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Abstract

The possible role of somatic copy number variations (CNVs) in Alzheimer's disease (AD) aetiology has been controver-
sial. Although cytogenetic studies suggested increased CNV loads in AD brains, a recent single-cell whole-genome
sequencing (scWGS) experiment, studying frontal cortex brain samples, found no such evidence. Here we read-
dressed this issue using low-coverage scWGS on pyramidal neurons dissected via both laser capture microdissection
(LCM) and fluorescence activated cell sorting (FACS) across five brain regions: entorhinal cortex, temporal cortex,
hippocampal CAT1, hippocampal CA3, and the cerebellum. Among reliably detected somatic CNVs identified in 1301
cells obtained from the brains of 13 AD patients and 7 healthy controls, deletions were more frequent compared

to duplications. Interestingly, we observed slightly higher frequencies of CNV events in cells from AD compared to
similar numbers of cells from controls (4.19% vs. 1.4%, or 0.9% vs. 0.7%, using different filtering approaches), although
the differences were not statistically significant. On the technical aspects, we observed that LCM-isolated cells show
higher within-cell read depth variation compared to cells isolated with FACS. To reduce within-cell read depth varia-
tion, we proposed a principal component analysis-based denoising approach that significantly improves signal-to-
noise ratios. Lastly, we showed that LCM-isolated neurons in AD harbour slightly more read depth variability than
neurons of controls, which might be related to the reported hyperploid profiles of some AD-affected neurons.

Keywords: Single-cell whole-genome sequencing, Copy number variation, Alzheimer’s disease, Brain, Laser capture
microdissection, Fluorescence-activated cell sorting, Denoising

Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease
of multifactorial aetiology, with numerous genetic and
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environmental factors each explaining a small proportion
of variance in disease onset and progression [1]. One of
the less-studied potential contributors is somatic copy-
number variations (CNVs) in neurons, which can include
the gain or loss of whole chromosomes (aneuploidy) or
of chromosomal segments. It is generally accepted that
mature neurons in healthy brains can carry somatic
CNVs, but their frequency is uncertain. Early studies esti-
mated aneuploid neuron frequencies between 4 and 40%
in neurotypical brains [2—4], while analyses using single-
cell whole-genome sequencing (scWGS) estimated aneu-
ploid neuron frequencies at<1% [5]. Beyond aneuploidy,
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recent scWGS studies also estimated CNV-carrying neu-
rons at around 30% in young adults and 10% in old adults
[6].

Over the last two decades, a number of fluorescence
in situ hybridization (FISH) and cytogenetic-based stud-
ies investigated CNV frequencies in AD and healthy
control brains [2, 7-12]. Several of these reported extra
copies of chromosomes in the AD brain [7-12]. This,
in turn, implies that the chromosomal imbalance might
contribute to AD pathogenesis via altered gene expres-
sion levels. An example of such imbalance is seen in indi-
viduals with Down’s syndrome (DS); carrying an extra
copy of chromosome 21 appears to facilitate aggregation
of amyloid-PB (AP) plaques in the brains of DS individuals
similar to the AD phenotype [9, 13, 14].

There are various explanations for why post-mitotic
neurons in AD brains could carry high frequencies of
somatic CNV [15]. According to one view, the high CNV
burden in the AD brain originates from neurogenesis in
the embryonic period. This excessive somatic mutation
may be pathogenic and manifest itself as increased AD
risk during ageing [16]. However, Abascal et al. recently
showed that somatic mutation (single nucleotide change
or indel) accumulation in cells with mitotic capacity and
in post-mitotic neurons follow similar trajectories. That
is, mutational processes (possibly also including CNVs)
appear to occur in a time-dependent manner rather than
being division-dependent [17]. Accordingly, CNVs in
AD brains may have accumulated during their lifetime.
However, this scenario also appears inconsistent with
the observation that CNV-bearing neuron frequencies
decrease from young to old adulthood [6]. Another view
suggests that AD itself might cause dysregulation in neu-
rons, and AD-affected mature neurons might re-enter
the cell cycle, resulting in increased CNV load [8, 18],
which may then be eliminated at later stages of AD, thus
causing neurodegeneration [10].

Over the last decade, advances in next-generation
sequencing (NGS) technologies gave fresh impetus to
somatic CNV analyses by allowing variants to be deter-
mined at the single-cell level [19]. In one such study,
van den Bos and colleagues used scWGS to compare the
prevalence of aneuploidy in neurons from healthy control
and AD patients [5]. Analyzing 1482 neurons from 10 AD
patients and 6 control individuals, the authors reported
aneuploid prevalence at 0.7% and 0.6% for control and
AD neurons, respectively, and concluded that aneuploid
cells are not more common in the AD brain.

These findings by van den Bos and colleagues implied
that CNVs might have no relationship to AD pathogen-
esis, in contrast with earlier finds from FISH and cytom-
etry. However, the study by van den Bos and colleagues
had a number of limitations. One was that the authors
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only estimated aneuploidy (full chromosome gain or
loss), while large CNVs, which could also contribute to
pathogenesis, remained uncharacterized. Another limi-
tation was that only one brain region was examined, the
frontal cortex, while atrophy of the medial temporal lobe
and specifically the hippocampus is generally considered
to be a strong predictor of AD [20]. The study did not dis-
tinguish among neuron types that may carry sensitivity
to AD differentially [21]. Thirdly, the study discarded a
large fraction of cells (39%) for showing high within-cell
variability in genome coverage, although it was unclear to
what extent these represented pure technical error versus
cells with complex karyotypes. Fourthly, only NeuN posi-
tive neurons were included, which substantially restricts
the significance of this study due to different reasons:
(1) Recently, up to 30% of cortical neurons have been
reported being NeuN-negative following diffuse brain
injury, which may be related to certain neurons being
particularly vulnerable to membrane disruption [22], a
process recently associated with AD [23, 24]. (2) Consid-
erable or even complete loss of NeuN immunoreactiv-
ity was also reported for neurons affected by ischemic
insults (middle cerebral artery occlusion) without signifi-
cant cell loss [25] or in neurons that just entered the cell
death process [26]. Interestingly, these neuronal popu-
lations are of special interest because energy and nutri-
tional deficiency and cell loss are essential characteristics
of the AD brain [27]. (3) The intensity of NeuN staining is
reported to be lower in AD samples [28], and further (4)
due to many NeuN negative cortical neurons in FTLD-
TDP (frontotemporal lobar degeneration with TDP-43
inclusions) patients, Yousef et al. suggested NeuN stain-
ing as an indicator of healthy neurons [29]. However, if
NeuN reflects a neuron’s health, any selection of NeuN
positive cells would lead to a substantial bias for studying
any neurodegenerative disease.

These methodological issues could potentially explain
the discrepancies between the findings by van den Bos
et al. and those based on FISH and cytogenetic studies
[7-12]. Notably, a recent technical comparison between
FISH and scWGS using mock aneuploid cells reported
a tendency of the latter to severely underestimate ane-
uploidy [30]. It is thus possible that both neurons with
CNYV and nuclei thereof display altered physicochemi-
cal properties. This may result in selection bias against
abnormal nuclei with high CNV loads when using the
fluorescence activated cell/nuclei sorting (FACS, FANS)
isolation method (exerting mechanical stress [31]) and
high hydrodynamic pressure [32], applied by van den
Bos and colleagues, and artificially inflate euploidy fre-
quencies. Moreover, besides restriction to NeuN posi-
tive cells, usage of only intact nuclei could preclude or
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bias AD neurons with nuclear envelope stress or rup-
ture [33].

These observations call for additional data and
approaches to tackle this issue. Accordingly, here
we generated and analyzed scWGS data to establish
the frequency of CNVs (both full chromosome ane-
uploidies and sub-chromosomal CNVs) in five differ-
ent brain regions that differ in vulnerability to AD [34].
We employed two different single-cell isolation meth-
ods, laser capture microdissection (LCM) and FACS, to
isolate neuronal nuclei. LCM, despite being technically
challenging, has the advantages of allowing for specific
neuron types to be chosen, and being neutral towards
normal and abnormal nuclei. We further employed
a principal component analysis-based denoising
approach to eliminate false positive CNV calls that
might result from either systematic experimental biases
or repetitive regions in the human genome. Finally,
we analyzed published datasets to replicate our main
results and check the sensitivity and specificity of our
bioinformatics pipeline.

Materials and methods

Tissue sources

Frozen postmortem human brain tissues -temporal cor-
tex, hippocampal subfields cornu ammonis (CA) 1, hip-
pocampal subfields cornu ammonis (CA) 3, cerebellum
(CB) and entorhinal cortex (EC)- from a total of 13 AD
patients and 7 non-demented age-matched controls were
obtained from the GIE NeuroCEB Brain Bank (France)
(Additional file 1: Table S1-A). AD cases were diagnosed
according to the National Institute of Aging and Reagan
Institute Criteria [35] and immunohistochemically pro-
cessed for tau and amyloid pathologies [36, 37]. Control
cases were non-demented individuals who died without
known neurological disorders. Post-mortem delays and
mean ages of control and AD cases were not significantly
different. The average age of death was for control cases
(n=7) 71 0.57 years (£5.13 years SEM) and for AD cases
(n=13) 70.15 years (£ 3,63 years SEM) (p=0.822). The
average post-mortem delays were 31.14 h (+7.10 h SEM)
for control cases and 26.17 h (+4.08 h SEM) (p=0.52).
All experiments were conducted at Paul-Flechsig-Insti-
tute (Leipzig University, Germany).

Fluorescence-activated cell sorting (FACS)

Neuronal nuclei were extracted following the proto-
col described in [38]. Briefly, frozen brain samples were
thawed in the hypotonic lysis buffer. Neuronal nuclei
were stained with propidium iodide and sorted using
BD FACSAria II SORP (BD Biosciences). Genomic DNA
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was then isolated and amplified as described below (see
scWGS library preparation and sequencing).

Laser capture microdissection (LCM)

Frozen brain samples at — 80 °C were thawed to —20 °C,
sliced using CryoCut Freezing Microtome at 30 pum
thickness, and mounted on a membrane slide (Carl
Zeiss). After staining with cresyl violet, single cells were
cut out and placed into an adhesive cap by PALM Micro-
Beam (Carl Zeiss). Neurons of the individual 5603 were
collected using both FACS (n=12) and LCM (n=64).

scWGS library preparation and sequencing

Genomic DNA was amplified using WGA4 (Genom-
ePlex® Single Cell Whole Genome Amplification Kit) and
then purified using the MinElute PCR Purification Kit
(Qiagen). The specific adapters were added to the DNA
via Phusion® PCR followed by purification with the Min-
Elute PCR Purification Kit (Qiagen). Sample quality was
evaluated using agarose gel electrophoresis. Sequenc-
ing was performed on the HiSeq2500 platform (Illu-
mina) with paired-end 100 bp (PE100) or 150 bp (PE150)
modes.

Read quality control and alignment

The FastQC tool (version 0.11.9) was used to check the
quality of the raw Illumina reads. The results of FastQC
were summarized using MultiQC (version 1.9) [39]. The
mean sequence lengths of the reads (ranging between
101 and 151) were inspected using the output of the Mul-
tiQC (general_stats_table). To avoid biases that would
affect the interpretation of the results, all reads were
trimmed to a length of 66 (the longest possible length
in all reads). [llumina adapter and low-quality bases (the
first 35 bp) were removed using Trimmomatic [40] with
the following parameters: “ILLUMINACLIP:TruSeq3-
PE-2.fa:2:30:10:8: TRUE HEADCROP:35 MINLEN:66
CROP:66”" The quality of the trimmed reads was checked
again using both FastQC and MultiQC. Adapter-trimmed
paired-end FASTQ files were mapped to the hgl9 human
reference genome using Burrows-Wheeler Alignment
(BWA v.0.7.17) [41] with aln and sampe options.

Filtering

The output of the BWA aligner in Sequence Alignment/
Map (SAM) format was further processed by SAMtools
v1.10 [42] to obtain high-quality uniquely aligned reads.
The applied steps are as follows: (1) keep reads mapped
in proper pair and discard reads marked with SAM flag
3852 (using the command “samtools view -f 2 -F 3852 -b
file.sam > file.bam”), (2) extract uniquely mapped reads
from BAM files (“samtools view -h file.bam | egrep -i
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""@|XT:A:U" | samtools view —Shu - > file.bam?2”) [43],
(3) obtain reads having MAPQ scores 60 (“samtools
view -h -q 60 file.bam2 > file.bam3”), (4) sort BAM files
(“samtools sort file.bam3 > file.sorted.bam”), (5) filter out
PCR duplicates (“samtools rmdup -S file.sorted.bam file_
rm.sorted.bam”), (6) index BAM files (“samtools index -b
file_rm.sorted.bam”), (7) convert BAM file into BED for-
mat using the Bedtools bamToBed command (Bedtools
v2.27.1) [44].

Coverage
Bedtools v2.27.1 algorithm genomeCoverageBed was used
to obtain coverage of the bases on each BAM file.

CNV prediction and cell elimination

CNV calling was performed using Ginkgo [45]. We had
three main reasons for using Ginkgo over its most com-
monly used alternative, HMMcopy [46]. First, a recent
study [47] performed benchmarking on Ginkgo and two
other widely used methods HMMcopy and CopyNum-
ber, and found that Ginkgo was the most accurate algo-
rithm for inferring the absolute copy number profiles
(although HMMcopy was superior in identifying break-
points and running time). Second, Ginkgo provided the
advantage of outputting data with normalised coverages
per cell, which we could use in our PCA-based denoising
method, and further in estimating the genome-wide copy
number of each cell, which we used to filter cells for high
levels of variability in read depth. Third, our tests on the
sensitivity and specificity of Ginkgo using trisomy-21 in
DS and monosomy-X in males in published data [5, 48]
revealed 100% and 94% detection rates across the two
published datasets. The command-line version of Ginkgo
was downloaded from https://github.com/robertabou
khalil/ginkgo. The tool was run under the following set-
tings: (1) variable size of 500 kb bins [43] based on simu-
lations of 76 bp reads aligned with BWA, (2) independent
segmentation method, (3) ward and euclidean options
for the clustering method and clustering distance met-
ric, respectively. Before the segmentation step, GC cor-
rection was performed by Ginkgo using the R function
LOWESS (see [45]). For segmentation, Ginkgo uses the
CBS algorithm implemented in DNAcopy in R [49]. DNA-
copy runs with the following parameters: alpha=0.0001,
undo.SD =1, min.width=>5 [50]. We also run HMMcopy
as described in [43] (using the parameter e=0.995).

The number of reads was divided into the variable size
of 500 kb bins that correspond to 5578 genomic win-
dows. Only cells with >50,000 reads were kept in down-
stream analyses (approximately nine reads per window),
resulting in n=1337 cells.
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Published datasets

The van den Bos 2016 dataset: Data was downloaded
from EBI ArrayExpress with the accession numbers
E-MTAB-4184 and E-MTAB-4185 [5]. Only the cells
that were reported as having good quality libraries were
included in the analysis (AD: 883; control: 586; Down’s
syndrome: 34). Adapter sequences were trimmed with
the following parameters: “ILLUMINACLIP:adapter.
fa:2:30:10:8:TRUE MINLEN:51" Single-end reads were
aligned to the hg19 human reference genome using BWA
with aln and samse options. The remaining steps are the
same as those described in sections Filtering, except that
here we used the SAM flag 3844 (because this dataset
was single-end sequenced) and used MAPQ scores 20
(because this dataset did not have enough reads which
having the MAPQ 60). Note that due to the missing
sample information in the database, the number of cells
we analyzed does not match what van den Bos and col-
leagues reported in their original publication.

The McConnell 2013 dataset: FASTQ files of 110
cells were downloaded from the NCBI SRA data-
base with accession number SRP030642 [48]. Adapter
sequence was trimmed with the following parameters:
“ILLUMINACLIP:adapter.fa:2:30:10:8: TRUE MIN-
LEN:39”. Paired-end reads were aligned to the hgl9
human reference genome using BWA with aln and sampe
options. The remaining steps are the same as those
described in sections Filtering.

Statistical modeling of CNV frequencies and index

of dispersion (I0OD) levels

When modelling CNV frequencies, our null hypothesis
was no difference in the frequency of CNVs in the AD
brain when compared to healthy controls. The overdis-
persed and zero-dominated nature of the response vari-
able, i.e. the frequency of CNVs, suggested that the data
should be fitted using a zero-inflated negative binomial
model. For this reason, we used the “glmmadmb” func-
tion (package: glmmADMB) [51] in R 3.6.3 with the
following parameters: “zero-inflated =TRUE” and “fam-
ily=nbinom1”. The fixed factors of the model were diag-
noses (AD and control), chromosomes (autosomes), sex
(male and female), brain regions (temporal cortex, hip-
pocampus CA1, hippocampus CA3, cerebellum, entorhi-
nal cortex), and coverage per cell. The individual effect
was added as a random factor. Note that sex could not
be used as a fixed factor in the van den Bos 2016 dataset
because cells that remained after filtering only belonged
to females. We also compared the difference between AD
and control in terms of CNV frequency using HMMcopy
estimates. The fixed factors of the model were diagnoses
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(AD vs. control) and coverage per cell. The individual
effect was added as a random factor.

When modelling the index of dispersion (IOD, the ratio
between the variance of read coverage and the mean), we
used the same approach as above. Levels of the response
variable, IOD, was predicted using diagnoses (AD and
control), brain regions (temporal cortex, hippocampus
CA1, hippocampus CA3, cerebellum, entorhinal cortex)
and coverage as explanatory variables using the “glm-
madmb” function (package: “glmmADMB”) [51] in R
3.6.3. Individual effects were added as a random factor.
The distribution of the IOD was right-skewed and the
model was run with the “family =gamma” parameter.

To compare the IOD across different brain regions,
we used “Ime” function (package: “nlme”) in R 3.6.3 with
diagnoses as fixed effects and the individual as a random
effect.

Copy number statistics

After reads were mapped into the bins, read counts in
each bin were divided by the mean read counts across
bins for each cell. This value corresponds to the normal-
ized read counts as calculated by Ginkgo (see [45]).

A Z-score for each CNV was calculated using the nor-
malized read counts. It was calculated as the cell mean
(mean normalized read counts across autosomes) minus
the CNV mean (mean read counts between CNV bound-
aries) divided by the standard deviation (sd) of CNV:

Z1-score = (mean,.; — meancny)/ sdcny

The Z,-score of each CNV was calculated by calculat-
ing the difference between the Ginkgo-estimated integer
copy number state (1 or 3) and the observed normalized
read count, dividing by the standard deviation (sd) of the
normalized read counts:

Zy-score = [a — bl/sdcny
with a = ESTIMATED STATEcny
b = mean(OBSERVED READCOUNTcny).

CNVs with two standard deviations below or above the
cell’s mean and CNVs with Z,-score smaller than or equal
to 0.5 were kept in the analysis. Using these combina-
tions, monosomy X (>90% of the chromosome’s length)
was correctly predicted in 58.1% (217 of 373) of males in
the uncorrected data.

Principal component analysis (PCA)

To remove experimental noise from the data, the fol-
lowing steps were applied for every cell: (1) one cell
(x) at a time was discarded from the analysis. For the
remaining cells, PCA was applied on the normal-
ized read counts using the”prcomp” function with the
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parameter’scale=TRUE” in R 3.6.3. (2) n PCs that
explained at least 90% of the variance in total were cho-
sen. (3) To remove the effect of the chosen PCs from
the focal cell x, a linear regression model with normal-
ized read counts from cell x as a response, and the »
PCs as explanatory variables was constructed using the
R”’Im” function. (4) Residuals from this model were cal-
culated. (5) To prevent errors during a lowess fit of GC
content (log transformation of negative residuals pro-
duces NaNs), we added the constant 1 to the residuals. If
there still remained values <0, these were replaced with
the smallest positive number for the focal cell x. (6) The
resulting value was set as a new value of the focal cell x,
and Ginkgo was run with the new values.

PCA of the normalized read counts across different
datasets was performed in R 3.6.3 using the “prcomp”
function with the parameter “scale =FALSE”.

Results

Summary of the dataset

We used scWGS to determine the frequency of CNVs
in the temporal cortex, hippocampal subfields cornu
ammonis (CA) 1, hippocampal subfields cornu ammonis
(CA) 3, cerebellum (CB) and entorhinal cortex (EC)
of 13 AD patients and 7 age-matched healthy controls
(Figs. 1A, 2A,B, Additional file 1: Table S1). The Braak
stages of AD patients ranged between IIT and VI (Fig. 2C).
Neuronal nuclei were isolated using either FACS (sorted
with propidium iodide, n=12) or LCM (sorted with cre-
syl violet, n=1552), the latter performed on frozen brain
slices (Fig. 1B, see Methods). LCM-isolated non-neuronal
“blank” regions were used as negative control (n=10).
The LCM method, although more difficult to implement
than FACS, was chosen to ensure the selection of nuclei
of pyramidal neurons for sequencing, known to be par-
ticularly sensitive to AD [21]. For technical comparison,
neurons of a single individual were collected both using
FACS (n=12) and LCM (n=64) (see Methods). scWGS
libraries were prepared using GenomePlex whole-
genome amplification and specific adapters were inserted
using Phusion® PCR. Paired-end reads were mapped to
the human reference genome, followed by stringent fil-
tering to obtain uniquely mapped reads (see Methods).
This resulted in a median of 276,446 reads, correspond-
ing to a coverage of 0.006X per LCM-isolated cell (range
[133-1,909,016] reads and [0.000003X-0.04X] coverage)
(Fig. 3A).

CNVs were predicted using Ginkgo, which uses circu-
lar binary segmentation (CBS) to estimate deletion or
duplication events [45]. Negative controls (#=10) and
FACS-isolated neurons (n=12) were analyzed separately
and are not included in the main results. Ginkgo was run
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Fig. 1 Schematic of the workflow and information about the samples. A The pipeline of NGS data analysis and CNV detection. B Images from a
frozen hippocampal brain slice stained with cresyl-violet showing a pyramidal cell before (B1) and after (82) laser capture microdissection-based
isolation process using the PALM device. Circles in B1 indicate positions where two pyramidal cells have already been isolated just prior to the

picture being taken. Scale bar, 50 um

on our dataset with n=1542 cells, while in parallel, we
also analyzed two published scWGS datasets: one by van
den Bos and colleagues (“van den Bos 2016”), comprising
n=1469 cells from healthy and AD brains (median cov-
erage 0.005X) and another by McConnell and colleagues
(“McConnell 2013”), comprising n=110 cells from
healthy brains (median coverage 0.047X) (Fig. 3D) [5, 48].
Note that the van den Bos 2016 dataset includes only 61%
of cells produced in that study, because data from cells
filtered for high noise levels were not published and thus
could not be included here.

LCM-isolated cells show a high frequency of depth
variability

We first evaluated the sensitivity and specificity of our
bioinformatics pipeline on scWGS data using trisomy-21

in DS and monosomy-X in males in published data. Ana-
lyzing #n=34 neuronal nuclei from DS individuals [5],
trisomy-21 was correctly predicted across all samples
without any false positive or false negative calls. In addi-
tion, monosomy-X was accurately predicted in 94.2%
(338 of 359) of cells from males across the two published
datasets [5, 48].

Ginkgo includes an algorithm that uses the distribu-
tion of read depth across the genome to infer the average
DNA copy number of each cell, which is estimated within
a range of 1.5 to 6. It would be expected that the major-
ity of human neurons would carry on average two copies
of each autosome, although high frequencies (10-35%) of
hyperploid neurons have also been reported, especially in
AD brains [10].
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Fig. 2 Sample information. A Bar plot showing the number of cells that have been sequenced for each individual. Brain regions are illustrated
in different colors (see the colour key on the top of the figure). B Dot plot showing age of AD (pink) and control (green) individuals. C The table
summarises sex, diagnoses and Braak level of the individuals. Detailed information on the individuals is available at Additional file 1: Table S1-A

Applying Ginkgo on the two published datasets, we
found that for 99.9% (1577 of 1579) of cells the estimated
average copy number lies within [1.9-2]. Using the same
algorithm on our dataset, however, only 45% (687 of
1542) of the cells had average copy numbers estimated
within the [1.9-2] range; ie. 55% were non-euploid.
Although hyperploid neurons have been described in
control brains at~10% frequency using FISH [10], the
observed non-euploidy estimates suggest that our dataset
carries particularly high levels of variability in read depth.
These differences, in turn, could be related to the LCM
protocol used, as the published scWGS experiments had
used FACS.

To investigate this possibility, we compared the qual-
ity metrics of cells we had collected using FACS or
LCM for this study. These metrics were mapping pro-
portion (the number of mapped reads/ the total num-
ber of reads), coverage, and index of dispersion (I0OD,
the ratio between the variance of read coverage and the
mean). FACS-isolated cells had higher sequencing cov-
erage and mapping proportions than the LCM-isolated

ones (Wilcoxon two-sided rank-sum test, p <0.0001 and
p<0.001 for coverage and mapping proportion, respec-
tively) (Fig. 3A, B). Note that the difference in cover-
age variability between FACS and LCM has not been
reported elsewhere. In addition, FACS-isolated cells had
low IOD values, indicating less variation in sequence
depth than the rest of the samples (Kruskal-Wallis test,
p=15e—07) (Fig. 3C). Because our LCM and FACS
samples originated from different brain regions with dif-
ferent cell type proportions, we also asked whether such
differences could explain the observed LCM vs. FACS
differences. To rule out this possibility, we compared
the index of dispersion value of the cells that were taken
from the temporal cortex of the same individual using
FACS (n=12) and using LCM (n=64). We found a sig-
nificant difference in the direction of higher variability
in LCM (Wilcoxon rank-sum test p<0.001), indicating
that the observed variability between LCM and FACS can
not be simply explained by differences in cell type pro-
portion among brain regions. We note that the higher
noise observed in LCM data was not solely due to higher
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Fig. 3 Comparison between different cell isolation methods and published datasets. Box plots showing the distribution of coverage (A), mapping
proportion (B), index of dispersion (C) among FACS-isolated, LCM-isolated and LCM-isolated blank samples. P-values were calculated using

bins (n=15243) in published datasets and this study. Because they dominated the PCs, cells deviating from the [1.9-2] range were not included in
the analyses. The number of cells for each dataset are indicated on the plot. X-axes illustrate PC1 and PC3 that explain 18.4% and 1.3% of the total
variance, respectively. Y-axes show PC2 and PC4 that explain 2.8% and 0.9% of the total variance, respectively. (F) Boxplots showing the distribution

n=68 for chr1 and chr21, respectively). Each point corresponds to the median CN of each cell. Minimum (“Min"), median (“Med"), maximum (“Max")
and standard deviation (“sd") of each distribution were shown on the boxplot. Cells that deviated from the [1.9-2] range were excluded from the
analyses to be consistent with our filtering criteria (except for the uncorrected datasets). This study [Uncorrected (n=1337), Uncorrected-filtered
(n=588), PCA-corrected (n=1301)]: blue; van den Bos 2016 (n = 1468): brown; McConnell 2013 (n=109): purple
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genome coverage, as the FACS-based data from the van
den Bos 2016 dataset had a median coverage comparable
to ours (0.005X vs. 0.006X), but did not show comparable
variability as in our LCM data (Fig. 3D). These differences
in IOD between LCM and FACS could be potentially
explained by the higher sensitivity of the LCM procedure
to experimental noise, compared to FACS. Alternatively,
they could partly represent abnormal nuclei selected out
in FACS but captured by LCM.

We next investigated the possibility that underlying
variation may be caused by technical and/or biologi-
cal factors. For this, we used a generalized linear mixed
model (GLMM) to explain IOD (the response variable)
per LCM-isolated cell (n=1542) as a function of diagno-
sis (AD vs. control), genome coverage, and brain region
as fixed factors, and individual as a random factor (see
Methods). Note that p-values of the pairwise differences
between AD and control (Fig. 4A-C) was calculated
using a linear mixed-effects model (see Fig. 4 legend).
We found that coverage has a significant negative effect
on IOD, as may be expected (z=-21.06, p<0.0001).
Compared to the cerebellum, the region least affected by
neurodegenerative diseases [34], we found a significantly
high IOD for the entorhinal cortex (z=2.61, p<0.05),

hippocampal CA1l (z=3.34, p<0.001) and hippocampal
CA3 (z=3.75, p<0.001), but not for the temporal cortex
(z=—10.28, p=0.78) (Fig. 4B). Finally, neurons from con-
trol individuals have slightly less IOD than AD patients
(z=—1.93, p=0.054) (Fig. 4A—C). This result might sug-
gest a tendency for neurons of AD patients to carry more
variable DNA content and is consistent with cytometry
analyses reporting a high occurrence of hyperploid neu-
rons in the AD brain [10]. Although these findings imply
a role of biological factors in read count variation within
cells, it still remains possible that confounding technical
factors influence our data. Given this uncertainty about
the source of variability, we continued the analyses by fil-
tering our dataset to remove the most variable cells.

No significant difference in CNV frequency between AD
and control in the “uncorrected-filtered” dataset

We then used Ginkgo to call CNV events from the
"uncorrected-filtered" dataset (7=2882 cells from 13 AD
patients, and n=660 cells from 7 healthy controls). We
found 19,608 events in 882 cells from AD patients (22.2
per cell), and 14,844 events in 660 cells from healthy
controls (22.5 per cell). We then tested the observed
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frequency difference between AD and control using a
GLMM with a negative binomial error distribution (see
Methods). The response variable (the frequency of CNVs)
was predicted using a combination of fixed factors,
including diagnoses, chromosomes, brain regions, sex
and coverage (Fig. 6D). The individual effect was added
as a random factor. We found no statistically significant
difference between AD and control across all tested com-
binations (GLMM, p > 0.17; Additional file 3: Table S3).

CNV estimation from low coverage scWGS data is
known to be highly sensitive to technical noise, and a
large proportion of the called CNV events likely repre-
sent false positives. We thus decided to filter both cells
and CNV events in our dataset to obtain a more reli-
able dataset [6, 52, 53]. We started by removing the
most highly variable cells among the LCM-isolated ones
(n=1542) using the following criteria. First, 13% (205 of
1542) of the cells with a low number of reads (<50,000)
were discarded from the analysis (see Methods). Second,
as most cells are expected to be diploid, and also given
that the Ginkgo-estimated copy number (CN) profiles
of 99% of cells in the McConnell 2013 and van den Bos
2016 datasets were observed to lie between [1.9-2], we
excluded those cells with CN values beyond this range
(54% excluded, 726 of 1337). Third, we filtered out 23 of
the remaining 611 cells (4%) that showed extreme CNV
intensity, which we defined as three or more chromo-
somes of a cell carrying predicted CNVs that cover >70%
of their length (Fig. 6A). Information about the remaining
cells (n=588) is provided in Additional file 2: Table S2
and Additional file 4: Fig. S1.

From these 588 cells, we called 3521 CNVs (~5.9
events per cell) in the uncorrected data, which we call
the “uncorrected-filtered” dataset. We further applied
a number of conservative filtering criteria to remove
potential false positives: (1) We only included megabase
scale CNVs (>10 Mb), considering that detection of
small events with low coverage data will be unreliable.
(2) We limited the analyses to 1-somy and 3-somy events,
assuming that most somatic CNVs involving chromo-
somes or chromosome segments would involve loss or
duplication of a single copy. (3) We only included CNVs
with unique boundaries across all analysed cells, assum-
ing that somatic CNV breakpoint boundaries should
be generally randomly distributed across the human
genome. (4) We removed CNVs on the proximal portion
of the chrl9 p-arm, where frequently observed duplica-
tions were previously reported as low coverage sequenc-
ing artifacts [43]. (5) To ensure the reliability of the CNV
signal, we calculated a standard Z-score for each CNV
that reflects the deviation in read count distribution in
that region compared to the rest of the cell (which we
call Z;, see Methods), and only accepted CNVs with
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absolute values of Z;-scores>2. (6) We reasoned that
read counts in a real CNV should be closely clustered
around expected integer values (e.g. 1 or 3). To assess
this, we calculated a Z-score for the deviation from the
expectation (called Z,), and only accepted events with
absolute values of Z,-scores <0.5 (see Methods, Fig. 6A,
Additional file 4: Fig. S3).

After CNV filtering, we found 12 CNV events across
295 cells in 13 AD individuals and 4 CNV events across
293 cells in 7 controls. Among the 295 pyramidal neu-
rons analyzed from the 13 AD patients, we found 10 dele-
tions (3.39% per cell) and 2 duplications (0.68% per cell)
(Fig. 6B). These events ranged in size from about 10.14
to 77.01 Mb (median: 19.31 Mb) and were observed in
the temporal cortex and the entorhinal cortex. Of the 293
neurons from 7 control brains, 1 deletion (0.34% per cell)
and 3 duplications (1.02% per cell) were detected in the
temporal cortex with a size range of 10.81 to 54.67 Mb
(median: 14.51 Mb) (Fig. 6B). Again testing the CNV fre-
quency differences between AD and control brains using
a GLMM, we found no statistically significant effect
(GLMM, p > 0.88) (Additional file 2: Table S2, Additional
file 3: Table S3).

We also implemented an alternative algorithm, HMM-
copy [46], to predict CNVs (see Methods). Overall, 75%
(12/16) of the HMMcopy predictions overlapped with the
CNV events that we found after filtering the uncorrected
Ginkgo predictions. Comparing predicted CNV event
frequencies between AD and control we again found no
significant difference (z=-1.34, p=0.18).

A PCA-based denoising approach minimizes within-cell
depth variability

To gain further insight into within-cell variability in our
dataset (the uncorrected-filtered version) compared to
the two published scWGS datasets, we calculated the
median CN of chrl and chr21 (the largest and smallest
chromosomes) across all three. We still found conspicu-
ously higher within-cell variation in our dataset, despite
having discarded highly variable cells (Fig. 3F). We then
used the autosomal normalized read counts to perform
a PCA on the uncorrected-filtered data and published
datasets. We also included blank (negative control)
samples and FACS-isolated cells to illustrate how reads
counts from these two groups relate to others. According
to the PCA, LCM-isolated uncorrected-filtered data and
blank samples were separated from the published data-
sets and FACS-isolated cells (Fig. 3E). This result might
also highlight distinct profiles of LCM-isolated cells.

We then sought an approach that could reduce this
elevated within-cell variability in read depth, assum-
ing it is of technical origin and possibly related to the
LCM procedure. Experimental biases could involve



