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	       ABSTRACT
The use of deep learning methods to detect plant diseases and pests based on UAV images 
is an important application of remote sensing technology in modern forestry. This paper uses 
a CenterNet-based object detection method to construct models for plant disease and pest 
detection. The accuracy of the models is influenced by parameter alpha, which is used to 
control the affine transformation in the preprocessing of CenterNet. First, different alphas 
are sampled for training and testing. Next, the least square method is used to fit the curve 
between alpha and accuracy measured by mAP (mean average precision). Finally, the 
equation of the curve is fitted as mAP = -0.22 * alpha2 + 0.32 * alpha + 0.42. In comparison, an 
automated machine learning (AutoML) method is also conducted to automatically search for 
the best model. The experiments are done with 5,281 images as the training dataset, 1,319 
images as the verification dataset, and 3,842 images as the test dataset. The results show 
that the best alpha value obtained by the least square method is 0.733, and the accuracy of 
the corresponding model is 0.536 in mAP@[.5, .95]. In contrast, the accuracy of the AutoML 
method model is higher with the model accuracy of 0.545 in mAP@[.5, .95]. However, the 
training time and training resource consumption of the AutoML method are about 3 times that 
of the least square method. Therefore, in practice, a trade-off should be made according to 
the accuracy requirements, resource consumption, and task urgency.

INTRODUCTION

Plant diseases and insect pests seriously threaten the growth 
of forests and can be great impediments to forest health and 
forestry production (Zhang et al. 2010). Traditionally, the 
monitoring methods of forestry pests and diseases mainly 
consisted of field surveys. These manual scoring and count-
ing through field surveys are expensive, and the monitoring 
methods have time lags and strong subjectivity. Moreover, 
in areas with dangerous terrain and restricted access, the 
surveyors are unable to discover plant diseases and insect 
pests in time (Chiu 1993). Therefore, it is necessary to detect 
plant diseases and insect pests more accurately and quickly, 
which will help to develop early treatment technologies and 
greatly reduce economic losses at the same time (Fuentes 
et al. 2017).

In the early 1970s, with the launch of the first remote 
sensing satellite, remote sensing images were used to mon-
itor forestry diseases and pests (Gao et al. 2006, Lehmann 
et al. 2015). However, it is difficult to popularize and widely 
apply because of its inaccurate positioning accuracy, high 
cost, weather influence, and relatively long imaging cycle 
(Wu 2013). Fortunately, with the rapid development of 
unmanned aerial vehicle (UAV) technology and continuous 
improvement in its performance, UAV remote sensing has 

many advantages such as low cost, high precision, simple 
operation, and flexibility (Tang 2014). At present, people 
have also begun to explore the application of UAV remote 
sensing image in monitoring forest diseases and insect 
pests, combined with traditional computer vision methods 
and image analysis technology. The application integrates a 
global positioning system and geographic information system 
to detect the distribution of pests and achieves good results 
(Tetila et al. 2020, Yuan & Hu 2016).

In addition, Hinton et al. (2016) proposed the concept 
of deep learning. Krizhevsky et al. (2012) first applied the 
convolutional neural network (CNN) to the ImageNet large-
scale visual recognition challenge (ILSVRC). In the ILSVRC 
-2012 challenge, the trained deep CNN won first place in 
tasks of image classification and object detection, and the 
error rate was far lower than the other programs. Since then, 
deep learning has been rapidly applied to different research 
fields and has achieved great success in many fields, includ-
ing image classification (Huang et al. 2016), object detection 
(Girshick 2015, Redmon et al. 2016), image segmentation 
(Chen et al. 2018, Lee & Park 2020) and so on.

In recent years, deep CNN are applied to the detection 
of plant disease severity and has been proven to be a good 
method. For example, Liu et al. (2018) proposed a new CNN 
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model based on Alexnet to identify four common apple leaf 
diseases. The overall accuracy of the model was 97.62%, 
and the parameters were reduced by 51,206,928 compared 
with the standard Alex net model. Xie et al. (2020) proposed 
a faster DR-IACNN model by introducing the concept-v1 
module, concept-resnet-v2 module, and SE module. The 
results showed that the average detection accuracy of the 
detection model for the grape leaf disease dataset was 81.1% 
and the detection speed was 15.01 FPS. Wang et al. (2019) 
proposed a corn leaf disease segmentation method based on 
an improved fully convolution network (FCN). The method 
mainly included an encoding network and corresponding 
decoding network, as well as a pixel-level classifier behind 
the decoding network. This method had good segmentation 
performance and could accurately segment the diseased area 
of corn leaves.

Similar to computer vision tasks, the application of 
CNN in the research of plant diseases and insect pests can 
be roughly divided into classification networks, object de-
tection networks, and segmentation networks according to 
their different tasks. The object detection network model 
not only gives the types of pests and diseases but also ac-
curately finds out the location of the pests and diseases on 
the images. Object detection methods are further roughly 
divided into two categories, anchor-based object detection 
methods, and anchor-free object detection methods. For 
example, anchor-based object detection methods include the 
Faster RCNN series (Girshick 2015, Ren et al. 2017), YOLO 
series (Bochkovskiy et al. 2020, Redmon et al. 2016, 2017, 
2018), SSD series (Jeong et al. 2017, Liu et al. 2016, Zhang 
et al. 2020), RFCN (Dai et al. 2016) and so on. All these 
methods rely on a set of predefined anchor boxes. Thus, to 
avoid the shortcomings brought by the pre-defined anchor 
box, people began to study the anchor-free object detection 
method. This method does not need to use anchors but adopts 
the idea of key point regression. First, some key points are 
defined to describe an object, and then each key point of the 
object is regressed. There are some classic methods, such 
as CornerNet (Law & Deng 2020), CenterNet (Zhou et al. 
2019a), FCOS (Tian et al. 2020), and extreme (Zhou et al. 
2019b), etc., all of which take object detection as a standard 
key point estimate problem.

In the above anchor-free object detection algorithms, 
CenterNet is a simple, fast, and accurate detector without any 
non-maximum suppression (NMS) as the post-processing 
method. In the training of the original CenterNet, a random 
affine transformation is done to each image to enrich the 
data, and the new object’s boundary box is generated by clip 
operation, which is usually not correct. To make the bound-
ary box generated by clip operation as accurate as possible, 

Liang et al. (2021) only used a criterion that the proportion 
of the remaining objects should be at least 90% of the size 
of the original objects. Therefore, this study mainly focuses 
on identifying an optimal model based on parameter alpha, 
which is the parameter used to control the affine transfor-
mation in the preprocessing of CenterNet, to improve the 
accuracy of detecting plant diseases and pests. Both the 
least square method and an automated machine learning 
(AutoML) method are proposed to find an appropriate model 
for detecting plant diseases and pests.

MATERIALS AND METHODS 

Study Area

The study area is located in Lingyuan City, Liaoning Prov-
ince, Northeast China. Lingyuan City is located in the west 
of Liaoning Province, bordering Hebei Province and Inner 
Mongolia. The main vegetation is Chinese red pine (Pinus 
tabuliformis) and scatted with some poplar. The pest den-
droctonus (Scolytidae) has caused damage and tree death 
in the area.

Six sample plots that are being infected by plant diseases 
and pests were selected. They were named plot 1 to plot 6. 
Fig. 1 shows the detailed location and distribution of these 
plots on the map.

Data Collection

The images of the UAV were taken in the study area from 
August 11 to August 12 during the growing season, which 
can better reflect the characteristics of plant growth. UAV 
took off from the center of six sample plots, and a batch of 
images was taken in each sample plot at different heights. 
The model of the UAV is four rotor DJI inspire2, equipped 
with DJI X5 professional camera, and the resolution of each 
image is 5280 × 3956 pixels.

CenterNet Principles

For image I, after the full convolution network, three out-
puts will be generated. One is the feature map containing 
C (number of categories of the detection task) layers. Each 
feature map corresponds to one category. Each pixel on the 
feature map represents the score of the pixel belonging to 
the center of an object. Another layer represents the offset (x/
Sx – x/Sx, y/Sy – y/Sy), where (x, y) is the center of an object 
with class C on the input image, and (Sx, Sy) is the horizon 
and vertical scale parameters of the input image to that of 
the output feature image, respectively. The number of this 
layer is 1, and each pixel on this layer represents the offset 
between the real center point position and center pixels on 
the feature map. The other layer represents the length and 
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width of the boundary box of an object. Each pixel on this 
layer represents the length and width of the object’s boundary 
box (box) corresponding to the point. The overall structure 
of CenterNet is shown in Fig. 2.

Data Enhancement by Affine Transformation

In the original CenterNet, before sending the image to the net-
work, an affine transformation of random center translation 
and scaling is made to the image. As a result, some objects 
on the image will be removed from the new image boundary, 
while some objects on the image will be retained in the new 
image, and other objects on the image will fall on the new 
image boundary, as shown in Fig. 3(b). For objects that fall 
on the boundary, the original CenterNet only recalculates 
the boundary box’s coordinates of the remaining objects 
with a simple clip operation. The new boundary box of the 
remaining objects calculated by the clip operation is often 
inaccurate, as shown in Fig. 3(b), while Fig. 3(c) shows the 
ground truth of the boundary box of the remaining object. 

For an object that remains in the new image after affine 
transformation to the original image, the ratio of the area 
of the new boundary box (boundary box created by clip 
operation) to the original boundary box (boundary box in 

the original image) is defined as alpha. It is known that, for 
an object that falls on the new image’s boundary after the 
affine transformation to an image, the larger the alpha ratio, 
the more accurate the new boundary box obtained by clip 
operation is. As the shapes of the plants’ canopy are often 
approximate to circular, in most situations, with the growing 
of alpha, the remaining object’ boundary box calculated by 
clip operation will be more accurate, as shown in Fig. 4. 

Optimal Parameter Search by Least Square Fitting

Alpha is a scale factor, and its value falls within the range of 
[0, 1]. To quickly obtain the appropriate value of alpha, the 
following strategies are adopted: after affine transformation, 
no constraints are made for the objects that are moved out of 
the image or the whole objects that are still within the image 
scope, while the alpha value is required to be greater than 0.5 
to objects that fall on the image boundary, that is, the alpha 
value must be limit to the range of [0.5, 1] if some objects 
fall on the image boundary after an affine transformation. 

To explore the relationship between alpha and the detec-
tion accuracy of diseased and pest plant detectors, different 
alpha values are selected to train models on the same training 
dataset and then tested on the same test dataset. Finally, the 
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least square method is used to fit the curve between alpha 
value and object detection accuracy.

AutoML Method for Optimal Model Search

In addition to the above-mentioned method to search for an 
optimal parameter, another AutoML method is also used to 
search for an optimal model automatically for the detection 

of plant diseases and pests here. Following is the procedure: 

Step 1. In the first epoch of training, the model trained 
from ImageNet is used as the initial model, and 9 different 
alphas values chosen from the interval of [0.5, 0.95] with a 
step of 0.05 are used to train the 9 models.

Step 2. In the next epoch of training, the best model 
among the 9 models obtained by the previous epoch is re-
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garded as the pre-training model, and then different alpha 
values within [0.5, 0.95] with the step of 0.05 are chosen 
again to train another 9 different models.

Step 3. Repeat Step 2 until the last epoch is completed 
or the training is converged.

The general schematic diagram of the whole process is 
shown in Fig. 5:
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The size of the original image obtained by the UAV is 5,280 
× 3,956 pixels. Each original image will be cropped to 
smaller images with sizes between 1,000 and 2,000 pixels 
before training. This study only focuses on infected plants 
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Fig. 5: Flow chart of AutoML method. Fig. 5: Flow chart of AutoML method.

and dead plants, which are mainly yellow and red in the 
image. In the six sample plots, the images of sample plot 1, 
sample plot 3, sample plot 4, and sample plot 6 are divided 
into training and verification datasets, while the images of 
sample plot 2 and sample plot 5 are used as test datasets. 
Finally, the training and verification datasets contain 5,281 
images and 1,319 images respectively, and the test dataset 

contains 3,842 images. In all, the training dataset contains 
about 2,433 infected instances and 13,539 dead instances, 
while the testing dataset has 938 infected instances and 3,144 
dead instances, respectively. Before training, to obtain as 
many samples as possible, more data are created through 
data enhancement methods such as flipping, random color, 
random rotation, and random clipping.
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Training

As Pytorch deep learning framework is one of the most fa-
mous and fastest deep learning frameworks, it is chosen to 
train the models on GPU machines in this experiment. In all 
these experiments, no matter how large the original image is, 
it will be scaled to a fixed size of 512 * 512 through affine 
transformation, and then sent to the backbone of the Center-
Net network. The backbone network is the classic resnet-101 
structure. The training is carried out from 0 and is stopped 
after 100 epochs. The learning strategy is Adam’s method. 
The detailed training super parameters are shown in Table 1.

Test and Comparison

To evaluate the final test results, the official coco API 
(Lin & Dollar 2016) is used to calculate the accuracy of 
mAP, which is the average precision (AP) in multiple IOU 
thresholds ranging from 0.5 to 0.95 with the step of 0.05. 
It is simply defined as mAP@[.5, .95], which is used as 
the performance indicator in object detection tasks. IOU is 
calculated as follows:
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Where p(r)  is the measure precision at recall r ? AP 
(Average Precision) is a concept of integrating precision as 
recall varied from 0 to 1, and mAP is defined as the average 
of AP for all of the object classes.

RESULTS

Results of Least Squares Parameter Fitting Parameter 
Model

In the interval of [0.5, 0.95], we take 0.05 as the step to ob-
tain different alpha values while keeping other parameters 
unchanged. different models are trained on the same training 
data and then tested on the same test set. The detailed results 
are shown in Table 2:

As shown in Table 2, at the lower alpha levels, the object 
detection accuracy increases with the increase of alpha; when 
alpha increases to about 0.75, the value of mAP reaches the 
highest. After that, the mAP decreases with the increasing 
value of alpha, showing a U-shaped pattern (quadratic). 
Therefore, based on this observation, taking the alpha param-
eter as the independent variable and mAP as the dependent 
variable, an expression of a quadratic equation is established: 
mAP=a*alpha2 + b*alpha + c. 

Fitting the quadratic curve equation mAP = a * alpha2 

+ b*alpha + c with the least square method, the result coef-
ficients of a, b and c are -0.22, 0.32, and 0.42, respectively. 
Therefore, the expression of the curve is mAP = -0.22 * 
alpha2 + 0.32 * alpha + 0.42, which is a bottom-up quadratic 
curve. In the range of [0.5, 0.95], the accuracy of mAP in-
creases at the beginning and then decreases with the increase 
of alpha. When alpha reaches 0.733, the maximum value of 
the curve is 0.533. The overall curves are shown in Fig. 6. 
The red curve is the broken line connected by the original 
points, and the green curve is the least square fitting result 
of a one-dimensional quadratic equation curve.

Results of different models

For comparison, the least squares method model trained 
with the alpha of 0.733, which is the maximum point of 
the quadratic curve, together with the model created by the 
AutoML method and some other standard object detection 
models such as Faster RCNN (Ren et al. 2017), SSD (Liu 
et al. 2016), CenterNet (Zhou et al. 2019a) are all tested on 
the same test dataset. The results of all these models are as 
follows in Table 3.

As can be seen from the table, the accuracy of the Au-
toML method model and the least square method model 
are 0.545 and 0.536, respectively. Among the anchor-based 
methods (Faster RCNN, SSD, and RetinaNet), RetinaNet 
attained the highest accuracy, reaching 0.480 in mAP@[.5, 
.95]. When compared with all the models, CenterNet (Au-
toML) reached the best accuracy of 0.545 in mAP@[.5, .95].

It also can be seen in Fig. 7 that in the early stage of train-
ing, the convergence speed of the AutoML method model is 
faster than that of the least square method model, and when 

Table 1: Parameters of network training.

Argument Value

Mini-batch size 8

Num_epochs 100

Lr_policy Multistep

Step value 40, 80

Initial learning rate 1.25e-4

Gamma 0.1
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it goes to about the 20th epoch, the accuracy of the AutoML 
method model almost equals to convergent accuracy of least 
square method model.

DISCUSSION 

Can Affine Transformation Operation be Replaced 
with Resize Operation

To verify the effect of the affine transformation operation on 
the model’s accuracy, the affine transformation operation is 
replaced by a simple resizing operation in the training stage. 
Therefore, random translation and scaling affine transfor-
mation operation are removed in the preprocess of training, 
and all the original images are uniformly resized to 512 * 
512 pixels to train a CenterNet model. the accuracy of the 
experimental results can only reach 0.493 in mAP@[.5, 
.95]. It is lower than the original CenterNet’s accuracy with 

0.498 in mAP@[.5, .95]. This may be because the resizing 
operation uniformly scales all original images to a size of 
512 * 512 pixels, on the contrary, the operation of random 
affine transformation in the original Centernet generates 
images of multiple different sizes (Fig. 8), which can enrich 
the richness of the training data. As a result, although resizing 
operation can produce a more accurate boundary box than 
that of the affine transformation operation, it is no better 
than the affine transformation operation in improving the 
detection model’s accuracy. 

Analysis of the Relationship Between Alpha and 
Detection Accuracy

Generally, when the affine transformation is performed on 
the image, some plant objects may fall on the image bound-
ary. The larger the alpha ratio, the more accurate the newly 
created boundary box of the remaining plants is. However, 
Fig. 6 indicates that in the experiment, the accuracy of ob-

Table 2: Object detection accuracy corresponding to different alphas.

alpha 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

mAP 0.522 0.526 0.528 0.530 0.533 0.534 0.533 0.529 0.528 0.522

Table 3: Detection results comparison using different frameworks and network architectures.

Method backbone mAP@[.5] mAP@[.75] mAP@[.5, .95]

Faster RCNN ResNet-101 0.693 0.535 0.472

SSD ResNet-101 0.573 0.489 0.451

RetinaNet ResNet-101-FPN 0.724 0.546 0.480

CornerNet Hourglass-104 0.722 0.559 0.491

CenterNet ResNet-101 0.703 0.557 0.498

CenterNet (LSM) ResNet-101 0.726 0.584 0.536

CenterNet (AutoML) ResNet-101 0.737 0.603 0.545
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ject detection does not increase with the increase of alpha 
all the time, but actually increases at first and then begins to 
decrease. The reason is mainly that during the increase of 
alpha from 0.600 to 0.733, the new boundary box calculated 
by clip operation for the remaining plants becomes more 
accurate. As the alpha continues to increase, although the 
new boundary box obtained by the clip operation is more 
accurate, the training data’s diversity begins to decrease. 
Nevertheless, the deep learning model needs to be driven 
by big data with high richness to get better accuracy. It can 
be seen from Fig. 6 that after the alpha increases to 0.733, 
the accuracy of the model begins to show a downward trend, 
which is mainly because the low data richness begins to play 
a greater impact on the model’s accuracy from then on. On the 
whole, in the range of 0.5 to 0.95, alpha presents a univariate 
quadratic monotonic function to the accuracy of the model, 
and it makes the accuracy of the model increase at first and 
then begins to decrease.

Advantages and Disadvantages of Automl Method and 
Least Squares Method

In comparison to the least square method model, the AutoML 
model’s accuracy is higher and it is an end-to-end training 
method without manual intervention, but the training time 
and training resources of the AutoML model are also high-
er. From the overall point of view, the final accuracy of the 
AutoML model is 0.545 in mAP@[.5, .95], which is higher 
than the accuracy of 0.536 in mAP@[.5, .95] selected by the 
least square method. However, since the variables alpha and 

mAP@[.5, .95] conform to a quadratic equation of one vari-
able, only 3 different alphas and mAPs@[.5, .95] are needed 
to determine the equation expression. that is, the univariate 
quadratic equation can be determined only after 3 rounds of 
training and testing with different alphas. By contrast, when 
training the AutoML model, in each epoch 9 models need to 
be trained with 9 different alpha values from the parameter 
interval of [0.5, 0.95] with a step of 0.05. To sum up, though 
the AutoML method is an end-to-end method, the time cost 
and training resource cost of the AutoML method to find 
an optimal is about 3 times that of the least square method. 

CONCLUSIONS

This article mainly proposed an AutoML method and a least 
square method for searching for an optimal model for de-
tecting diseases and pest plants on the UAV image. The least 
square method finally fits an optimal alpha with the value 
of 0.733, and the accuracy of the corresponding model can 
reach 0.536 in mAP@[.5, .95]. The AutoML method uses 
the best model in the previous epoch as the initial model 
in each epoch, and the accuracy of the AutoML method is 
0.545 in mAP@[.5, .95], which is higher than that of the 
optimal model find by the least square method. However, 
the training duration and training resource consumption of 
the AutoML model is about 3 times that of the least square 
method model. Therefore, in the actual application, a trade-
off can be made according to the accuracy requirements, 
resource consumption, and task duration.

 

 

accuracy of the experimental results can only reach 0.493 in mAP@[.5, .95]. It is lower than the original 

CenterNet’s accuracy with 0.498 in mAP@[.5, .95]. This may be because the resizing operation 

uniformly scales all original images to a size of 512 * 512 pixels, on the contrary, the operation of random 

affine transformation in the original Centernet generates images of multiple different sizes (Fig. 8), which 

can enrich the richness of the training data. As a result, although resizing operation can produce a more 

accurate boundary box than that of the affine transformation operation, it is no better than the affine 

transformation operation in improving the detection model’s accuracy.  

   

   

Fig. 8: (a) original image, (b), (c), (d), (e) and (f) images and boundary 

box labels generated by affine transformation operation. 

Analysis of the Relationship Between Alpha and Detection Accuracy 

Generally, when the affine transformation is performed on the image, some plant objects may fall 

on the image boundary. The larger the alpha ratio, the more accurate the newly created boundary box of 

the remaining plants is. However, Fig. 6 indicates that in the experiment, the accuracy of object detection 

does not increase with the increase of alpha all the time, but actually increases at first and then begins to 

decrease. The reason is mainly that during the increase of alpha from 0.600 to 0.733, the new boundary 

 

 

accuracy of the experimental results can only reach 0.493 in mAP@[.5, .95]. It is lower than the original 

CenterNet’s accuracy with 0.498 in mAP@[.5, .95]. This may be because the resizing operation 

uniformly scales all original images to a size of 512 * 512 pixels, on the contrary, the operation of random 

affine transformation in the original Centernet generates images of multiple different sizes (Fig. 8), which 

can enrich the richness of the training data. As a result, although resizing operation can produce a more 

accurate boundary box than that of the affine transformation operation, it is no better than the affine 

transformation operation in improving the detection model’s accuracy.  

   

   

Fig. 8: (a) original image, (b), (c), (d), (e) and (f) images and boundary 

box labels generated by affine transformation operation. 

Analysis of the Relationship Between Alpha and Detection Accuracy 

Generally, when the affine transformation is performed on the image, some plant objects may fall 

on the image boundary. The larger the alpha ratio, the more accurate the newly created boundary box of 

the remaining plants is. However, Fig. 6 indicates that in the experiment, the accuracy of object detection 

does not increase with the increase of alpha all the time, but actually increases at first and then begins to 

decrease. The reason is mainly that during the increase of alpha from 0.600 to 0.733, the new boundary 

Fig. 8: (a) original image, (b), (c), (d), (e) and (f) images and boundary box labels generated by affine transformation operation.



1617OPTIMAL MODELS FOR PLANT DISEASE AND PEST DETECTION USING UAV IMAGE

Nature Environment and Pollution Technology • Vol. 21, No. 4, 2022

ACKNOWLEDGMENTS

The authors are very grateful to the Lingyuan Forestry Bureau 
for assisting in the data collection process.

 REFERENCES
Bochkovskiy, A. Wang, C. and Liao, H. 2020. Yolov4: Optimal speed and 

accuracy of object detection. arXiv Preprint arXiv:2004.10934.
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. 2018. 

Deeplab: Semantic image segmentation with deep convolutional nets, 
atrous convolution, and fully connected CRFS. IEEE Trans. Pattern 
Anal. Mach. Intell., 40(4): 834-848.

Chiu, S. F. 1993. Investigations on botanical insecticides in south China: 
An update. Bot. Pest. Integr. Pest Manag., 19: 134-147.

Dai, J.F. Li, Y., He, K.M. and Sun, J. 2016. R-FCN: Object detection via 
region-based fully convolutional networks. Adv. Neural Inform. Pro-
cess. Sys., 41: 379-387.

Fuentes, Y., Kim, S.C. and Park, D. S. 2017. A robust deep-learning-based 
detector for real-time tomato plant diseases and pests recognition. 
Sensors, 17(9): 2022.

Gao, Y., Liu, D., Zhang, F. and Yang, X. 2006. The application development 
of satellite remote sensing technology in the assessment of forest 
damage. Chin. Agric. Sci. Bull., 22(2): 113-117.

Girshick, R. 2015. Fast R-CNN. In: Proceedings of the IEEE International 
Conference on Computer Vision. pp. 1440-1448.

Huang, G., Liu, Z., Laurens, V.D.M. and Weinberger, K.Q. 2017. Densely 
Connected Convolutional Networks. 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 
2261-2269. https://doi.org/10.1109/CVPR.2017.243. 

Jeong, J., Park, H. and Kwak, N. 2017. Enhancement of SSD by concate-
nating feature maps for object detection. arXiv:1705.09587.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. 2012. Imagenet classification 
with deep convolutional neural networks. Adv. Neural Inform. Process, 
Syst., 25: 1097-1105.

Law, H. and Deng, J. 2020. Cornernet: Detecting objects as paired key 
points. Int. J. Comp. Vision, 128(3): 642-656.

Lee, Y. and Park, J. 2020. Centermask: Real-time anchor-free instance 
segmentation. Proceedings of the IEEE/CVF Conference On Computer 
Vision And Pattern Recognition, Seatle, WA, pp. 13906-13915.

Lehmann, J.R.K. Nieberding, F., Prinz, T. and Knoth, C. 2015. Analysis of 
unmanned aerial system-based cir images in forestry: A new perspective 
to monitor pest infestation levels. Forests, 6(3): 594-612.

Liang, D., Liu, W., Zhao, L., Zong, S. and Luo, Y. 2021. An improved con-
volutional neural network for plant disease detection using unmanned 
aerial vehicle images. Nature Environ. Pollut. Technol., 10: 386. https://
doi.org/10.35940/ijrte.F1110.038620.

Lin, T.Y. and Dollar, P. 2016. Ms coco API. https://github.com/pdollar/coco.
Liu, B., Zhang, Y., He, D. and Li, Y. 2018. Identification of apple leaf dis-

eases based on deep convolutional neural networks. Symmetry, 10(1): 
11. https://doi.org/10.3390/sym10010011.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, 
A.C. 2016. SSD: Single shot multibox detector. Europ. Conf. Comput. 
Vision., 19: 21-37.

Redmon, J., Divvala, S. Girshick, R. and Farhadi, A. 2016. You only look 
once: Unified, real-time object detection. 2016 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 779-788. https://
doi.org/10.1109/CVPR.2016.91.

Redmon, J. and Farhadi, A. 2017. YOLO9000: Better, faster, stronger. 2016 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
pp. 779-788. https://doi.org/10.1109/CVPR.2016.91.

Redmon, J. and Farhadi, A. 2018. Yolov3: An incremental improvement. 
arXiv:1804.02767.

Ren, S., He, K., Girshick, R. and Sun, J. 2017. Faster R-CNN: Towards 
real-time object detection with region proposal networks. IEEE Trans. 
Pattern Anal. Mach. Intell., 39(6): 1137-1149.

Tang, Y. 2014. Research on the vegetation identification method based on 
UAV image acquisition, Chengdu University of Technology, Chengdu, 
Sichuan.

Tetila, E.C., Machado, B.B., Astolfi, G., de Souza Belete, N A. Amorim, 
W. P. Roel and A .R. Pistori, H. 2020. Detection and classification of 
soybean pests using deep learning with UAV images. Computers and 
Electronics in Agriculture, 179, 105836. https://doi.org/10.1016/j.
compag.2020.105836.

Tian, Z., Shen, C., Chen, H. and He, T. 2020. FCOS: Fully convolutional 
one-stage object detection, 2019 IEEE/CVF International Conference 
on Computer Vision (ICCV). arXiv:1904.01355.

Wang, Z. Shi, Y. and Li, Y. 2019. Segmentation of corn leaf diseases 
based on improved fully convolutional neural network. Comput-
er Engineering and Applications. 55(22): 127-132. (Abstract in  
English)

Wu, Q. 2013. Research on bursaphelenchus xylophilus area detection based 
on remote sensing image. Anhui University, Hefei, Anhui.

Xie, X., Ma, Y., Liu, B., He, J. and Wang, H. 2020. A deep-learning-based 
real-time detector for grape leaf diseases using improved convolutional 
neural networks. Front. Plant Sci., 11: 751. https://doi.org/10.3389/
fpls.2020.00751.

Yuan, Y. and Hu, X. 2016. Random forest and objected-based classification 
for forest pest extraction from UAV aerial imagery. The International 
Archives of the Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, XLI-B1: 1093-1098.

Zhang, S., Wen, L., Lei, Z. and Li, S.Z. 2020. Refinedet++: Single-shot 
refinement neural network for object detection. IEEE Trans. Circ. Syst. 
Video Technol:z, 31(2): 674-687.

Zhang, T. Zhang, X. Liu, H. and Pei, X. 2010. Application of remote sensing 
technology in monitoring forest diseases and pests. Journal of Anhui 
Agricultural Sciences, 38(21): 11604-11607.

Zhou, X. Wang, D. and Krhenbühl, P. 2019a. Objects as points. arX-
iv:1904.07850.

Zhou, X. Zhuo, J. and Krhenbühl, P. 2019b. Bottom-up object detection by 
grouping extreme and center points. arXiv:1901.08043.


