models have made a giant step forward on the human-like path.

Evaluation at the
implementation/physical level

The last level of Marr’s theory, implementation/physical
level, concerns the brain-likeness of the models.

First, instantiation (i.e., the neural representation of models)
of the brain-inspired model would be an explicit and effective
measure for judging success and spurring the progress to the
Turing-powerful intelligence. It is an explicit measure since
the layers in the models almost correspond to the hierarchical
structure of the brain (Kell et al., 2018), where we can
directly compared the detailed performance in each layer with
the corresponding responses in the brain. If a model could
highly predict the response in the brain, we consider that its
corresponding parameters/weight would be vital to achieve the
Turing-powerful intelligent systems (Hassabis et al., 2017). It
is also an effective measure to drive models toward the goal.
For example, Yamins et al. (2014) found that the top layer in
the model could better predict the activity in IT cortex while
other layers did not achieve the satisfactory performance. In this
case, we may allocate more energy to optimize the layers that
cannot successfully explain the corresponding neurobiological
representation, which determines the most productive way to
allocate resources.

Second, the evaluation of models from the perspective
of neuroscience further supports the validation of behavioral
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results. Many studies have indicated that the more brain-like
the model is, the better performance the model has in the task.
For instance, Yamins et al. (2014) indicated that when a model
highly predicts the IT (Inferior temporal) cortex, the better
performance it would have in the object recognition task. And
the same results were also found in another study (Khaligh-
Razavi and Kriegeskorte, 2014). They compared 37 models
with the human’s and monkeys’ cortex, respectively, showing
that the models with more relevant correspondences with the
neural representation in IT cortex have better performance in
object recognition. Further, in the language model, Schrimpf
et al. (2021) compared the predictability for neural response
between 43 diverse language models, where they found models
with high next-word predictive ability, like GPT models, have
a better performance in predicting brain signals in language
comprehension. Even they compared the ability of the next-
word prediction of these models in another dataset, the neural

predictivity still significantly correlated with the behavioral
results. The parallel but highly correlated results provide us
an opportunity to evaluate and further modify models from
another perspective, neuroscience. Combining with the first
point, it gives us a sight that we may modify the models more
brain-like in order to achieve better performance.

Third, the evaluation at the behavioral level may not
comprehensively explain the brain-like intelligence, as the
way to process information differs in the brain and behavior
(Bechara et al., 1997; Soon et al., 2008). Researchers claimed
that the unconscious biases observed in the brain guided
behavior before the conscious knowledge did, which means
the brain signal might capture the subtle differences that
were obscure at the behavioral level. Thus, the evaluation at
the neurobiological level may evaluate the distance to the
Turing-powerful intelligence more accurately compared to the
behavioral evaluation.

FIGURE 2

Schematic of the AI-Brain loop. First, present the same task (e.g., audio recognition) to human subjects and AI models, which are subsequently
trained for this task. Second, record the neural activities in the brain by neuroimaging techniques (e.g., fMRI., EEG., MEG., ECoG), and predict
neural responses with these trained AI models. Third, compare the recorded neural activity and the artificial neural activity generated by models.
Fourth, use the artificial neural activity to fit the neural activity by modifying the corresponding layers or parameters. Fifth, implement the
behavioral evaluation of model and see whether the performance achieve the human-like level. If not, implement the continuous fit until it
achieves the both human-like and brain-like level.
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Implications for the improvement
of AI models

Thus far, we have reviewed the collaboration and
separation between neuroscience and AI, and highlighted the
significance of the current collaboration. More importantly,
we propose the importance of evaluating models from the
perspective of neuroscience. The evaluation tells us the
closeness between the current models and the brain, which
is critical to optimize models in achieving the Turing-
powerful level.

To move forward, here, we present an AI-brain loop
framework in which we implement the explicit evaluation
from neuroscience and accurate modification in each layer
and even parameters to the models (Figure 2), inspired by
the human-in-the-loop (Li et al., 2014) and inception loop
(Walker et al., 2019).

In this framework, we propose that the AI models trained
for specific behavioral task can use neural recordings during
the same task as neurobiological reference. Comparisons
between recorded and model-predicted neural responses can
be used to tune the parameter space of the AI models,
and more realistic neurobiological representation of the
models can be achieved during the process of minimizing
the differences between the two. Lastly, performance of
the modified models at behavioral level will be used to
verify that whether models with higher brain-likeness
level, but also function at the human-like level. Then
we also test the modified models at the behavioral level
and see whether the performance improves. Such clues of
the modification are fundamental to achieve the Turing-
powerful intelligent system since it echoes Turing’s claim
(Turing, 1936) that models are qualified in not only
“mimicking the behavior of the human,” but also “imitating
the brain.”

The call for Turing-powerful intelligent system asks
to look beyond performance optimization, but to focus
more on how to achieve higher brain resemblance
in future AI models. We believe that re-introducing
neuroscience back into AI development through this
neurobiological explainability provides a promising opportunity
to outbreaking the “black-box” dilemma suffered by most
of modern AI models. By “jumping out of the box”
and developing more brain-like AI through such AI-
brain comparisons, we may eventually leap forward to
such ultimate goal.
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