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Mechanisms of retinal ganglion
cell injury following acute
increases in intraocular pressure

Mary Anne Garner1,2, Ryan G. Strickland1,2, Christopher A. Girkin1,2

and Alecia K. Gross1,2*

1Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham,
Birmingham, AL, United States, 2Department of Ophthalmology and Visual Sciences, Heersink
School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
The maintenance of intraocular pressure (IOP) is critical to preserving the

pristine optics required for vision. Disturbances in IOP can directly impact the

optic nerve and retina, and inner retinal injury can occur following acute and

chronic IOP elevation. There are a variety of animal models that have been

developed to study the effects of acute and chronic elevation of IOP on the

retina, retinal ganglion cell (RGC) morphology, intracellular signaling, gene

expression changes, and survival. Acute IOP models induce injury that allows

for the study of RGC response to well characterized injury and potential

recovery. This review will focus on the initial impact of acute IOP elevation

on RGC injury and recovery as these early responsesmay be the best targets for

potential therapeutic interventions to promote RGC survival in glaucoma.
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Introduction

The loss of retinal ganglion cells (RGCs) in the retina and degeneration of the optic

nerve is a hallmark of glaucomatous optic neuropathy, a leading cause for irreversible

blindness worldwide (1, 2). Lowering of intraocular pressure (IOP) is currently the

primary therapeutic intervention for glaucoma, though there are other possible causative

factors that are responsible for RGC death in the disease (3, 4). In the last decade, several

reviews have focused on the molecular mechanisms of (5–10) and neuroprotective

strategies for (11–13) chronic glaucoma. While glaucoma is a heterogenous disease

encompassing several different pathological phenotypes, here we review the

morphological and molecular changes that RGCs and retinal glial cells undergo in

models of acute increases in IOP.

Acute models of ocular hypertension vary in their execution, duration, and severity

but generally produce a reversible loss of inner retinal function without inducing
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immediate RGC death. While the mechanism of RGC injury

from either acute subischemic or ischemic injury may differ from

the changes seen with chronic elevated IOP exposure, the acute

IOP model can be performed with precisely controlled pressures

and durations and provides a window into the mechanisms of

RGC recovery. Additionally, electroretinography (ERG), used to

measure retinal function, can be used as a metric for ensuring

that the elevated IOP-induced injury remains subischemic since

very high pressures can affect inner retinal function resulting in

diminished b-waves (14).

There are numerous animal models of acute hypertension

(15–34), and although nearly every model is different in

mechanism, duration, and pressure elevation, we have

included those that were evaluated within hours or days of

pressure elevation unless otherwise explicitly stated. These

models have resulted in an extensive body of knowledge

regarding genes expressed and proteins up- or down-regulated.

Throughout, we state whether the model discussed is acute or

transient in nature and have added relevant findings from

genetic and chronic models.

While the optic nerve and retinal structure vary across

species, models of elevated IOP exhibit consistent patterns of

RGC damage following injury. Though glaucoma is a chronic

degenerative optic neuropathy, early disease stage signaling

pathways and cell morphological changes are uncovered by

studying the response of RGCs and their milieu to acute injury

and the mechanisms by which they recover from induced

damage (35).
Organization of the retina

The neural retina is an organized tissue with distinct layers

of neuronal and glial cells. The neuronal cell types include: 1)

rod and cone photoreceptors, which transduce the energy of a

photon of light into an electrical signal; 2) horizontal cells in the

inner nuclear layer which synapse with photoreceptors; 3)

bipolar cells, which receive input from photoreceptors and

form synapses with RGCs; 4) amacrine cells in the inner

plexiform layer form synapses with RGCs; and 5) RGC somas,

dendrites, and axons. RGC axons form the optic nerve that

projects to the lateral geniculate nucleus and suprachiasmatic

nucleus of the thalamus (in primates) as well as to the superior

colliculus of the brainstem and primary visual cortex within the

occipital lobe (in primates and rodent models). The retina is also

home to glial cells including astrocytes, Müller glia, and

microglia. Each of these glial cell types play a role in RGC

support, and each can subsequently become deleterious to RGC

survival when activated for extended periods of time (e.g.,

following ocular hypertension).

Molecular profiling has indicated that there are approximately

40 subtypes of RGCs described in mice (36–39) and at least 18

different subtypes of RGCs in the primate retina (40, 41). Of the
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four major types studied in glaucomatous animal models (ON-

sustained or transient and OFF-sustained or transient), the aOFF-
RGCs, whose dendritic arbors form synapses with bipolar cells in

the OFF sublamina of the inner retina, are the most vulnerable to

morphological changes in dendritic arborization, synapse

formation, and cell death following IOP elevation by laser (42)

andmicrobead injection (43, 44). However, this effect may be due to

age-related changes in dendritic morphology with OFF-RGCs being

more adaptable and therefore able to recover more quickly

following injury in younger animals (45). Additionally, the

reported susceptibility of the larger aOFF-RGCs could be due to

quantification of RGC subtypes based on soma size and an

unintentional bias towards the loss of cells with larger somas if

RGC cell bodies have shrunk in response to injury. ON- and OFF-

sustained RGCs show evidence of normal dendritic arbors but loss

of excitatory synapses within those arbors following microbead-

induced IOP elevation (43), implying that changes in synapse

formation may precede dendritic arbor morphological changes.

The mechanism of injury from acute IOP elevation is

incompletely understood as elevation of IOP can impact the

RCG axons directly and indirectly within the optic nerve head

(ONH), and can alter inner retinal and ONH perfusion to the

RGC soma and axons. In humans and higher primates, the

axons of the RGCs pass through the lamina cribrosa before

becoming myelinated and forming the optic nerve. Though

rodent models lack the connective tissue found in human

lamina cribrosae, they do possess a glial lamina containing

astrocytes, and axoplasmic stasis can occur in the ONH of

these models as well (46). There is an extensive body of work

analyzing the effects of axonal damage on retrograde and

anterograde transport and synapse degeneration, discussed

below. The lamina cribrosa has been studied extensively as it

is particularly susceptible to the damage induced by elevated IOP

(47), resulting in axoplasmic stasis within the RGC axons.

Remodeling of the lamina cribrosa in response to elevated IOP

has been recently reviewed (48).

In addition to the axonal injury within the ONH region,

there are also effects on the retinal vasculature and neural retina,

especially in the inner retina, which can affect receptors in the

dendritic membranes and calcium concentrations within the

cells (49). Early gene expression and cell signaling changes that

occur because of elevated IOP on the retina and on axonal

transport are essential to understanding the early stages of

glaucomatous damage (26).
Models of ocular hypertension

RGC function, measured via ERG, is lost as a result of

increases in IOP in animal models of experimental glaucoma

while the outer retinal function is preserved (14, 16, 26, 50, 51).

With acute models of very high IOP produced either transiently

(17) or for a prolonged acute period (1 hour) (52), the functional
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recovery time for RGCs can be longer than that of the outer

retina and may result in a lack of recovery even 4 weeks

following insult (53). Transient increases in IOP are achieved

through manometrically elevating IOP using a saline solution

and are often used to produce pressures above that of the mean

arterial pressure, producing an ischemic insult and preventing

ocular perfusion. These high pressures not only affect RGC

function but also result in loss of function of the outer retinal

photoreceptors and bipolar cells. These studies often focus on

functional recovery over time following insults of varying

degrees. Studies have also indicated a relationship between

blood pressure (BP), and therefore ocular perfusion pressure,

and functional losses due to IOP (54).

Acute increases in IOP lead to nerve fiber layer thinning with

a decrease in RGC soma number in rats (14, 52, 55) and mice

(16), and degeneration of the optic nerve (18). Interestingly,

there have also been reports of retinal nerve fiber layer

thickening that is resolved by 3 weeks in rats exposed to 8

hours of IOP at 50 mmHg (56).
Detecting elevation in IOP

How retinal cells initially respond to changes in IOP may be

due to detection of mechanical stimuli via transient receptor

potential (TRP) channels found throughout the retina (57)

including in RGCs (58) and glia (59). This family of 28
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cationic channels respond to mechanical stimuli such as strain

or shear, inflammatory signals, changes in metabolic energy and

oxidation (among other stimuli). An excellent recent review of

TRP channels in all retinal cell types (60) discusses their role in

retinal homeostasis and in response to injury, including their

ability to induce astrocyte cytoskeletal reorganization and

migration in response to elevated IOP (59, 61). Because TRP

channels play a role in cellular homeostasis, their overactivation

and inhibition can both result in gliosis. TRP channels remain a

focus for investigation because their early sensing of mechanical

changes following IOP may be what initially induce subcellular

changes in retinal glia and RGCs.
Morphological changes in RGCs:
Axons and dendrites

Axonal transport

One of the earliest morphological responses to elevated IOP

is the interruption of axonal transport (Figure 1) (29, 30, 32, 62).

Since neurotrophins can be target-derived and retrogradely

transported along with their receptors in RGCs, the increase in

IOP and subsequent axoplasmic stasis is detrimental to this vital

process. The neurotrophin brain-derived neurotrophic factor

(BDNF) and its receptor, TrkB, are normally trafficked

retrogradely via dynein along axonal microtubules in RGCs.
FIGURE 1

Cartoon diagram depicting the initial response of retinal ganglion cells (RGCs) to acute ocular hypertension. Axoplasmic stasis occurs immediately
following RGC injury because of acute increases in intraocular pressure (IOP), affecting axonal transport. Within hours of injury, cell signaling
changes occur, notably with the expression of mitogen activated protein kinases (MAPK, such as p38, JNK, and ERK). Glial cells, including
microglia (green) and astrocytes (yellow), show evidence of increased reactivity within hours of the insult. Activated glial cells release nitric oxide
(NO.), which, when combined with superoxide (O:−

2 ), can produce the highly reactive intermediate compound, peroxynitrite (ONOO-), which can
then nitrate proteins on tyrosine residues (NT), interfering with protein function. There are noted morphological changes in RGC dendritic
arborization within hours and throughout days following injury. Ultimately, the RGCs affected by increases in ocular hypertension will either
recover or die via apoptosis.
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Retrograde transport of BDNF (22, 63) and TrkB (but not TrkA)

are affected following acutely increased IOP in rats, similar to a

chronic model of glaucoma in non-human primates (22). It is

important to note that these studies detect effects in axonal

transport hours following acute IOP elevation. When the

analysis occurs one to two weeks following acute IOP

elevation, there are no changes in anterograde or retrograde

transport (56). This difference highlights the ability of RGCs to

recover from acute models of hypertension. BDNF levels are

notably low in glaucoma patients (5, 64, 65), and treatment with

BDNF can be protective in glaucoma models (13, 66–68). BDNF

protects RGCs exposed to increased IOP (69, 70) and is sufficient

to increase proximal and distal axon density (71). However, the

protections offered by BDNF are transient (72) and treatment

with any neurotrophic factor would need to overcome the

physical blood-retinal barrier as well as the limitation of

neurotrophin half-life (73).

Mitochondria are also transported along axons in RGCs, and

mitochondrial health is implicated in glaucoma since aged

animals exhibit lower rates of transport and RGC dysfunction,

resulting in the upregulation of Parkin, LC3-I and II, LAMP, and

Optineurin (74). Effects on mitochondrial transport have been

noted at 3 days following elevated IOP in a rodent model (75),

though these trafficking defects may occur earlier as seen with

BDNF and TrkB (22, 63). These early changes in axonal

transport can precede RGC damage in acute and chronic

disease models as axoplasmic statis has been shown to occur

prior to RGC soma loss or presynaptic losses (Figure 1) (76). In

an acute rat model of laser-induced ocular hypertension, axon

transport deficits preceded RGC soma loss (77). In the chronic

DBA/2J mouse model of ocular hypertension, anterograde

transport is also affected early, even without exposure to

increased IOP, and RGCs die via apoptosis (78).
Dendritic morphology

Studies of IOP elevation in rats indicate initial increases in cell

proliferation markers (79) and down-regulated pathways involved

in axon extension, dendrite morphogenesis and metabolism of

RGCs prior to the onset of apoptotic cell death (80). RGC

degeneration involves dendritic changes including a loss of

arborization and a decrease in synapse number. Dendritic

branching and complexity can be assessed using a Sholl analysis

where concentric circles are placed at regular intervals around the

soma of the RGC and intersections are counted (81). Additionally,

synapse number can be assessed using pre- and post-synaptic

markers (e.g., synapsin, PSD95), and individual RGCs can be

assessed using Thy-1 YFP transgenic mice where less than 1% of

RGCs express the YFP, allowing for visualization of the entire

dendritic arbor (81). Alterations in dendritic morphology occur

prior to soma loss following acute IOP elevation inmice (82) as they

do after optic nerve transection and chronic IOP elevation (81). In
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fact, dendritic morphological changes have been noted as soon as 90

minutes following acute elevation in IOP (82) (Figure 1). Various

studies have investigated the early changes in RGC compartments

after ocular hypertension (5, 6, 83–85). These changes include

alterations in soma and dendrites as well as failures in axonal

transport distally (83). How these changes relate to axonal injury at

the nerve head or alterations in retinal perfusion remain unclear.
Glial responses to acute
ocular hypertension

Microarray studies in retina indicate an upregulation in

inflammatory and immune pathways in the early stages of

elevated IOP-induced damage. While these studies are retina-

wide and do not distinguish among the cell types in which the

changes occur, they provide evidence for changes in the early

stages of glaucomatous damage. Early immune responses are

detectable prior to RGC neurodegeneration, but whether these

responses are protective or detrimental is unclear.

When neuronal damage occurs, glial inflammatory

responses may initially produce a protective response,

releasing neurotrophic factors and antioxidants, but prolonged

reactivity of astrocytes and microglia can become excitotoxic to

RGCs. Some acute models provide evidence for the upregulation

of genes indicating activated microglia (Aif1) (79, 80) and

reactive astrocytes and Müller glial (Gfap) (80), though others

did not find changes in Gfap gene expression (79). There is also

evidence for increased GFAP protein expression in rats (14, 86)

and mice (16, 87) as early as 1 day following acute ocular

hypertension (Figure 1). Glial reactivity and immune

upregulation may therefore occur in early-to-mid states of

glaucomatous disease (88), may not be upregulated uniformly

across the retina or ONH, and may depend on the extent and

duration of ocular hypertensive injury. GFAP protein expression

is certainly increased in chronic models of ocular hypertension

and in glaucomatous eyes (89).

Microglia are resident immune cells within the nervous

system that respond to neuronal damage by proliferating and

producing inflammatory cytokines such as tumor necrosis factor

alpha (TNFa) (90). While initially neuroprotective (91),

prolonged microglial activation can become detrimental. In

glaucoma, microglial activity occurs during the early stages of

the disease, prior to RGC apoptosis (91, 92), and treating DBA/

2J mice with an inhibitor of microglial activation, minocycline,

prevents some RGC apoptosis (93). Recent work has shown,

however, that ablation of microglia causes significantly more

RGC loss in a chronic microbead mouse model (94). The

upregulation of heat shock proteins (HSP) by RGCs in

response to elevated IOP can trigger microglial activation and

inflammatory responses (95). HSPs are also elevated in human

patients with glaucoma.
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Acute elevation in IOP is sufficient to induce morphological

changes in microglia in as little as one hour (Figure 1) (96), and

activated microglia release pro-inflammatory molecules (e.g.,

complement proteins, nitric oxide (NO.), TNFa, interleukin-6
(IL-6), and FasL) which contribute to RGC damage and

apoptotic cell death in glaucoma (97, 98). Cytokines such as

IL6 and Lif have also been shown to be immediately upregulated

in a rat model of acute IOP (79). Macrophages respond after

acute IOP in rats (99) and mice (100) with increases in MCP-1, a

macrophage chemokine, as early as 6 hours following acute

IOP (101).
Cell signaling pathways

Superoxide (O:−
2 ) is upregulated in the optic nerve and in the

RGC somas within 24 hours (102), and free radical scavengers

offer protection (103) in acute models. Superoxide and nitric

oxide (NO.) can combine to form peroxynitrite (ONOO-)

(Figure 1), which is a highly reactive negatively charged

molecule that can nitrate tyrosine residues in proteins, altering

their function. Nitrotyrosine levels have long been linked with

inflammation and neurodegeneration and are elevated in

primary open angle glaucoma (POAG) patient serum and in

aqueous humor of animal models of glaucoma (104). The

antioxidant ubiquinol (the reduced form of CoQ10) has been

shown to be neuroprotective in one model of acute hypertension

for at least 2 weeks following injury (105) as well as in the DBA/

2J mouse model of ocular hypertension (106) by decreasing Bax

expression and caspase-3 release, thereby preventing RGC

apoptosis (105).

Increases in mitogen activated protein kinases (MAPKs)

such as phosphorylated p38, JNK, and ERK are elevated

within one hour following acute increases in IOP in the rat

(106) as they are in glaucomatous eyes (98) (Figure 1). Inhibition

of p38 MAPK has been shown to prevent degeneration of RGC

axons in a microbead model of elevated IOP in rats while also

protecting anterograde axonal transport (107–109). While JNK3

(110) and JNK2 (111) deficiencies are not protective, inhibition

of JNK1/2/3 did spare RGCs exposed to acute high IOP (112).
Discussion

Acute models of elevated IOP are used to elucidate the

retinal response to this acute multifactorial insult. While chronic

models of elevated IOP are able to analyze the fate of RGCs and

their environment, acute models of IOP elevation provide a

window into the initial subcellular and morphological changes

that occur in RGCs and their neighboring retinal cells. The wide

variety of models used to examine the effects of acute ocular

hypertension on RGC morphology and cell signaling as well as
Frontiers in Ophthalmology 05
glial reactivity have resulted in an enormous body of work across

multiple animal species. Overall, they reveal the sensitivity of the

inner retina to IOP related injury and the extent of the

autoregulatory capacity of the inner retina, illuminating several

critical pathways that mediate damage to the inner retina. While

the mechanisms of acute IOP injury likely involve differing

degrees of primary retinal ischemia when compared to chronic

glaucoma, the use of acute models of ocular hypertension across

several species is further strengthened by the fact that many of

the pathways upregulated are also found in more prolonged

models of ocular hypertension and in the later stages of chronic

disease models as well as in human postmortem glaucomatous

eyes. Uncovering the early responses of RGCs and their milieu to

initial insults will be important in the search for therapeutic

interventions in glaucoma since it is these initial changes that

will likely be the optimal targets for pharmacological and/or

genetic therapeutic interventions early in the disease, protecting

RGCs from injury prior to irreversible loss. Expansion of acute

models to include the human eye would further complement the

work accomplished in animal models, providing translational

validation for mechanisms of and treatments for the

human disease.
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