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Abstract: Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors
(GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types
crucial for homeostatic brain regulation, including microglia and blood–brain barrier endothelial
cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular
adhesion and directed migration through chemotaxis, to granule release and superoxide formation,
to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences
between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the
evidence for their importance in the development of neuroinflammatory disease, alongside their
potential as therapeutic targets.
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1. Introduction

The formyl peptide receptors (FPRs) are seven-pass, transmembrane G-protein coupled
receptors (GPCRs) crucially involved in the inflammatory response. Although their roles in
the response to infection and sterile peripheral inflammation have been extensively studied,
their function in the central nervous system (CNS) and neuroinflammatory responses has only
gradually become apparent [1–5]. In this review, we detail the similarities and differences
between the two primary FPR family members, FPR1 and FPR2, and their immunological
functions. We will focus on the growing evidence that these receptors play a key role in
neuroinflammation. Through considering this evidence, we will make the case that these re-
ceptors have great potential as novel targets for therapeutic intervention in neuroinflammation,
offering new ways to treat some of the most intractable of human diseases.

2. Inflammation

Inflammation is a complex biological process essential in responding to both tissue
injury and infection. Ideally, it is a protective process, including the involvement of both
cells from the immune system and the vascular endothelium, as well as a vast array of
molecular mediators [6]. It serves to eliminate the initial cause of cell injury, help remove
damaged tissue, and stimulate repair mechanisms.

One of the primary triggers of inflammation is infection, wherein an acute insult
activates both the initial innate and later adaptive arms of the immune system. The initial
innate response, characterized by a broad and non-specific pro-inflammatory signaling
cascade, involves the release of inflammatory mediators including cytokines, chemokines,
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and reactive oxygen species (ROS). This response facilitates the activation and movement
of immune cells such as neutrophils and monocytes in the periphery or microglia in the
CNS towards the injury site, wherein pathogen killing commences. The innate immune
system can also activate a more precise adaptive response, wherein T and B cells undergo
clonal selection, responding to a specific antigen. Their activation triggers the engagement
and specific targeting of both adaptive and innate effectors, including natural killer cells
and neutrophils [7]. This dualistic approach provides acute protection but also extended
surveillance from future, repeated pathogenic exposure. Sterile inflammation, a response
characterized not by microorganisms but by insults such as mechanical trauma, toxins,
and chemicals, is primarily associated with activation of innate immunity without vast
adaptive input.

Following insult removal, innate cells transition towards pro-resolving phenotypes,
which are responsible for the degradation of cellular debris and apoptotic cells, including
effete immune cells, in tandem with supporting tissue repair. Upon successful transition,
inflammation will begin to subside. However, if this transition fails, chronic inflammation
can result—a response associated with the development of many human diseases [8–10].

3. The Formyl Peptide Receptors

The formyl peptide receptors, abbreviated as FPRs in humans, are pattern recognition
receptors (PRRs) with central roles in host defense and inflammation [1,11–13]. Although
expressed in a number of different cell types, the actions of FPRs have primarily been
investigated in cells of myeloid origin; human FPR1 and FPR2 were originally identified
in neutrophils and monocytes, while FPR3 was only detected in the latter [14]. These
receptors have a diverse array of functions, from eliciting cellular adhesion and directed
migration of recruited immune cells through chemotaxis, to granule release and superoxide
formation [12,15,16]. The importance of these receptors in non-myeloid cell types has been
reported more recently [17–19].

This receptor class was initially identified and named based on their ability to bind
N-formylated peptides such as N-formylmethionine (fMet), produced through the degrada-
tion of both bacteria and mitochondria [20,21]. The ability to recognize N-formyl peptides,
including the potent FPR1 agonist and chemotactic agent N-formyl-methionyl-leucyl-
phenylalanine (fMLF), led to the conclusion that FPRs act as PRRs [3,22]. Following their
original description, accumulating evidence has shown FPRs to bind to a diverse and
continually expanding repertoire of ligands, including not only N-formyl peptides, but
also non-formyl peptides of both microbial and host origin, synthetic small molecules, and
eicosanoid lipids (Table 1). These molecules all bind to one or several FPRs and have been
reviewed in detail previously [2,12,23].

Table 1. Selective ligands of FPR1 and FPR2. Molecules are broadly grouped based on their structure
and origins. Binding selectivity for each ligand has been provided. Available in vitro pKD, pEC50

and pIC50 values for ligand interactions with the human FPRs are included. Data has been adapted,
compiled and condensed from previously available reviews [12,23,24]. n.d.; values not determined
for the human receptors.

Ligand Origin Selectivity pKD pEC50 Model Refs

Formylated bacterial ligands

fMLF E. coli FPR1 6.4–9.3 4.6 Human neutrophils, L cells,
RBL-2H3 [2,25,26]

fMIFL S. aureus FPR1, FPR2 n.d. n.d. Mouse neutrophils, RBL-2H3 [27,28]

fMIVTLF Listeria FPR1, FPR2 n.d. n.d. RBL-2H3 [28]

fMVMKFK Haemophilus FPR1, FPR2 n.d. 6.1, 8.1 HEK293 [29]
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Table 1. Cont.

Ligand Origin Selectivity pKD pEC50 Model Refs

Formylated mitochondrial ligands

fMLKLIV Mitochondria FPR1, FPR2 n.d. 7.4, 7.3 HL-60 [30]

fMMYALF Mitochondria FPR1, FPR2 n.d. 8.0, 7.8 HL-60, RBL-2H3 [28,30]

Mitocryptide-2 Mitochondria FPR2 n.d. 6.2–6.4 Human neutrophils, HEK293T [31,32]

Non-formylated pathogen-derived ligands

C5a peptide Hepatitis C virus FPR2 n.d. n.d. Human monocytes and
neutrophils, HEK293, RBL-2H3 [33]

gG-2p20 Herpes simplex
virus FPR1 n.d. 6.2–6.3 Human monocytes and

neutrophils [34]

Hp(2-20) Helicobacter pylori FPR2 n.d. 6.5 Human monocytes [35]

Non-mitochondrial host-derived ligands

Aβ Host FPR2 n.d. 7.0 Human monocytes, mouse
neutrophils, HEK293, RBL-2H3 [36,37]

Annexin A1 Host FPR2 6.5 n.d. Human neutrophils, HEK293 [11,38–40]

Lipoxin A4 Host FPR2 8.8–9.3 ~12.0 Human neutrophils [41–44]

Resolvin D1 Host FPR2 ~11.9 n.d. Human neutrophils [44]

Serum Amyloid
A Host FPR2 n.d. 6.6–7.3 Human monocytes and

neutrophils, HEK293 [45–47]

LL-37 Host FPR2 n.d. 6.0 Human monocytes, neutrophils,
and T cells, HEK293, RBL-2H3 [48,49]

Natural peptide ligands

Cyclosporin H T. inflatum &
T. polysporum FPR1 7.0

(pIC50) n.d. Human neutrophils [50]

Synthetic peptide ligands

Ac9-25 Synthetic FPR1 n.d. 4.7 Human neutrophils, HL-60 [51]

Ac2-26 Synthetic FPR1, FPR2 5.9 5.8–6.1 Human neutrophils, HEK293 [38,39,52]

WKYMVm Synthetic FPR2 10.1 n.d. human neutrophils, HL-60 [53]

WRW4 Synthetic FPR2 6.6
(pIC50) n.d. Human neutrophils, RBL-2H3 [54]

Small molecule ligands

Compound 43 Synthetic FPR1, FPR2 n.d. n.d. CHO, RBL-2H3 [28,55,56]

Compound 17b Synthetic FPR1, FPR2 n.d. n.d. CHO [28,56]

Quin-C1 Synthetic FPR2 n.d. 5.7–6.2 Human neutrophils, RBL-2H3 [28,57]

Quin-C7 Synthetic FPR2 5.2
(pIC50) n.d. HeLa, RBL-2H3 [58]

There are three genes which encode for human FPRs: FPR1, FPR2, and FPR3. All three
proteins share similar sequence homology and are encoded by genes clustered together
on chromosome 19q13.3 in the human genome (Gao et al., 1998; Yi et al., 2007). Of these
receptors, FPR1 and FPR2 share a particularly high overall gene sequence homology, with
some overlapping functionality [2]. Comparatively, the genes which encode FPRs vary
considerably in number between different species. For example, mice have eight known
members of the FPR gene family on chromosome 17A3.2, denoted as ‘Fprs’. Despite the
discrepancy in receptor numbers across the two species, several receptors share similar
functionality, including FPR1/Fpr1, both of which are known to respond to host infec-
tion [59] and regulate chemotaxis [15,60,61]. These similarities extend to human FPR2 as
well, although murine functionality is encoded by two receptors which work in synergy
to carry out comparable functions: Fpr2/3 [62,63]. Highlighting their parallels, amino acid
BLAST alignment confirms that these murine receptors display 76% (Fpr2) and 74% (Fpr3)
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identity alongside 85% (Fpr2) and 81% (Fpr3) homology to human FPR2, while Fpr2 and
Fpr3 display 82% identity and 88% homology to each other.

For many years, the crystalline structure of these receptors remained elusive. In-
stead, structure simulation and molecular modeling [64], computer-aided ligand dock-
ing [65,66] and site-directed mutagenesis [67,68] had led to the identification of amino
acids within both FPR1 and FPR2 responsible for receptor interactions with several dif-
ferent molecules [12]. More recently, the crystalline structure for FPR1 bound to the
pan-formyl-peptide agonist fMLFII was reported with a resolution of 3.2 Å [69]. Further,
two independent research groups reported crystalline structures for human FPR2 bound to
the hexapeptide WKYMVm—a strong agonist for the receptor—with resolutions of 2.8 Å
and 3.17 Å, respectively [13,70]. Zhaung and colleagues expanded further on the crystalline
structure of FPR2, reporting interactions with several other known receptor agonists, fML-
FII, the anti-inflammatory peptide CGEN-855A, and the synthetic anti-inflammatory small
molecule Compound-43 with 3.1, 2.9 and 3.0 Å resolution, respectively [69]. Interestingly,
structural comparison of these receptor-agonist conformations indicate the presence of a
conserved receptor activation mechanism, suggesting that despite the ligands’ structural
differences, receptor stimulation occurs due to similar molecular interactions. However,
while these studies provide novel insights into the binding mechanisms of different ligands,
it is crucial that the development of FPR crystalline structures continues, including interac-
tions with receptor antagonists like cyclosporin H and WRW4, alongside pathogenic ligands
such as serum amyloid A and β-amyloid (Aβ). In terms of the latter, cryo-electron mi-
croscopy recently helped elucidate the interaction between Aβ1-42 and FPR2 [71]. However,
follow-up research will be important to decipher whether different Aβ formulations—such
as monomers, oligomers, or fibrils—display different binding characteristics with this
promiscuous receptor.

In summary, identification of novel receptor binding pockets for both pro-resolution
and disease associated ligands may prove crucial for the future development of improved
FPR associated therapeutics.

4. Cellular Expression of FPRs in the Central Nervous System

In contrast to their extensive analysis in the periphery, the role of these receptors in
the CNS has only recently begun to be addressed [72–74]. In tandem with many research
studies [1,75–78], proteome (Allen Brain Atlas) and transcriptome (Human Brain Tran-
scriptome Project) datasets report FPR family expression within both human and rodent
microglia, though the expression profile of FPRs within the brain extend further. Both
Fpr1 and Fpr2 are expressed in mouse and rat neuronal stem cells, [79–81], and murine
endothelial cells [17,82]. There is some evidence supporting neuronal Fpr2 expression in
the spinal cord, hippocampus, prefrontal cortex and cerebellum of adult rats [83] alongside
murine dorsal root ganglia [84] and in murine neuroblastoma cells [72]. However, evidence
supporting similar expression profiles for Fpr1 in these cell types remain limited. Finally,
while several studies report FPR2 expression in astrocytes [41,85], there are also more
recent conflicting reports [83,86]. Unfortunately, the expression patterns of FPR1/Fpr1 and
FPR3/Fpr3 need to be further assessed, although Fpr1 expression has been reported in
murine astrocytes [87].

5. Roles of FPR1 in Neuroinflammation and Neurodegeneration

PRRs are a crucial first-line defense system expressed in innate immune cells, inducing
an immune response to injury or infection. Activation of PRRs by pathogen associated
molecular patterns (PAMPs) or damage associated molecular patterns (DAMPs) result in
the upregulation of inflammatory mediators which act synergistically to help eliminate
the cause of damage [88]. While Toll-like receptors are the most extensively studied
PRRs [89,90], several others exist. These include NOD-like receptors, C-type lectin receptors
and FPRs [88,91]. The role of FPR1 in responding to both DAMPs and PAMPs is widely
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appreciated within the periphery [91,92], although the importance of this receptor within
the CNS parenchyma is becoming more apparent [77].

Conventionally, FPR1 ligands tend to be pro-inflammatory in effect, with activation of
this receptor contributing to the induction of inflammatory responses [93,94]. Within the
periphery, FPR1 has a central role in responding to infections through binding to bacterial
and mitochondrial derived formyl peptides [27,69,95–97] (Figure 1). The depletion of FPR1
impairs neutrophil phagocytosis and killing of E. coli in vitro, and reduces neutrophil
recruitment in vivo, a response associated with increased infection-induced mortality in
mice [98,99]. In adults however, because the CNS is more frequently associated with sterile
inflammation than infection, the importance of FPR1 in protection against CNS-associated
infection remains to be clarified. Though, in pneumococcal-associated meningitis, a periph-
eral disease closely associated with the CNS, Fpr1 knockout increases both bacterial load
and mortality rates in mice [99]. Further research on FPR1 expression and functioning in
pathogenic models of encephalitis are needed to confirm its role(s) in CNS infection.
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Figure 1. Cellular responses following FPR1 activation. Stimulation of FPR1 can be elicited by
N-formyl peptides released from both invading bacterial pathogens and from damaged endogenous
mitochondria. In the periphery, the resulting downstream signaling pathways within monocytes,
macrophages and neutrophils help trigger a multifaceted immune response, including the release of
inflammatory cytokines, reactive oxygen species, and the recruitment of additional immune cells via
chemotaxis. Figure created with BioRender.com.

There is evidence that FPR1 may be important in sterile inflammatory responses within
the CNS. In patients who displayed an intracerebral hemorrhagic injury, FPR1 mRNA and
protein levels were both significantly upregulated compared to healthy controls, with
the receptor being the most abundantly expressed PRR amongst those reported, more so
than more classically studied Toll-like receptors 2 and 4, and the P2 × 4 purinoceptor [77].
These expression changes appeared to correlate with increased circulating mitochondrial
N-formyl peptides post-hemorrhage, suggesting a feedback association between the ago-
nists and their receptor [77]. The importance of FPR1 was confirmed in Fpr1 knockout mice,
where the acute CNS inflammatory profile was reduced, with final validation in wild-type
mice treated with the Fpr1 antagonist T-0080, resulting in improved neurological outcomes
and reduced oedema [77]. However, it was not determined if Fpr1 inhibition can improve
mouse survival following experimentally induced hemorrhage. Future research is required
to determine whether human FPR1 targeting may hold promise as a novel therapeutic
strategy for intracerebral hemorrhage.

The role of FPR1 within the CNS does appear to vary depending on the original
inflammatory insult, though, its importance in initiating the response to injury appears to
be conserved across different models of disease. In a mouse model of traumatic brain injury,

BioRender.com
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Fpr1 knockout reduces tissue damage and acute neuroinflammation 24 h post-injury, but
was associated with reduced neurogenesis 4-weeks post-injury [100]. The impact of these
observations on animal survival outcomes was not assessed. In 12 month old APP/PS1
Alzheimer’s disease (AD) transgenic mice, mRNA transcripts and Fpr1 protein expression
were upregulated [87]. Because of the poor prognostics of both AD and serious traumatic
brain injury in humans, it is crucial to elucidate the precise roles of Fpr1 and its associated
inflammatory pathways in these disease models.

6. Roles of FPR2 in Neuroinflammation and Neurodegeneration

The importance of FPR2 for inflammatory resolution has become more evident in
recent years (Figure 2), with many of its ligands reported as being anti-inflammatory,
including small synthetic compounds such as the quinazolinone derivative Quin-C1, and
the endogenously expressed protein Annexin A1 (ANXA1) [1,101,102]. Aligning with
this extensive variety of ligands, FPR2 activation can elicit multiple different signaling
pathways, although most of this work centers around ANXA1 [72,73]. Our group recently
reported that ANXA1 can stimulate macrophage pro-resolving phenotypes via AMP-
activated protein kinase (AMPK) phosphorylation, which contributed to murine muscle
regeneration following injury [11]. Activation of extracellular signal-regulated kinases
1/2 (ERK1/2) and ETS transcription factor ELK1 (Elk1) by ANXA1 can also promote
granulocyte differentiation and maturation from hematopoietic stem cells [103], while
ANXA1 induced p38 mitogen-activated protein kinase (p38 MAPK) activation attenuates
neuroinflammation following intracerebral hemorrhage in mice [104]. This signaling
supports our previous findings, wherein we identified that ANXA1 can trigger p38 MAPK
phosphorylation downstream from FPR2 [105,106].
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Figure 2. Cellular responses following FPR2 activation. There are several endogenous ligands
that can stimulate FPR2, including the potent agonist annexin A1 (ANXA1). Cell types including
macrophages, neutrophils and microglia can all participate in both paracrine and autocrine FPR2
signaling. Upon receptor activation, downstream signaling pathways elicit a broad inflammatory
resolution response, including the release of anti-inflammatory cytokines, upregulating phagocytosis,
removing damaged cells via efferocytosis, and contributing to tissue repair. Figure created with
BioRender.com.

The importance of FPR2 in resolving sterile peripheral inflammatory responses has
been reported for many disease models, including promoting muscle fiber regeneration [11],
alongside reducing diabetic nephropathy associated toxicity [107], inflammation associated
cerebral thrombosis [108], acute experimental colitis [109] and arthritis [110]. While the
extent of FPR2 function in response to sterile inflammation is still being mapped out for the
CNS, support exists for a similar role to that observed within the periphery.

BioRender.com
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The role of FPR2 within the CNS, primarily through agonism by ANXA1 or lipoxin A4,
has become more visible in recent years. Administration of ANXA1 following intracerebral
hemorrhage injury in mice reduced microglial activation, brain oedema and acute neuro-
logical deficiencies, as determined with the sensorimotor Garcia testing paradigm [104].
However, the panel to determine microglial activation state was limited. At day 28 post-
injury, spatial learning and memory was also improved in ANXA1 treated animals. In-
terestingly, ANXA1 has been reported to reduce thromboxane B2 and platelet function in
both mice and humans, alongside promoting neutrophil elicited platelet phagocytosis [111].
Intravenous infusion of the ANXA1 N-terminal peptide Ac2-26 was also reported to shift
microglia towards pro-resolving phenotypes at 3 days post-transient middle cerebral artery
occlusion/reperfusion injury, highlighted by the reduction in pro-inflammatory (CD16,
inducible nitric oxide synthase and IL-1β) and the increase in resolving markers (CD206,
arginase-1, IL-10 and YM1), respectively [112]. These observations were reported in parallel
with reductions in neuronal apoptosis and an increase in the integrity of the blood–brain
barrier (BBB), the specialized vascular boundary consisting of brain microvascular en-
dothelial cells [113]. In humans, the full ANXA1 protein was reduced by approximately
50% in the blood plasma of acute ischemic stroke patients compared to healthy controls
in two separate cohorts [111,112], while restoration was possible following successful
endovascular thrombectomy; a report which positively correlated to favorable clinical
outcomes [112]. Thus, FPR2 modulation may hold therapeutic promise for ischemic and
hemorrhagic associated CNS injury.

Further supporting protective roles of FPR2 in the CNS, ANXA1sp—a bioactive
ANXA1 peptide—improved inflammatory profiles and neurological scores in a rat model of
exsanguinating cardiac arrest [114]. Interestingly, increased protein expression of sirtuin-3
(SIRT3) and its downstream target forkhead box O-3 (FOXO3a) were also partially restored
by ANXA1sp in this model. SIRT3 and FOXO3a are both associated with mammalian
longevity and can counteract senescence induction in stem cells [115–117]. Several studies
report that increasing the activity of these proteins could benefit neurodegenerative diseases
such as AD [118–120], although this is somewhat debated for FOXO3 [121,122]. Thus, while
a direct link between FPR2 activity and SIRT3 signaling is unknown, an interaction opens
the possibility of FPR2 eliciting beneficial effects in a range of aging related diseases
associated with cellular senescence.

There is also direct evidence to support a neuroprotective function of FPR2 in neu-
rodegenerative disease, particularly in AD. Firstly, in 5XFAD AD transgenic mice, ANXA1
protein expression is reduced in both the brain and capillaries of the BBB [72,82]. Similar
reductions were also observed in both the sera and brain of human AD patients. In vitro
signaling analyses reported that ANXA1 stimulation of Fpr2 in immortalized murine BV2
microglia increases both the phagocytosis and degradation of toxic Aβ peptides [72]. The
FPR2 agonist MR-39 also reduced fibrillary Aβ1-42 mediated proinflammatory cytokine
release and increased an anti-inflammatory cytokine profile in organotypic hippocampal
slice cultures (OHCs). Repeated intraperitoneal injections of MR-39 resulted in similar
findings in 29-week old APP/PS1 transgenic mice, wherein neuronal apoptosis within the
cortex and Aβ plaques in the hippocampus were both significantly reduced [123]. Inter-
estingly, Trojan and colleagues also report that FPR2 inhibition with WRW4 was sufficient
to prevent an increase in fibrillar Aβ1-42-induced IL-6 and TNFα in OHCs, although the
statistical significance of the latter was not determined. Because Aβ is a known FPR2 lig-
and [12,124], this suggests that fibrillar Aβ1-42 aggregates can partially trigger inflammatory
responses via FPR2 modulation. Additional studies have reported that pan-antagonism
of FPR1/FPR2 with Boc-2 can also reduce neuronal Aβ pathology, increase the mRNA
expression of several Aβ-degrading enzymes, decrease microglial ameboid morphology,
and improve spatial memory in APP/PS1 transgenic mice [125]. Thus, modulating FPR2
not only with pro-resolving agonists, but also via selective blockade of Aβ interaction, may
prove to be tactical research approaches in deciphering novel neuroprotective pathways in
models of AD.
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7. Expression Patterns of Endogenous FPR Ligand Annexin A1

As described above, FPRs are promiscuous receptors which interact with a wide range
of ligands. Although many of these ligands have been chemically synthesized, such as
Compound 43 and Quin-C1 [12], there are several key agonists which are endogenously ex-
pressed both in rodents and humans. While the primary FPR1 ligands (N-formyl peptides)
are universally expressed in mitochondria and bacterial pathogens, several FPR2 ligands
display specific endogenous expression patterns. Arguably one of the most important is
the previously described ANXA1, a highly potent FPR2 agonist widely acknowledged
to be involved in inflammatory resolution [11,126–128]. This robust pro-resolving FPR2
ligand is expressed in many eukaryotic species, but appears absent from both yeast and
prokaryotes [129]. In particular, ANXA1 is highly expressed within cells and tissues associ-
ated with the immune response, commonly overlapping in distribution with FPR2, such
as neutrophils, monocytes, macrophages and endothelial cells [11,130–132]. Localized in
the cytosol, it can undergo plasma membrane translocation prior to cellular release and
subsequent binding to, amongst other targets, FPR2 receptors expressed on the cell surface
of neighboring or incoming cells [133]. While research into ANXA1 localization within
the CNS is limited in comparison to the periphery, it is well documented to be highly
expressed in endothelial cells of the BBB [130,134,135]. Microglial expression of ANXA1 is
also consistently reported [128,134], although higher expression levels are likely correlated
with active microglial phenotypes [72,136,137]. ANXA1 has also been reported in human
astrocytes [138,139], although, similar to FPR2 expression, conflicting reports from the
Human Protein Atlas and other research studies are apparent [140]. Interestingly, neuronal
localized ANXA1 has been observed in murine dorsal root ganglia [84], hippocampal neu-
rons [141,142], embryonic hypothalamic neurons [143], and retinal ganglion cells [144].
While ANXA1 nuclear translocation in neurons appears to be associated with apop-
totic signaling following oxygen-glucose deprivation/reoxygenation injury [141,142,144],
whether this function is independent of myeloid immunological mechanisms must be
further clarified.

8. Considerations for Therapeutic Development

The formyl peptide receptor family are crucial pattern recognition receptors that
respond to both infection and sterile inflammation. As such, these receptors are an attrac-
tive drug target for therapeutic interventions. The utilization of high throughput drug
candidate screens [77], in tandem with proteomic methods, in vitro mechanistic research
and in vivo disease modelling will provide a multipronged approach to determine the
therapeutic potential of receptor ligands in protecting endogenous inflammatory pathways
from pathological associated disruption.

We have previously described the therapeutic promise of targeting the FPR system
for neurodegenerative diseases, with a particular focus on FPR2 and AD [4]. However, the
diverse binding capabilities of FPRs must be taken into consideration to minimalize sig-
nificant hurdles in therapeutic research approaches. Firstly, while several molecules show
select affinity towards one FPR, this is often negated by increased concentrations. For exam-
ple, many ANXA1 N-terminal peptides are non-specific FPR1/FPR2 agonists [2], including
Ac1-25, which can activate FPR1 at high concentrations, triggering pro-inflammatory sig-
naling responses similar to traditional FPR1 agonists [145]. As such, the selectivity of
any proposed novel FPR agonist will need to be validated with both genetic ablation and
pharmacological inhibition of the FPRs in research models.

The ability for ligands to stimulate conformational changes in FPRs, facilitating both
homo- and heterodimerization [106], may contribute to their astounding diversity. How-
ever, additional FPR dimerization research studies are not available to validate these initial
findings. Interestingly, FPR2 can also interact with other receptors, including the receptor
for advanced glycation end products (RAGE) in primary murine astrocytes, microglia
and transfected HEK293 cells [87]. Receptor interactions between FPR2 and the scavenger
receptor MARCO have also been reported in microglia [146,147]. While RAGE has been
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implicated in exacerbating Aβ pathology in AD models [148], a pathogenic role for MARCO
is less clear. Yet, because Aβ displays agonism for both of these receptors [12,124], de-
ciphering the consequences of ligand-induced interactions with FPR2 will be crucial in
identifying new avenues for FPR2 therapeutic modulation.

While our knowledge of FPR1 and FPR2 signaling has improved in recent years,
the physiological role of FPR3 remains relatively elusive. It was previously reported in
HEK293T cells that the receptor displays a marked phosphorylation state under resting
conditions compared to both FPR1 and FPR2 [149]. The subcellular localization also
appeared unique, displaying interactions within intracellular vesicles prior to receptor
stimulation, suggesting the receptor undergoes intrinsic endocytosis. Comparatively,
FPR1/FPR2 only undergo vesicular endocytosis upon ligand binding, a characteristic
feature for many GPCRs [150–152]. While current research is lacking, understanding the
differences in receptor localization will be important to decipher the physiological role of
FPR3, and whether its pathological modulation holds importance for the development
of disease.

9. Overall Conclusion

Formyl peptide receptors are complex, multifunctional, and promiscuous receptors
which display central roles in initiating, propagating, and resolving the inflammatory
response. While most research has focused on their roles in infectious and sterile inflam-
mation within the periphery, newer insights indicate their importance within the central
nervous system. Thus, their responses to neuroinflammatory insults in neurodegener-
ative conditions cannot be overlooked. As such, future FPR research may be of critical
importance in the development of neuroinflammatory-associated therapeutics.
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