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From the recent empirical discovery of the quantum anomalous Hall effect

(QAHE), the interaction of the particle with spin–orbit coupling (SOC) plays an

essential role in the cause of the QAHE, which includes three terms: external,

internal, and chiral symmetric terms. Then, the non-Abelian quantum field

theory was adopted to analyze and prove the conjecture on the causes that can

lead to the fractional quantum Hall effect (FQHE). The spontaneously

topological chiral symmetry breaking is the main contribution to the FQHE,

which also includes two terms: the hopping of sublattice and Coulomb energy

by the interaction of many-body particles. More generally, this exciton

possesses an intermediate characteristic between the Wannier regimes and

displays a peculiar two-dimensional wavefunction in the three-dimensional

FQHE states. Finally, a bilayer three-dimensional model is proposed to

implement the FQHE on the lattice by incorporating ferromagnetic dopants

into three-dimensional topological insulative thin films. This study theoretically

predicts the FQHEon the basis of other reports that have experimentally verified

the rationality of the proposed model in magnetic topological insulators.
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1 Introduction

The quantum anomalous Hall effect (QAHE) has a totally different physical nature,

with a semi-integer quantum Hall effect and a perfect quantum tunneling effect. It allows

for resistance quantization and dissipationless edge states without the presence of any

applied magnetic field. The materials and structures of the QAHE, where quantum effects

are responsible for novel physical properties, reveal the important roles of symmetry,

topology, and dimensionality. In 1988, according to Haldane, there might be no need to

apply any external magnetic field for the quantum Hall effect, but it seemed impossible to

implement such a particular material system of quantum effects in physical ways. In 2010,
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physicists achieved a breakthrough in the theory and design of

materials, such that Cr/Fe magnetic ions could be doped into

Bi2Te3 and Bi2Se3 and Sb2Te3 topological insulators. There are

special V-Vleck ferromagnetic exchange mechanisms to ensure

stability of ferromagnetic insulators, creating the best system to

achieve the quantum anomalous Hall effect [1, 2]. The

calculations show that the multilayer magnetic exchange of

magnetic topological insulators takes place at a certain

thickness and strength, that is, in the “QAHE” state. The

breakthrough in theories and material design has given rise to

the idea of looking for the QAHE.

The topological flat-band model is an extended version of the

famous Haldane model. At least one energy band has non-trivial

topological properties, that is, it has a non-zero Chern number,

and the bandwidth of this energy band is very narrow. There is a

wide energy gap between these energy bands. Recently, through

the systematic numerical study of fermions and boson lattice

systems with strong correlative interactions with topological flat

bands, a novel class of Abelian and non-Abelian FQHEs has been

discovered. The newly discovered FQHE is distinct from the

continuous FQHE on the traditional Landau energy level.

Without requiring any external magnetic field, it has a

relatively wide characteristic energy gap and can exist at

higher temperatures without requiring a single-particle

Landau. The energy level cannot be described by conventional

Laughlin wavefunctions. These fractional phenomena with no

external magnetic field and no Landau energy levels define a new

class of fractional topological phases, which are also called

fractional insulators. The FQHE is also called the fractional

quantum anomalous Hall effect (FQAHE) [3].

This paper is organized into five sections: Section 1 discusses

the spin–orbit coupling theory for the QAHE in Section 2.

Section 3 shifts the attention to an explanation of the intrinsic

non-Abelian gauge field for properties of QHE and the cause of

the QAHE. The next two sections expand the circumstance to the

three-dimensional topology insulator and a conjecture on the

existence of the FQAHE. Conclusions are drawn in Section 6.

2 Mathematical theory foundation of
the quantum anomalous Hall effect

The difference between the QAHE and QAH lies in the

absence of an external magnetic field, with homogeneous

magnetization M. Their measurements in the magnetic field

can be presented as follows:

ρxy � R0B + 4πRsM. (1)

There are three causes for QHE: The first, the extrinsic

mechanism, views QHE as related to material impurities and

spin–orbit (SO) interaction, such as skew scattering and side-

jump of the lattice; the second, the intrinsic mechanism,

points out that crystal potential is periodic and SO is

interactive; the third, the chirality mechanism, suggests in

noncollinear ferromagnets the spin–orbit interaction causes

the effect [4]. The spin–orbit interaction can be expressed as

follows:

HSO,vac � λvac · σ · k × ∇ ~V( ), (2)

where subscripts SO and vac signify the spin–orbit interaction

and vacuum holes, respectively; the random Rashba coupling

parameter λ has the zero mean and a Gaussian correlator; the

other parameters are k for the wave vector, V for the voltage, and

σ for the current conductivity.

Also, in a 2D high-symmetry system, anomalous Hall effect

Hamiltonian has three forms:

Heff � εk + V +Hint +Hext

Hint � 1
2
b k( ) · σ

Hext � λ · σ · k × ∇V( ).
(3)

The QAHE has the following characteristics: magnetization,

spin-polarized and transverse carriers, Hall voltage on spin

current, and spin accumulation. On the other hand, the pure

spin Hall effect (SHE) is different, without applying any external

magnetic field. The spin–orbit interaction causes electrons to

carry opposite spins to move in opposite directions at the 2D

insulator boundary with metal boundaries. The electric field

provided generates a spin current that fails to create a

charge flow.

The linear response of non-conserved spin current to the

applied electric field can be calculated by the Kubo formula.

σ � e2

ω2
Tr∫ dε

2π
〈v̂iĜ ε + ω( )v̂jĜ ε( )〉. (4)

Taking the static limit, we get the Streda formula as follows:

σIij �
e2

2
Tr∫ dε

2π
−zf ε( )

zε
( )〈v̂i Ĝ

R
ε( ) − Ĝ

A
ε( )[ ]

vjĜ
A

ε( ) − v̂iĜ
R
ε( )v̂j Ĝ

R
ε( ) − Ĝ

A
ε( )[ ]〉 ;

σIIij � e2

2
Tr∫ dε

2π
f ε( )〈v̂izĜ

A
ε( )

zε
v̂jĜ

A
ε( ) − v̂iĜ

A
ε( )v̂j

zĜ
A

ε( )
zε

+ v̂iĜ
R
ε( )v̂jzĜ

R
ε( )

zε
− v̂i

zĜ
R
ε( )

zε
v̂jĜ

R
ε( )〉

, (5)

where Ĝ
A

and Ĝ
R

are the advanced and retarded Green

functions, respectively. The off-diagonal conductivity presents

the contribution from all occupied states. The limit as ω → 0

implies ω → Z/τ.

The difference in cleanliness of the current and the possible

disappearance of Gaussian disorder can be explained by

asymmetric dispersion. Impurities have no effect on the side

view current [5].

The single-particle energy band system is dispersive and does

not support fractional excitation and cannot implement the
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FQHE. A series of topological flat-band lattice models are

expected to overcome the abovementioned difficulties and

implement the FQHE. The tight-binding model of the two-

dimensional triangular lattice model is expressed in the

Hamiltonian. Hall conductivity is calculated by the Kubo

formula:

σxy ω( ) � e2

ω
∫∞

−∞
dε
2π

∑
mm

∑
k

vx( )nm
Gkam ε + w( ) vy( )

mm
Gknn ε( ) ,

(6)

where the velocity operator v = zH/zk.

Hence, we have

σxy � e2∑
n

∑
k

~f Ekn( ) zAy kn( )
zkx

− zAx kn( )
zky

( ),
where ~f is the Femi statistic function with gauge potential

Aα kn( ) � −i〈kn z

zkα

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣kn〉.
Based on the 2D Rashba model, we obtain the magnetization

Rashba Hamiltonian:

H � εk + α kyσx − kxσy( ) −Mσz,

where εk = k2/2m. Then, the Hall conductivity is

σxy ω( ) � e2

ω
Tr∫∞

−∞
dε

2π
d2k

2π( )2vxGk ε + ω( )vyGk ε( ), (7)

with vx � km
m − ασy, vy � km

m − ασx, and the energy spectrum is

Ek↑,↓ � ε ∓ λ k( ), λ k( ) ���������
M2 + α2k2

√
,

where M corresponds to a uniform magnetization along the z-

axis, which is uncorrelated with the macroscopic magnetic field,

whose value is half of the spin splitting. The second of the two

contribution terms contributes to the states below the Fermi

energy.

σIIxy � −4e2Mα2 ∫ d2k

2π( )2
f Ek↑( ) − f Ek↓( )

Ek↑ − Ek↓( ) . (8)

Then, we have

σIIxy � e2M

4π
1

λ kF↓( ) − 1
λ kF↑( )( ). (9)

The symmetric breaking of topological material structure

affects the Berry phase and causes the QAHE, while the

Hamiltonian

H � εk + λ k( )σ · n k( ), (10)
where the unit normal vector to the sphere gives

n k( ) � αky

λ k( ),−
αkx

λ k( ),
M
λ k( )( ),

so the conductivity can be expressed in terms of n(k).

σIIxy � −e
2

2
∫ d2k

2π( )2 f Ek↑( )εαβγnαznβ
zkx

znγ
zky

. (11)

Spin current density in the wire can be defined as follows:

Jiα r, t( ) � δL

δAi
α r, t( ). (12)

The aforementioned formula defines a non-conserved

equilibrium spin current, and it is related to real motion. The

redefinition of spin current in Lagrangian allows for the

equilibrium spin current.

L � ∫ d3r Ψ† r, t( ) i
z

zt
−H( )Ψ r, t( ){

L � ∫ d3rΨ+ r, t( ) i
z

zt
+ ∇2

2m
− V r( )( )Ψ r, t( )

.

In rotation space, the local transformation is

Ψ r, t( ) → exp −ign r, t( ) · σ[ ]ψ r, t( ).

Adopting the Lagrangian transformation, we obtain

L � ∫ d3rψ† r, t( ) i
z

zt
− iAi

0 r, t( )σ i( )+[
1
2m

z

zrα
− iAi

α r, t( )σ i( )2

− V r( )]ψ r, t( )
. (13)

The gauge vectors in the fields are

Ai
0 r, t( ) � g

zni r, t( )
zt

, Ai
α r, t( ) � g

zni r, t( )
zrα

.

Thus, the spin density and spin current density can be

expressed as follows:

Si r, t( ) � δL

δAi
0 r, t( ), J

i
α r, t( ) � δL

δAi
α r, t( ). (14)

For equilibrium spin currents, we consider the simplest

model with two interactive spins in local fields, where

Hamiltonian is given by

H � −JS1 · S2 − B1 · B2 − B2 · B2.

The equation of motion for spin S1 is expressed as follows:

_S1 � i/Z( ) H, S1[ ];
_S1 � J/Z( )S1 × S2 + 1/Z( )S1 × B1.

The spin current density is expressed as follows:

J2→1 ≡
J

Z
S1 × S2 � −J1→2.

The two-point Hubbard model can be used to represent the

interaction between present electrons s.t.
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H � −t c†1αc2α + c†2αc1α( ) + ∑
i�1,2

Un↑i n
↓
i − Bi · Si( ).

The motion equation is expressed as follows:

_S1 � i/Z( ) H, S1[ ]
_S1 � it

2Z
c†1αc2β + c†2αc1β( )σαβ + 1

Z
S1 × B1

. (15)

The spin current density is expressed as follows:

ji2→1 ≡ � it

2Z
c†1αc2β + c†2αc1β( )σαβ � −j1→2. (16)

Therefore, the equilibrium spin current is related to the jump

across different positions. Where − J ≡ 4t2/U. Thus, spin current

density is given by: Therefore, the equilibrium spin current is re-

lated to the jump across different positions.

Applying the six functions based on ground states, we have

the strong e–e interaction such that t/U ≪ 1, and effective

Hamiltonian is expressed as follows:

~H � −J S1 · S2 − 1/4( ) − B1 · S2 − B2 · S2, (17)

where − J ≡ 4t2/U. Thus, the spin current density is given by

~j2→1 ≡
J

Z
S1 × S2. (18)

The anomalous Hall effect (AHE) can lead to the rotating

Hall effect; that is, by studying the anomalous Hall voltage, the

spin Hall voltage and the spin current are generated by rotating

electrons. The relationship between them is derived.

VH � 4RsLjxn↑μB
VSH � 2πRsLjxnμB ,

(19)
jσ � VSHρL

Vsc � 8π2R2
s l

nμB( )2
ρ

jx .
(20)

The intrinsic contribution to the spin Hall effect is given as

follows:

σSHxy � e

8π
.

Considering impurities and as Nimp → 0,

σSHxy � 0.

This cancellation is special for the Rashba model. Next, AHE

and SHE are quantized with the 2D Dirac model on graphene.

H � v kxσx + kyσy( ) + Δσz. (21)

The energy spectrum is expressed as follows:

ε � ± Ek, Ek �
��������
Δ2 + ]2k2

√
.

Also, the intrinsic Hall conductivity is expressed as follows:

σxy � − e2

4π
Δ
EF

, EF >Δ.

With EF as the gap, the abovementioned expression becomes

σxy � − e2

4π
, σSHxy � 2

e
σxy.

In the 2D case, the effective conductivity is expressed as

follows:

σIIxy � e2

2
∑
n

∑
k

f Ekn( )εijFij, (22)

where “gauge field tensor” is

Fij � zAj

zki
− zAi

zkj
.

Also, the eigenvector gives

k ↑| 〉 �
��������
M + λ k( )
2λ k( )

√ 1

iα kx + iky( )
M + λ k( )

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠, (23)

A k( ) � − α2ky
2λ k( ) M + λ k( )[ ],

α2kx
2λ k( ) M + λ k( )[ ]( ). (24)

The sub-number Hall anomaly effect is to be implemented on

the lattice model. The key to the fractional topological state is to

realize the near-flat-band structure with a non-mean topology.

Given that the strict flat band (the zero bandwidth) is non-

physical in practical materials, the limit can be relaxed by only

requiring the bandwidth to be much narrower than the band gap

width. The topological flat-band lattice model is expected to

overcome the abovementioned difficulties and implement the

FQHE. In these lattice models, by adjusting the short-range

transition parameters, the SOC strength, or the staggered

magnetic flux, the bandwidth can be made narrower than or

even close to the flat band. Based on the similarity between the

energy band close to the flat band and the Landau level [6], it can

be reckoned that in these flat-band models, the FQHE (or the

fractional topological insulator) can exist stably considering the

repulsive interaction.

In this paper, we will study in detail the 2D triangular lattice

model ignoring the interaction and determine the inhomogeneous

flat-band structure by adjusting the sub-nearest neighbor transition

strength and the staggered magnetic flux to implement the integer

quantumHall effect (IQHE). In thismodel, the IQHE can exist stably

due to a non-uniform magnetic field being applied with a zero net

magnetic field, with the Hall conductivity equal to a topological

constant. In addition, in the continuousmodel under the effect of the

normal magnetic field, the number of the Landau levels is typically 1,

while in this system, a high number, that is, a C ≥ 2 topological flat

band can be implemented.
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3 Non-Abelian gauge theory for the
fractional quantum Hall effect

These fractional phenomena of non-Landau energy levels

define a new class of fractional topological phases or fractional

Chern insulators (FCI). This work studied two situations with

Chern number = 1 and 2, respectively.

At the semiconductor heterojunction interface and under the

measurement condition below the temperature and above the

magnetic field strength, it has been found that ] � σH/(e2/h) �
1/2, 1/3 . . . appears on the platform and that simultaneous

longitudinal resistance is close to zero, that is, the FQHE.

When C = 1, ] = 1/2, 1/4, and 1/3, corresponding to the

boson case. When C = 2, ] = 1/3 and 1/5. In the latter case,

Laughlin’s fermion fractional quantum Hall state abides by the

generalized Pauli exclusion principle.

L. Susskind has given a non-communicative geometric

explanation about the FHE [7, 8]. Through the study into the

Abelian non-exchangeability of the system values of the fermion

and boson lattice systems with strong correlative interactions on

topological flat bands, the Franklin theory based on Chern’s

theory and the filling fraction 1/n are exactly the same at every

level. Similar to the D0-branes described in the string theory, this

theory can also be considered as the quantum theory of mapping

between two non-commutative spaces Qx and Qy. In the toroidal

structure, the FQH state has an odd or even number of quasi-

degenerate ground states. There is a wide energy gap between

these ground states and the high-energy excited states. The

FQHE of the lattice type of the boson system is found to be

different from that of the fermion system of conventional

electrons, and the corresponding FQH state can be regarded

as the chiral spin state in the equivalent spin model. The non-

commutative theory exactly reproduces the quantitative

connection between the filling fraction (level in the

Chern–Simons description) and statistics required by

Laughlin’s theory.

The phase transition between quantum Hall fluid behavior

and the Wigner crystal that occurs at a low filling fraction is a

phase transition in the non-commutative Chern–Simons theory.

The transition would be associated with the spontaneous

breaking of the symmetry under area-preserving

diffeomorphisms of real space Qx. The variation of the gauge

field vector is expressed as follows:

δAi � 2πρ0
zΛ
zQyi

+ zAi

zQyj

Λ
zQyk

� 2πρ0
zΛ
zQyi

+ θ Ai,Λ{ }( ) , (25)

where the carriers have a density of rho0; each particle occupies

the non-communicative area θ = 1/2πρ0; Λ is a parameter related

to gauge transformation. For quantum phase space Qx, its

conjugate momentum is proportional to its coordination;

hence, it is also non-communicative.

The non-exchangeable parameter 1/eB (BA is a substitute

for B in anomalous situation) indicates a single flux subspace.

The NC-CS theory describes the mapping between these two

non-commutative spaces. It should be noted that the space Qy

is incompressible and that the function f(Qy) defined on the

space Qy is non-gauge invariant observables. In the space Qx,

we define

ρ Qx( ) � ρ0 −
1
2π

∇ × A. (26)

As the layers are adiabatically brought together so that the

electrons are easily shared between them, the state must

approach the fractional quantum Hall state with ] = p/n.

Experience with D-branes suggests that the resulting theory

should be a non-Abelian version of the gauge theory. A

natural guess is that it may be the non-commutative

Chern–Simons U(p) theory at level n. The non-

communicative geometrical theory means both the phase and

energy band are (quasi) flat, with certain interaction between

different layers. This causes the symmetry breaking; hence,

Chern number C1 > 1, that is, the FQHE.

The non-dissipative quantum spin current, by the Kubo

formula, in the case of the SOC of the Luttinger Hamiltonian

for p-type semiconductors, it is possible to define a precisely

conserved spin current, that is, the non-dissipative quantum

spin current [9]. For the 1/3 filled boson fractional quantum

anomalous Hall state, when the boundary phase angle is

adjusted, the ground state group maintains its quasi-

degeneracy and a wide energy gap in the low-energy

excited state, indicating that the topological phase is

stable. Under the effect of SU(2), the non-Abelian gauge

field, its curvature tensor results in the non-dissipative spin

Hall effect.

The quasi-hole excitation spectrum shows a characteristic

energy gap between the excited and high-energy excited states,

and there are multiple low-energy quasi-hole excited states

touching at the Γ-point in each momentum partition below

the characteristic energy gap. In a hole-doped semiconductor

with four valence bands of spin–orbit interaction, each hole

contains three quasi-cavities, and the generalized Pauli

exclusion principle is incompatible with the Laughlin 1/

3 fermion fractional quantum Hall state. The spin current of

the two-dimensional subspace of the band can be expressed in

terms of the operator P.

Ji � zH

kj
, Jabi � 1

2
PlΓabPl + PhΓabPh{ }. (27)

Luttinger Hamiltonian can be presented with valence bands

by giving SO(5) Clifford algebra. Under a certain amount of

momentum, the SOC is in a fixed direction of the five-

dimensional space, and the symmetry breaking can be

decomposed into SO(4) � SU(2) × SU(2). This symmetry can

be expressed as a conservative spin current in the light and heavy
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cavity bands, and its quantum response can be accurately

calculated by the Kubo formula.

The Berry curvature and the multi-body number can explain

the non-Abelian unipolar field, equivalent to a vector—or

technically defined as momentum and true Yang-

monopole—in the five-dimensional vector space. The

correctness of quantum mechanical results is determined due

to the entanglement of spin and velocity, a phenomenon that can

be traced back to the non-commutative entanglement between

the current spin operators. In physical systems, the entangled

state driven by the decoherence mechanism may achieve semi-

classical results. Notwithstanding the traditional definition of

spin current, the semi-classical results, using the non-zero

correlation between spin and velocity, combined with the

terms “spin dipole” and “torque moment” in the wave packet

form, can be obtained. The Kubo formula has achieved the same

results.

Using a theoretical model of non-dissipative spin current, the

finite longitudinal charge conductance and dissipation values

associated with charge transport can be calculated [9]. The SOC

system with a gap in the electron excitation spectrum results in

the quantized spin Hall effect. The facts show that the integral of

σxy is expressed as the gauge curvature in the occupied state and

that the Fermi surface of the particle cavity excitation may not

occur. The transition of spin-polarized electrons, usually

described by an unbalanced Green function, can be derived

from the first-principle calculation. The density function is

used to calculate the steady-state electronic structure. The

effect of the semi-infinite electrode is described by the self-

energy function.

The spin SU(2) symmetry type of the SOC model includes

two types of models: Rashba and Dresselhauss. Based on this

symmetry, there may exist a persistent spin helix [10], though

other relaxation mechanisms may lead to its eventual decline.

From the coupling of Rashba and Dresselhauss, the transition

equations for arbitrary strength are provided to explain the chiral

helix states. Will the chiral symmetry be preserved under

anomalous circumstances?

From the analysis in the previous section, the cause of the

anomalous Hall effect falls into three parts: the internal, external,

and chiral effects. Since a non-Abelian gauge field is present

around the Hall device with non-local features, there exits the

chiral symmetry breaking in bilayer graphene, as described in the

γ5 breaking in the non-Abelian field theory, which will

cause FQAH.

The gauge theory implements the basic laws of physics

through local symmetry constraints. Literature [48] reported

a quantum simulation of the extended U(1) lattice gauge

theory and experimentally quantified the gauge invariance in

a multi-body system containing matters and gauge fields.

These fields are realized in an array of boron atoms in a 71-

site optical superlattice. The model parameters are fully

tunable, and the object–gauge interaction is calibrated by

sweeping the quantum phase transition. The degree of

violation of Gauss’s law is measured by extracting the

probability of the local gauge invariant state from related

atomic experiments. As such, a method has been provided for

exploring the gauge symmetry breaking in basic FQAHE

particle interaction.

The research in [11] shows that the Coulomb interaction is

strong enough for the sublattice symmetry breaking to take place

in undoped graphene and for the formation of a strong coupling

extension in the Coulomb Hamiltonian ground state by jumping

kinetic perturbation.

In a two-dimensional graphene with a hexagonal array of

carbon atoms, the Coulomb interaction has the intrinsic property

of interacting the relativistic Fermi subsystem with U(4)
symmetry. The dynamics of the continuous field theory can

be described by its low-energy (< 1ev) action.

S � ∫ d3x∑4
k�1

�ψk zt izt − At( ) + vF �γ · i �∇ − �A( )[ ]ψk

− ϵ
4e2

∫ d3xFab
1

2
���
−z2

√ Fab

, (28)

where the integral is taken over the Qx plane; vF is the velocity of

the massless electron in graphene; γ is a Dirac matrix in quantum

field theory (for the band matrix using Γ and γB to present); the

superscript t means a hopping term; Fab is the gauge field term.

Herein, non-dimensional parameters can be used to perform

extensions that can be renormalized with a parameter 1
N.

Further generalizing the previous expression to a strong

coupling field, we have two terms of Hamilton: a hopping

term and a Coulomb interaction term. The generation and

annihilation operators of an electron are denoted by ψ†
σ,n and

ψσ,n, respectively. The state has two rotation states, identified by ↑
or ↓ for a rotating spin label as σ, on either A or B sublattice. The

parameter u0 is the on-site self-energy of the electron and the

hole [11].

H � Ht +He

Ht � t ∑
A,i,σ

ψ†
σ,A+siψσ,A + ψ†

σ,Aψσ,A+si( )
He � e2

8πϵa ∑
n

u0ρ
2
n +

e2

8πϵa ∑
n≠n′

ρn
1

n − n′
∣∣∣∣ ∣∣∣∣

. (29)

The lattice translation symmetry breaking is spontaneously

related to some sort of gap generation. The symmetry breaking

parameter can be expressed as the following operator’s

mathematical expectation:

Hm � ∑
n∈A

−∑
n∈B

⎛⎝ ⎞⎠ μ0ψ
†
σ,n + �μ · ψ†

σ,n
�σσσ′ψσ′,n[ ]. (30)

This mass term is constant at time reversal and flat valence,

but the U(4) pattern of symmetry breaking is formed by the

fermion surface state and the chiral Landau level of the magnetic

field Weyl semimetal film. If the parameters of μ are non-zero,
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the symmetry breaking forms U(4) → U(1) pattern, only one of
which is zero, hence, the U(4) → U(2) × U(2) pattern.

Within a fairly wide range of resonant potentials, changing

the strength of the binding potential makes no difference to

the edge excitation sequence, which also shows the topological

stability of the quantum Hall state. The ground state

approximation to the complete Hamiltonian has been

found, with the Coulomb energy usually greater than the

kinetic energy of the electron. By integrating over the

Brillouin region, the charge density of the diagonal energy

is obtained.

He � e2

4πϵa∫ d2k|ρ̂ k( )|2 u0

2
+(

∑
n≠0,n∈A

eik·n
1
|n| +

cos k
n + s1| |[ ]⎞⎠ . (31)

The perturbation theory is applied to calculate Hamilton’s

effect, with the finding that the lower energy state is an

antiferromagnetic state. While Hamiltonian for the degenerate

ground states proves effective as

Heff � −Ht
1
He

Ht

� −t2
e2

4πϵa u0 − 1( )
∑
A,si ,σ

ψ†
σ,A+siψσ,Aψ

†
σ,Aψσ,A+si(

+ψ†
σ,Aψσ,A+siψ

†
σ,A+siψσ,A)

. (32)

The abovementioned equation can be simplified through the

Pauli matrix. The Haldane–Bose–Hubbard model is used to

describe the ground state and its low-energy dynamics. The

topological flat-band model is an extended version of the

Haldane model. At least one band has a non-mean topology,

that is, a non-zero Chern number C = 1; each band has a narrow

bandwidth; and there is a wide gap between the bands. For the

cellular lattice Haldane model, if only the nearest neighbor and

the next nearest neighbor are allowed to jump, the flatness ratio is

only 7; if the next nearest neighbor jump is allowed, a large class

of parameter space can be found by numerical search in the non-

zero number of topological flat bands.

Each location corresponds to the basic excited state of an

electronic lattice, whose energy is expressed as U and is

approximately 10 ev.

The Hubbard model interaction discloses many properties of

graphene, especially its sublattice symmetry breaking ground

state is an antiferromagnetic Mott insulator. Illustrations are

provided on both the quantum phase diagram of the top half of

the top-filled fill and also on the quantum phase transition from

the FQAH state to other symmetrically fractured phases. Derived

from the strong correlative effect of hard bosons (unlike the

Coulomb interaction between conventional electron or fermion

systems), the lattice type of the FQHE of the boson system can be

regarded as a chiral symmetry in an equivalent spin

model.Meanwhile, most theories and experience predict the

fractional quantum anomalous Hall effect (FQAHE) on lattice

structures, such as the honeycomb or quantum flux state, which

is also known as the topological nematic state. In the topological

flat-bandmodel, considering the short-range interaction between

the hard boson systems, a large number of numerical calculations

and systematic theoretical analysis have provided strong evidence

for lattice FQHE [12]. In the toroidal structure, the fractional

quantum anomalous Hall state has an even number of quasi-

degenerate ground states that share a quantized number, with

wide energy gaps between the excited states.

The quantum Hall effect is a dissipation-free quantum

transport property caused by the quantization of the Landau

level under an externally enhanced magnetic field. At present, the

quantum anomalous Hall effect that has been proposed or

realized is concentrated in the small Chern number system

with a Chern number of 1 (based on magnetic topological

insulator films) or 2 (based on single-layer graphene), and the

size of the Chern number directly corresponds to the quantum.

The number of channels and the status of the low Chen number

also significantly affect the working efficiency of quantum

anomalous Hall devices.

FIGURE 1
(A) Star-like lattice with primitive vectors of the Bravais lattice and (B) reciprocal vectors.
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The first Chern number is defined as C1 � ∫ d2kfxy(k)
withfxy(k) � zxAy − zAx and Ai(k) � −i ∑

En<Ef
〈n, k|zi|n, k〉,

and the QAHE is described in terms of the nontrivial Chern

number.

By calculating the Berry curvature distribution, the quantized

five Chern numbers are found to be C1 = −1, 2, 1, 1, and 2,

respectively, with the Fermi level lying in these five gaps. In a

general quantum anomalous Hall system, a honeycombed

Kagome lattice structure can be obtained, where there exists a

near-flat band with C1 = 1. The FQAHE may be implemented.

The zigzag star-like lattice has chiral edge states, which endow the

system with topological properties.

With respect to the hopping of

H � t∑
A,i

ψ†
A+siψA + ψ†

AψA+si( )
+U
2

∑
n∈A,B

∑
σ�↑↑↓

ψ†
σnψσn − 1⎛⎝ ⎞⎠2 , (33)

there are two terms in Figure 1. Assuming that the magnitude of

the jump between adjacent points takes the same value within

each of the triangles t1 and t2 as between them, with t2 < 3
2t1, the

probability that the electrons jump out of each of the triangles is

less than the probability of jumping between the triangles. This

assumption means that the three points can be strongly

combined into one single point. The result in this case is

similar to that in the case of graphene in the low-energy

band, which is similar to the Kagome lattice in the opposite

case with t2 < 3
2t1. At this point, t2 = t1 will cause the gap to shrink.

In the absence of Rashba SOC and exchange fields, the six-site

cells form six bands with double degradation.

For the Berry curvature and multi-body calculations, the

boundary phases θ1 and θ2 are introduced in two directions of

periodic boundary conditions, and the number of quantum

multi-body states (the corresponding Berry phase 2πC) is

obtained by integrating throughout the boundary phase space.

C � 1
2π ∫∫ dθ1dθ2F(θ1, θ2), Berry

curvature. F(θ1, θ2) � Im(〈zΨzθ2 | zΨ
zθ1
〉 − 〈zΨzθ1 | zΨ

zθ2
〉).

For Ns = 24, 36, and 40 lattices, the two ground states in the

quasi-degenerate ground state group are in separate momentum

partitions. As the boundary phase is adjusted, the two ground

states evolve and cross the energy levels, but there remains a wide

characteristic energy gap between these ground states with the

low-energy excited states. For Ns = 32 lattices, the two ground

states in the quasi-degenerate ground state group are at

momentum partitions; as the boundary phase is adjusted, each

ground state evolves to itself and avoids crossing energy levels. In

the case where the two ground states are in separate momentum

partitions, numerical calculations show that each ground state

contributes almost equally to the Berry phase of π, that is,

provided the total number of turns C = 1, each ground state

corresponds to a fractional number of 1/2. In the case where the

two ground states are in the same momentum partition,

numerical calculations show that one of the ground states

contributes a Berry phase of 2π, while the other contributes a

Berry phase of zero; still, provided the total number of turns C =

1, each ground state is the average of Chern number, 1/2.

Generally, the filling factor and the Chern number can be

related by ] � k/(C1 + 1) [20], where k is the wave number. From

recent research reports [13–22], it can be known that the FQAHE

exists with fill numbers 1/2, 1/3, 2/5, 4/5, 5/2, and 7/2.

FIGURE 2
(A) Schematic of the three-dimensional quantum device interface with two-layer localized system evolution with a coupling scale factor. (B)
Pairing spatial profile for amplitude and tunneling strength M(x) induced by the superconductors and insulator. (C) Energy band and band gap
diagram along the high-symmetry line.
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4 Wannier’s function of the fractional
quantum Hall effect

For the extended Haldane model with topological flat bands,

the three-body hardcore bosons filled with strong correlative

interactions were studied, with the discovery of the non-Abelian

type (non-Abelian) quantum Hall effect. The non-Abelian

quantum Hall effect of this lattice type has characteristic

triplet ground state topological degeneracy, a quantized Chern

number, a wider characteristic energy gap, a characteristic quasi-

hole excitation spectrum, and a number of particles with

topological degeneracy parity effect. The non-Abelian

quantum Hall effect of bosons discovered by the author has

similar topological properties to the Moore-Read state filled with

Landau level 5/2. In contrast, the image of the Fermi-type and

Moore-Read states in the two-dimensional electron gas has not

been fully created so far. There remain some differences and

disputes between numerical calculation and theoretical analysis.

For quasi-hole fraction statistics, since the Laughlin wave

single-particle and the many-body function for FQH states are

not directly connected with FQAH states, the quasi-hole states in

non-Abelian quantum anomalous Hall phases can be counted by

the generalized Pauli exclusion principle. Using the Wannier

representation of the topological flat band, a Norb = Ns/2 periodic

single-particle orbit is formed. Now, take Norb = 12 as an

example. The number of bosons occupied in two consecutive

orbits does not exceed two, and the generalized Pauli exclusion

principle gives the following three configurations of ground state

distribution

|nλ1, nλ2, . . . , nλNorb
〉: (02) ≡ |02020202〉,(20) ≡ |202020202020〉

and (11) ≡ |11111111〉. Now, count the number of bosons from

the three ground state configurations (02), (20), and (11). The

occupancy configuration of the double quasi-hole state of the

boson should be a mixture of two ground-state configurations

that forms two domain walls, each of which represents a

fractional charge of 1/2. A simple analysis gives six

configurations with an odd number of 1 s: | . . . 20|1|020 . . .

〉,| . . . 20|111|020 . . . 〉,| . . . 020|11111 |020 . . . 〉,. . ., and

|0|11111111111〉. Two of the domain walls (quasi-holes) are

represented by two vertical lines (‖). Considering the

12 translations of the abovementioned six configurations,

there are finally 72 (generally Norb = Ns/2) double quasi-cavity

states in total. This count is completely consistent with the

numerical calculation results. In the band calculated by DFT,

the construction of a tightly bound Hamiltonian is implemented

with the help of the largest localizedWannier function (ML-WF).

Through the Brillouin zone, the wavefunction cannot be

regarded as single valued; then, unidimensional Wannier

functions are maximally localized in the y direction by

taking the eigenstates of ky on y. Let the occupied band of

a QAH system be |kx, ky〉, with the Berry phase gauge field

vector Ai, Ay = 0, the Wannier function with local

maximization has explicit form [23].

W ky, x( )∣∣∣∣∣ 〉 � 1��
Lx

√ ∑
kx

e
−i∫kx

0

Ax px,ky( )dpx

·e−ikx x−θ ky( )
2π( )

kx, ky
∣∣∣∣ 〉

, (34)

where px , py are the branches of the projection operator on each

coordinate. For lattice sites’ labels,

θ ky( ) � ∫2π

0
Ax pz, yk( )dpx, x ∈ Z,

the phase factor eiθ(ky)kx/2π of the Bloch function is periodically

guaranteed with kx → kx + 2π. Hence, the Wannier function

satisfies the following warp boundary condition:

W ky + 2π, x( )∣∣∣∣∣ 〉 � W ky, x + C1( )∣∣∣∣∣ 〉. (35)

This method can be easily extended to more general FQAH

states such as the Moore-Read state of non-Abelian quasiparticles,

thus determining the various topological properties of the fractional

quantum anomalous Hall (FCI/FQAH) state. Considering that the

fractional quantum anomalous Hall (FCI/FQAH) state is first

realized in the optical lattice cold atomic system, a feasible

experimental detection method can also be devised for edge

excitation. The edge space excitation spectrum in dish geometry

is found in the real space strict diagonalization (ED) calculation, and

similar results are obtained based on the study of the quantum

entanglement spectrum [23]. In the hard boson-filled Haldane dish

model and the Kagome lattice dish model, a series of characteristic

edge excitation spectra have been found consistent with the chiral

Luttinger liquid theory. By inserting and adjusting the magnetic flux

in the center of the dish structure, it is further verified that the

compressibility of the excited state is indeed the chiral edge state of

the carrying current. Within the particular lattice structure of this

system, the intrinsic and additional Rashba SOCs compete with each

other, allowing one to adjust the number and position of Dirac

cones. When the time inversion invariance is no longer preserved,

the energy band structure of the system will exhibit various QAHEs

with distinct Chern numbers (C1 > 1).

It is also predicted that a large number of turns can be achieved

in a magnetic three-dimensional topological insulator film, in which

case the film system needs to jump out of two-dimensional

limitations. Under two-dimensional constraints, the number of

QAHEs derived from the direct coupling of the upper and lower

surface states of the sample is the minimum. When the film is

thicker, the conduction band energy band and the valence band

energy band, which are constrained in two directions, will cause

multiple band inversions under the influence of the coupling

between the Zeeman field and the spin–orbit, with the state

|FTI〉 � |1/m, ↑〉 ⊗ | − 1/m, ↓〉. Therefore, the number of

QAHEs strongly depends on the relative size between the

Zeeman field and the sample thickness, which determines the

spacing between the sub-bands. For samples of different

thicknesses, increasing the Zeeman field strength can increase the
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number of turns to a larger integer, which is contrary to the fact that

the Hall conductivity of the general quantumHall effect decreases as

the magnetic field strength increases.

Another way to build a local Wannier function is to use the

largest localization method proposed by Marzari and Vanderbilt. In

this method, they introduce a local function to strictly define the

locality of theWannier function and transform the matrixU(N) by
optimizing the specification so that the local function reaches a

minimum. Then, generalize the expression of the maximally

localized Wannier function with N occupied bands [23]:

Wi ky, x( )∣∣∣∣∣ 〉 � 1��
Lx

√ ∑
kx,m,n

e
−ikx x−θi ky( )

2π( )
ui
m

· Pe
−i∫kx

0
Ax px,ky( )dpx[ ]

mn

n, kx, ky
∣∣∣∣ 〉

. (36)

With eiθn(ky), i � 1, 2, . . . , N, they are the eigenvalues of

Wilson’s loop operator (inside []) and uim the corresponding

eigenstates. Here, Ax(px, kx)mn is the gauge field vector of the

Berry curvature.

For the multilayer FQAH system with C1 = 2,

|W(ky + 2π, n)〉 � |W(ky, n + 2)〉. We will see that all

components of the stretch function can be represented by

overlapping matrices. In practical calculations, each overlap

matrix needs to be given from the first-principle calculation.

W1
K�ky+2πn

∣∣∣∣∣ 〉 � W Ky, 2n − 1( )∣∣∣∣∣ 〉
W2

K�ky+2πn
∣∣∣∣∣ 〉 � W ky, 2n( )∣∣∣∣∣ 〉

(37)

such that both the parameters K and |W1,2
K 〉 are continuous and

that the contributions of all components of the broadening

function in the x direction are interrelated.

Multilayer FQH states can exhibit a great diversity of

topological states. The wavefunction of Laughlin states at

states (mnl) can be expressed as follows [24]:

Ψ zi{ }, wi{ }( ) � ∏
i<j

zi − zj( )m wi − wj( )n
∏
i,j

zi − zj( )l · −∑
i

|zi|2 + |wi|2( )/4l2B⎡⎣ ⎤⎦ ,
(38)

where lB is the magnetic length in each layer; zi and wi are the ith

particle’s complex coordinates, which are intrinsically in the non-

Abelian states for multilayer.

In the actual calculation process of two-layer FQAH, the

Bloch wavefunction is usually projected onto some appropriate

local orbits and used as the initial value of the maximum

localization process. Tx and Ty, in the Wannier states, are

given by [25]

Tx W
1
K

∣∣∣∣ 〉 � W2
K

∣∣∣∣ 〉, Tx W
2
K

∣∣∣∣ 〉 � W1
K+2π

∣∣∣∣ 〉
Ty W

a
K

∣∣∣∣ 〉 � eiK Wa
K

∣∣∣∣ 〉 .
(39)

We calculated the electronic structure of the interfacial

region and its evolution with the interface coupling scale

factor. For the two subsystems that are not coupled, we found

that the QSH insulator had a one-dimensional Dirac edge state,

while the edge of the QAH insulator, with a number C = 2, had

two edge states with chiral edge states. The valence band of the

energy valley position (K and K′) and the energy gap state of the

conduction band construct the two QAH edge states. They have

the same spin polarization but are localized in the K or K′ energy
valley. The torus with the misaligned layer can be connected by

the “wormhole” of the branch cutting, and it has a nontrivial

topological degeneracy [26].

The topological degeneracy from the edge state can also be

explained by chiral symmetry breaking, since hardcore bosons

have been filled into the Haldane dish model and the Kagome

lattice dish model, and a series of characteristic edge excitation

spectra have been found, which is consistent with the chiral

Luttinger liquid theory. By inserting and adjusting the magnetic

flux in the center of the dish structure, it is further verified that

the compressibility of these excited states is indeed the chiral edge

state of the carrying current. Let N0 be the number of all possible

states, (mnl) are the Laughlin states in Eq. 39. Then, the

topological degeneracy of pairs of dislocations is as follows [27]:

N � N0

m + 1( )2n−1 � m2 − l2( ) m − l( )n−1∣∣∣∣ ∣∣∣∣. (40)

The two oppositely polarized interfacial states are localized in

two energy valleys that are far apart in the momentum space.

That is to say, the formation of the QSH/HQAH interface makes

the spin polarization of the interfacial state dependent on the

energy valley, with d � ��
m

√
as the quantum dimension. The

coupling of spin and energy physics for the interface makes it

possible to distinguish the energy of the valley by controlling the

degree of spin freedom [28].

The effective Hamiltonian of the interface system is

constructed directly from the Wannier Hamiltonian of two

individual materials using the effect term U(2). Finally, we
use the Green function method for interfaces to calculate the

local state density of the interfacial region. It is noteworthy that

when the Wannier function is generated to handle interface

problems, Wannier-based functions in two systems should be

selected as consistently as possible. Only in this way can the

coupling matrix of the material passing through the interface be

well defined as U(1) × U(1) by Chern–Simons theory [29].

Therefore, we used the projected atomic orbital Wannier

function and rejected the maximum localization process.

Using the vacuum level as a reference, we aligned the valence

bands of two bulk materials in the interface system to a uniform

Fermi energy [30].

As a new topological quantum state, quantum anomalous

Hall insulators (Chern insulators) have attracted wide attention

due to their unique edge state characteristics. Combining the

first-principle calculation method and the tight-binding model

based on the Wannier function, we prove that SOC can
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transform a typical semi-Dirac system, namely, TiO2/

VO2 composite structure, into a quantum anomalous Hall

insulator, with the further discovery that there is only one

special type[31].

This transformation can only be implemented in the semi-

Dirac system. Unlike the usual semi-Dirac spectrum, temporarily

called the second type of semi-Dirac spectrum, that system can

actually be regarded as a combination of three common Dirac

cones. Our results reveal the non-mean topological properties of

this type of semi-Dirac system and provide new ideas and

approaches for implementing QAHEs in real systems [32]. In

addition, we have proposed other composite systems that can

implement Chern insulation. These solutions are expected to not

only to create new possibilities for developing more accessible,

higher temperature Chern insulators but also to lay a necessary

material basis for designing topological quantum devices [33].

Due to the unique Dirac cone surface state that not only has

topological insulators become a research hotspot in condensed

matter physics and material science, but they also promise

potential application prospects in low-energy electronic

devices. Therefore, once the topological insulator phase can be

realized in the traditional III–V semiconductor, it will be of great

significance to spintronic applications and quantum computing

methods. We propose a universal strategy for implementing

topological insulators in III–V semiconductors by means of

helium atom doping and applied stress. Using the first-

principle method based on the maximum localized Wannier

function to directly calculate the Z2 topological invariants and

surface states of the system, we find that under applied stress,

AlBi (GaBi and InBi) can serve as topological insulators

(semimetals). We further demonstrate that erbium doping can

induce topological phase transitions in traditional III–V

semiconductors such as GaAs semiconductors. In view of the

maturity of modern technology in the semiconductor industry

and the wide application of III–V semiconductors in electronic

devices, our proposed method provides new design ideas for the

preparation of large-scale topological insulator electronic devices

that are easy to integrate and control [34].

By studying the interface between quantum spins and

quantum anomalous Hall insulators and analyzing the

effective model, we find that there are stable and specific

chiral topological interfacial states at the interface between the

two. Using the tight-binding model and the first-principle

calculation based on the maximum localized Wannier

function, we move on to systematically analyze the unique

properties of the interfacial state between quantum spin Hall

insulators and different quantum anomalous Hall insulators,

including single-energy valley QAH [14], the multi-energy

valley high number QAH, and valley-polarized QAH

insulators. Despite the existence of topological interfaces on

these interfaces, they have different specific behaviors. Since

the interface exists between two materials, its state is naturally

protected from the effects of edge defects, chemical

modifications, and the like. Therefore, the interfacial state

should be more stable and less sensitive to external

disturbances than the surface state. Our results have not only

gained an important understanding of the topological properties

of materials but also provided a possible way to enhance the

performance and stability of topological electronic devices in

real-world environments [35–40].

5 Multilayer fractional quantum Hall
effect model

We propose an approach to implement the multilayer FQAH

model. The top and bottom sides are connected to two external

charge reservoirs. The quantum devices have two TI layers with

different chiral properties and FQAHE at their edge. The wave vector

is fixed somewhere in the y direction, with periodic phases in the x

direction, which can be expanded by theWannier function to create a

band gap due to the intrinsic topological invariant, hence, the FQAH

nematic state. Now, the device can be divided into two parts, as

shown in Figure 2, the one on the left side g < 0 and the other on the

right side g > 0 (g is the Landau factor). The two sides are connected

by a quantum wire matrix (the blue block) to change Majorana

fermions.In the case of bilayer graphene, expand the Hamiltonian,

considering the effects of Rashba SOC α, intrinsic exchange fieldM,

and imbalance U(τ) means the Pauli matrix of the layer degrees of

freedom [28].

H � vσ · kψs +Mψσ+sz +
α1 + αh

2
( ) σ × s( )z[ ]ψτ

+ αl − αh( ) σ × s( )z + Uψσ+s[ ]τz
+1
2
t⊥ψs xτx + σyτy( ) . (41)

Subject to the boundary condition ψ(y � 0, L) � 0 and

according to the calculation from [28–34], l is the energy

dispersion in terms of λ.

ϵ � μ M2 + v2 k2x − λ( ) + 2α2{
+2s

����������������������
α4 + v2 k2x − λ2( ) M2 + α2( )

√ }1/2 . (42)

The magnetic heterostructures in which two sub-monolayers of

transition metals embedded in the semiconductor TI host form the

ferromagnetic delta (δ)-layers within which there may appear two

distinct types of in-gap bound states: the symmetric and

antisymmetric states. The symmetric state is a one-to-one

correspondence to the origin of the convenient confinement states

of carriers at interface insertions in traditional semiconductor-layered

structures, while the antisymmetric state is a close analogy to the

topological surface states attributed to the Z2 invariant for TI [41–45].

The latter emerges near the δ layer, where the topological invariance is

locally destroyed, and the antisymmetric state represents the

anomalous topological properties of the host material [46–50].

Therefore, it is feasible to design a control gate for quantum

spin transport on the clean surface holding the helical electrons.
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The essential advantage of this mechanism is that the time

reversal symmetry breaking and the helical state gapping are

achieved on the surface [51, 52].

6 Conclusion and discussion

In this paper, we have discussed the cause of FQAH with a non-

Abelian quantum field theory. We have also investigated the physical

reliability of a FQAH device. The spontaneously topological chiral

symmetry breaking of fermions hopping on a honeycomb lattice in

the presence of a synthetic non-Abelian gauge potential has been

identified as the cause of FQAH. The topological quantum Berry

phase transition indicates the hopping of sublattice and the Coulomb

energy through interaction betweenmany-body particles causes a pre-

formed band inversion in the band structure. With the integration on

continuous breaking, the non-locality symmetry breaking of theHiggs

field will affect the band topological phase property and the gap

amplitude in a way that will engender different energy level platforms

with distinct phase shifting.

Anovel type of the FQHE is foundon the topologicalflat belt. The

VASP simulation and experiment have shown the following items: the

topologically quasi-degenerate ground state group, topologically stable

characteristic energy gap, the characteristic momentum correlation of

the ground state group, the topological evolution of the ground state

group, the smooth Berry curvature, fractional Hall conductivity (or

fractional aging number), quasi-hole excited fractional charge

statistics, and chiral edge excitation. This effect is distinct from the

continuous FQHE on the traditional Landau level. Without requiring

any externalmagnetic field, it has a large characteristic energy gap and

can exist at higher temperatures. It does not require a single-particle

Landau level and cannot be used in conventional ways. The Laughlin

wave function describes these fractional phenomena with no external

magnetic field and no Landau energy levels and defines a new class of

fractional topological phases, also known as fractional insulators. The

fractional quantum Hall effect is also called the fractional quantum

anomalous Hall effect.

Some possible theoretical research directions are outlined as

follows: proposal of other topological flat belt models, including a

better topological flat-belt model with high Chern numbers and a

lattice model with multiple topological flat belts at the same time;

exploration into the abnormal edges of fractional topological phases on

topological flat belts excitation; exploration into Abelian and non-

Abelian fractional statistics on topological flat belts; exploration into

singular fraction statistics and edge excitations on topological flat belts

with high Chern numbers; exploration into possible fractional

superconducting phases and superfluid phases; a qualitative and

quantitative comparative study on the numerical wavefunction and

analytical wavefunction of the FQHE on the topological flat belt;

exploration into the topological order and the superfluid phase, the

solid phase, and the topological quantum phase change characteristics.

Experimental research in this field is in more urgent need of working

out how to realize topological flat bands in condensedmattermaterials

and in cold atom optical lattices, how to realize fractional quantum

anomalousHall states in both types of systems, how to detect the exact

topological order, and how to detect the fractionalization.

A recent systematic experiment found that the quantum

anomalous Hall effect with different Chern numbers can be

achieved by regulating the magnetization direction of a single-layer

transition metal oxide material by applying a weak magnetic field. At

the Fermi level, both materials have six spin-polarized Dirac points.

After introducing spin–orbit coupling, eachDirac point contributes half

a quantized Hall conductance, but in different directions. When the

magnetization direction is in-plane and the vertical mirror symmetry is

broken, four Dirac points have the same Berry curvature, and the

remaining twoDirac points have opposite Berry curvatures; at this time,

the system has a Chern number of 1. This constitutes an integer order

quantum anomalous Hall effect. When the magnetization direction

deviates from the system plane, the six Dirac points contribute to the

same direction of the Berry curvature. At this time, the system has a

quantum anomalous Hall effect with a Chen number of 3. This

experiment not only provides a new material platform to study the

quantum anomalous Hall effect but more importantly reveals the

existence of the quantum anomalous Hall effect with tunable Chen

number (i.e., fractional order) and its physical causes.
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