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vorgelegt von

Christof Martin Czernik

aus Dormagen

September 18, 2022



Berichterstatter: Prof. Dr. Gregor Gassner
Prof. Dr. Philipp Birken

Tag der mündlichen Prüfung: 28.11.2022
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senschaftliches Projekt wurde unter anderem finanziert von dem European Re-
search Council (EXTREME, project no. 714487).
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Abstract

We present a high-order entropy-stable discontinuous Galerkin spectral element
method (DGSEM) for multi-component Euler and multi-component ideal mag-
netohydrodynamics (MHD) equations with chemical reaction terms written in
Julia. Instead of using a completely self-made code, we extend the already
existing and proven simulation framework Trixi.jl, so that we can make our
new introduced features available to the public.

For this purpose, we extend the simulation framework Trixi.jl with multi-
component Euler and multi-component ideal MHD equations. Since we place
value on entropy-stable processes, we add an entropy-conservative flux function
for the multi-component Euler equations from the literature and propose an
entropy-conservative flux function for the multi-component ideal MHD equa-
tions.

Trixi.jl contains a very effective shock-capturing method where the high-order
DGSEM can be blended with a first-order Finite Volume (FV) scheme for carte-
sian meshes. To be able to simulate applications with more complex geometries
we are going to extend this feature to unstructured and curvilinear meshes and
make it work for multi-component equations.

Another feature in Trixi.jl is the positivity-preserving limiter, which is able
to rescue a solution in difficult situations. In the literature, however, another
method has emerged which, based on the shock-capturing method used in
Trixi.jl, is able to preserve the positivity of density and pressure for single-
component simulations. In this work we add this new positivity-preserving
scheme to Trixi.jl and propose slight modifications for the multi-component
case.

The new multi-component equations give us the opportunity to introduce chem-
ical reactions into Trixi.jl. Since we advocate the use of packages in this work,
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Abstract

we will add an external package specialized on the solution of chemical reactions
and give an overview and introduction to all important packages in Trixi.jl.

Finally, we provide numerical test cases that verify the theoretical properties
of the new introduced features and demonstrate the strengths and weaknesses
of our method. Additionally, we demonstrate the capabilities of our method
with complex numerical examples.
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1 Introduction

This thesis deals with fluid mechanical processes that are to be approximated or
simulated with the help of numerical methods, also called computational fluid
dynamics (CFD). In the following, we will describe the physical and chemical
processes as well as the associated problems that we are trying to deal with.
We will show the influence of numerical simulations on our world today and
what possibilities they still hold. In addition, we look at the state-of-the-art
methods currently being used by science and industry and explain why high-
order methods are becoming increasingly important for the future. We will
then go into the research questions and briefly outline the structure of this
thesis.

1.1 Physical and Chemical Processes

Fluid mechanics is the science of studying the physical behavior of fluids and
gases. It has a very wide field of application, like mechanical engineering, as-
trophysics, medicine, and chemical engineering to name a few. An important
subfield are gas dynamics, which deal with density-variable (i.e. compressible)
flows. This is usually the case for transonic and supersonic flows e.g. flows
around an aircraft leading to abrupt changes in temperature and density. These
abrupt changes usually lead to shock waves and compression shocks which play
a crucial role in this thesis. There are applications (e.g. in astrophysics) in
which a flow may be influenced by magnetic fields or gravity. Further appli-
cations may work with several different gases or fluids that interact with each
other and can even lead to chemical reactions, as in combustion processes or
detonations. As we will see, our focus is precisely on these last applications.

Most of these applications are quite complex, so that an analytical solution
borders on impossibility. However, with the help of analytical and experimental
methods, certain macroscopic behaviour can be derived, which can then be
described in the form of equations. In this thesis we are mainly concerned with
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1 Introduction

the Euler equations of fluid dynamics, which are a special case of the Navier-
Stokes equations neglecting viscosity and heat conductivity. They are stated as
a system of partial differential equations (PDEs), which belong to the class of
non-linear hyperbolic conservation laws consisting of the conservation of mass,
momentum and energy. These equations are used for a variety of applications
where friction and heat conduction are not important. However, additional
effects may need to be described for certain applications, such as the influence
of magnetic fields. Therefore, the Euler equations can be extended to the so
called magnetohydrodynamic (MHD) equations, with which it is possible to
describe the flow of magnetofluids like plasmas. Another extension that can
be made is the multi-component extension, so that the flow of several different
gases can be described at the same time. This can be taken even further
by allowing chemical reactions between these different components and thus
leading to more complex applications including combustion processes as well as
detonation processes, which can be modeled by additional ordinary differential
equations (ODEs).

1.2 Solution through Numerical Discretization

Although we can set up (simplified) equations for the observed physical and
chemical processes, it is usually not possible to solve them analytically. As we
know, there is still no general existence and uniqueness proof of a solution for
the Navier-Stokes equations, which are basically the Euler equations extended
by viscosity and heat conductivity. However, the solution of these equations is
of such great interest to society that it even counts as one of the seven millen-
nium problems of mathematics. The solution to these problems carries a prize
money of one million US dollars.

Now we are faced with the problem that many technical and physical applica-
tions are modeled with the help of these equations. So how can we be sure that
the plane we have designed will not crash if we do not know the exact solution
to this problem? One option is to recreate physical behaviour experimentally,
which often involves a great deal of effort and expense. For an aircraft, you
have to build huge wind tunnels and construct each component individually.
Of course, this also leads to the fact that many processes cannot be reproduced
at all or only to a limited extent. If, for example, we want to build an aircraft

2



1 Introduction

engine or a wind turbine as efficiently as possible, this means that we have to
try out many different configurations of wing positions and angles to arrive at
the optimum configuration.

A possible solution to this problem is the numerical simulation of this kind
of problems. Especially in the last decades, the application area of numerical
simulations has greatly expanded with the increasing computing power of com-
puters. To keep pace with this development, however, it is also necessary to
construct numerical methods that can exploit the full potential of these new
possibilities. With the rise of the computer, supercomputers are also becoming
more common, advertising even higher performance. Here, for example, it is
useful to apply methods that can be parallelized to a high degree and act with
high accuracy. This way, it is possible to find even faster and better results for
questions that deserve our attention. An everyday problem here is, for exam-
ple, modern weather forecasting, which would not be possible without adapted
numerical methods and computational clusters.

1.3 Motivation for High-Order Schemes

As we have seen in the previous section, it is important to keep pace with
technical developments and to derive better numerical methods. Nowadays,
science and industry still like to use state of the art lower-order methods, as
these have proven to be robust over time. These lower-order methods differ
from the high-order methods in the way that low-order methods can achieve
higher accuracy only by grid refinement. In contrast, some high-order meth-
ods, like the DG method, can achieve higher accuracies also by increasing the
polynomial degree. This can have the advantage that high-order methods with
the same number of degrees of freedom (i.e. including grid resolution and poly-
nomial degree) as low-order methods can achieve more accurate results than
low-order methods [1].

In our research area this would be e.g. the finite difference (FD) method as
well as the finite volume (FV) method. Although, these methods have higher-
order variants by increasing the stencil, their mainly used lower-order variants
struggle to resolve finer features. These inaccuracies may lead to unaccept-
able solutions in the long run [2]. Analytical knowledge of these methods is,
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1 Introduction

however, at a high level, as many scientists have worked with them over the
years. But it is precisely because of this kind of fundamental research, that
we are now able to construct improved higher-order methods that can show
off with greatly increased accuracy and better efficiency in terms of less work
for a given accuracy [1]. Of course, high-order methods also have downsides,
depending on the area of application, which we will discuss in the following.

One of the biggest problems, for example, is robustness. For instance, in our
applications, the positivity of certain quantities such as density or pressure is
indispensable, otherwise we would violate physical laws leading to wrong solu-
tions. In this thesis we are studying the discontinuous Galerkin (DG) method,
which is a conservative, high-order accurate, easy parallelizable method and
able to handle complex geometries. It is closely related to the finite element
(FE) method and differs roughly in the discontinuous interfaces between the
elements. The high-order DG method has a habit of oscillating at shocks [3],
which can lead to negative densities and pressure. It is easy to imagine that
this problem means more work for us, as we have to try to circumvent these
kind of difficulties with special procedures and ideas. However, this also in-
creases the complexity of the methods. As is so often the case, the choice of
the preferable method depends on weighing the advantages and disadvantages
of each individual method. The trade-off is usually between the three corner-
stones of robustness, speed and accuracy. The long-term goal here, however,
is to someday construct a robust, fast and accurate scheme that science and
industry can work with to solve the great problems of our time. We hope that
this thesis will help us to get a little bit closer to this goal.

1.4 Research Questions and Objectives

Now that we have a rough idea of the area in which this thesis is set, let us
look at the aim of our work. In doing so, we will raise some questions that we
will try to answer in the course of this thesis. The success of this endeavor will
be discussed in the conclusion at the end.
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1 Introduction

(1) How well does the high-order DGFV hybrid method perform for
multi-component equations applications?

As already mentioned, lower-order methods are still commonly used for many
applications. Even though these are robust, they usually provide less accurate
solutions. In this thesis we want to investigate whether our high-order method
is suitable for multi-component equations by comparing its robustness to the
first-order FV method.

(2) Is it possible to construct an entropy-stable high-order DG method
for the multi-component ideal MHD equations?

High-order methods are not usually known for their robustness and stabil-
ity. One idea to address this difficulty is to construct entropy-stable high-
order methods [4–6]. In the case of our DG method, we achieve this with
the help of entropy-conservative (EC) fluxes which have been known for some
time for the single-component Euler and ideal MHD equations. For the multi-
component equations these entropy-conservative fluxes are relatively new, only
recently Gouasmi et al. [7] had derived an entropy-conservative flux for the
multi-component Euler equations. However, since we also want to work with
ideal MHD equations, we derive an entropy-conservative flux for the multi-
component ideal MHD equations.

(3) How well does the high-order DG method perform when we allow
chemical networks in addition to the multi-component equations?

The addition of chemical networks for multi-component equations leads to a
variety of new applications. However, these usually imply further complexity
for the numerical methods. This is usually not a problem for robust low-order
methods, but might be problematic for high-order methods like the DGmethod.
Here, we will investigate whether the shock-capturing method by Hennemann
et al. [8], already integrated in Trixi.jl, still works well when we allows chemi-
cal networks or whether something needs to be changed in the shock-capturing
method.
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1 Introduction

(4) What do we need to add to the simulation framework Trixi.jl so
that we can use it for our thesis?

In order to answer the questions posed in this thesis, it is necessary to build
a suitable simulation code with which we are able to properly test our new
introduced features in this thesis. For such a task usually a completely self-
made code is build, which is no longer used afterwards. A better idea is to
extend an already existing and proven simulation framework so that we can
make our new introduced features available to the general public. However,
this is usually not that easy, because, for example, data structures do not fit
or certain features are not integrated. In this thesis we will rely on the numer-
ical simulation framework Trixi.jl, see for instance Ranocha et al. [9], which
we have to extend with 1D and 2D multi-component equations for Euler and
ideal MHD together with suitable entropy-conservative fluxes. Here we will in-
troduce and derive an entropy-conservative flux for the multi-component ideal
MHD equations. For our future applications we will also need to find a way to
integrate chemical networks and extend the existing shock-capturing method
for curvilinear grids. In addition, we will integrate a positivity-preserving lim-
iter which is based on the shock-capturing method, which was developed by
Rueda-Ramı́rez and Gassner [10]. Following on from this we propose an exten-
sion of the positivity-preserving limiter for multi-component equations.

1.5 Outline of the Thesis

The rest of this thesis is structured as follows.

Chapter 2

First, we start with the physical model which leads us to the governing equa-
tions. Here we look at the special case of conservation laws that this thesis
focuses on and explain what weak solutions are all about and why we empha-
sise an entropy condition. We give a brief insight into the formulation of the
Euler and ideal MHD equations for the single-component and multi-component
case as well as for chemical networks.
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Chapter 3

Based on the previous chapter, we then go into mathematical modelling by
presenting the building blocks of our numerical method with which we want to
solve the previously mentioned equations numerically. Here, we first introduce
the well-known state-of-the-art first-order FV method, which we want to use
as a safety net for our final scheme. We then go into the derivation of the
high-order discontinuous Galerkin spectral element method (DGSEM). In order
to increase the robustness of the DGSEM, we then go into entropy-stability
and derive entropy-conservative fluxes for the multi-component Euler and ideal
MHD equations. Since the resulting entropy-stable high-order DG method is
not really suitable for shock-heavy simulations, we introduce a shock-capturing
scheme in which the first-order FV method is blended with the high-order
DGSEM. Here we also go into more detail on how to choose the shock indicator
and how the convex blending works. In very rare cases, an application cannot
be simulated robustly even with the very well working shock-capturing method.
For this case, a positivity-preserving limiter is introduced which is based on the
shock-capturing method and extended for the multi-component case. At the
end, we will discuss adaptive mesh refinement (AMR), which we will also use in
our applications for efficiency reasons, and briefly explain how time integration
works.

Chapter 4

Subsequently, we will discuss the simulation framework and external packages
used in this thesis. We will give an introduction to the numerical simulation
framework Trixi.jl, covering its main features, code structure, and how it can
be used by users and developers. Since Trixi.jl has outsourced the time inte-
gration procedure using an external package DifferentialEquations.jl, we will
briefly discuss the features and benefits of this package as well. Chemical
networks, which are a separate system of ODEs, are also solved using a spe-
cialized external package called KROME. For this purpose, a Julia wrapper
KROME.jl was specially built with which KROME can also be used in Julia.
We will discuss the application as well as the advantages and disadvantages of
the package. Towards the end, we will briefly elaborate on the mesh genera-
tion available in Trixi.jl and discuss the external package called HOHQMesh in
more detail. Finally, we will revisit all these parts and show how to build an

7



1 Introduction

elixir in Trixi.jl.

Chapter 5

Now we also have to show that our developed method works properly by run-
ning certain verification tests. We will first show the high-order accuracy of
the method by running experimental order of convergence (EOC) tests for the
multi-component Euler and ideal MHD equations and verify the conservation
properties. We will then put the shock-capturing properties of the method to
the test by running the well-known Sod’s shock tube test, for example. The
other building blocks of our method, such as the positivity-preserving limiter,
adaptive mesh refinement and chemical networks, will also be examined here.

Chapter 6

The next chapter is probably one of the most exciting for readers, as it presents
the results of the developed method for more complex cases. Here, we will
specifically address applications with the multi-component equations. We will
simulate applications with complicated and stiff chemical networks, sometimes
even using AMR and curvilinear grids and show the benefits and drawbacks of
our numerical scheme.

Chapter 7

In the final chapter, we will recap our successes and discuss the advantages and
disadvantages of our developed method. Last but not least, we will take a look
at future research questions that have not yet been answered by us.
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2 Physical Model - Governing
Equations

As mentioned in the previous chapter, we are interested in solving physical and
chemical processes numerically by providing a suitable numerical scheme. For
this, however, it is necessary to investigate the problem analytically. Therefore,
we are interested in the mathematical groundwork of the underlying equations
we are trying to solve in this thesis. The continuous analysis of the equations
allows us to identify certain properties and constraints (e.g. entropy inequali-
ties) that we will try to mimic at the discrete level.

In the following sections, we will give an overview of conservation laws, a specific
subfield of PDEs on which we focus on this thesis. Thereupon, we will derive
important representatives of this class of PDEs, namely the Euler equations as
well as the ideal MHD equations. Next, we will extend those equations, which
have been stated in a single-component formulation, into a multi-component
formulation which allows to describe fluid dynamics of multiple different com-
ponents. On this basis, it is then possible for us to describe chemical networks
which are able to converse individual components into one and other.

2.1 Conservation Laws

In nature, there are many processes that work with the principle of conservation
of some quantity. One of the most famous is the law of conservation of energy,
which states that energy cannot increase or decrease in an isolated system over
time, it can only transform into another form of energy. Phenomena like this
can be represented quite easily as systems of time-dependent PDEs, which can
be written mathematically as follows:

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0. (2.1)

9



2 Physical Model - Governing Equations

Here, we use u : R × R → Rm as an m-dimensional vector of quantities,
like mass, momentum or energy and f : Rm → Rm as the flux functions for
the system of conservation laws on the domain Ω ⊂ R. To see how these
conservation laws are derived from physical principles, we refer to Leveque
[11]. Equation (2.1) can also be rewritten in the so called quasi-linear form

∂

∂t
u(x, t) + J (u)

∂

∂x
u(x, t) = 0 (2.2)

with J (u) = ∂
∂uf being the Jacobian. If J has real eigenvalues and is diagonal-

izable, then these equations belong to a special subset of PDEs called hyperbolic
PDEs, which have their own special properties we can take advantage of while
deriving a fitting numerical scheme.

A very important property is for example the wave-like behaviour of the solu-
tions, which means that information can only travel with a finite speed over
the domain. On the basis of this property, we are allowed to derive numerical
schemes which do not have to take the information over the entire domain to
calculate the update at a particular point, which results in better parallelizable
schemes and therefore in faster schemes. Another related property is that in-
formation travels along characteristics of the equations which allows us to track
the propagation of the information resulting in a better understanding of how
to derive a suitable Riemann solver, as we will see in the following subsections.
The problem of deriving suitable Riemann solvers has a great depth and is out
of the scope of this thesis, so we refer for further details to the following sources
[1, 12, 13].

2.1.1 Weak Formulation

Due to the potential non-linearity of the equations, discontinuities may arise
in the solution even if the initial condition has been choosen to be smooth [14].
Should this be the case, it follows that the differentiability of (2.1) is no longer
valid. Therefore, we can manipulate the equations to redirect the derivative
onto a smooth function, leading to the so called weak form. According to the
Lax-Wendroff theorem [15], if a conservative method, which is able to conserve
quantities in a discrete sense, converges, it is then guaranteed to converge to a
weak solution.

10



2 Physical Model - Governing Equations

To achieve this, we first need a smooth test function ϕ ∈ C∞ with compact
support Ω× [0, T ) which we introduce by multiplying it with each conservation
equation in (2.1)

ϕ
∂

∂t
u(x, t) + ϕ

∂

∂x
f(u(x, t)) = 0. (2.3)

Now we integrate the equations in space and time∫ T

0

∫
Ω

(
ϕ
∂

∂t
u(x, t) + ϕ

∂

∂x
f(u(x, t))

)
dxdt = 0. (2.4)

By using integration by parts, we can move the derivative onto the test function
as follows∫ T

0

∫
Ω
u(x, t)

∂

∂t
ϕ+ f(u(x, t))

∂

∂x
ϕ = −

∫
Ω
ϕ(x, 0)u(x, 0)dx. (2.5)

This weak formulation (2.5) is fundamental for designing and analyzing nu-
merical methods, like our high-order DGSEM. The solution of the weak for-
mulation (2.5) is called weak solution and is usually not unique. In fact, there
is an infinite amount of different weak solutions and it is not trivial to find a
correct physical solution [16]. This circumstance follows from the fact that we
are trying to model the real world with a simplified approach which neglects
some fundamental physical processes. To find the physical correct solution, it
is necessary to identify the missing piece which was neglected initially in the
model. Since we are working with gas dynamics, it only seems natural that
we have to satisfy the second law of thermodynamics, which states that the
physical entropy has to increase for a spontaneous process like a shock wave.
It turns out that this condition is partly sufficient to converge to a physical
correct solution [1, 17]. Numerical schemes for gas dynamics satisfying this
condition in a discrete sense seem to confirm this assumption by resulting in
more robust solutions [5]. But let us go back to the beginning and take a closer
look at the development and behaviour of shocks.

2.1.2 Rankine-Hugoniot Jump Condition

To get a better understanding of shocks, it is necessary to analyze the asso-
ciated characteristics of the equations. Characteristics are curves x(t) in the

11



2 Physical Model - Governing Equations

x− t plane, along which the solution of the PDE travels at a constant charac-
teristic speed leading to an ODE. We speak of a shock when two characteristics
intersect with each other [13]. Similar to the characteristics a shock can move
with a certain velocity called shock speed s [18], which is related to jumps in
conservative variables u and flux functions f satisfying the Rankine-Hugoniot
condition

sJuK = JfK, (2.6)

with the jump operator

JaK := aR − aL, (2.7)

where the underscript L,R denote the left and right states of the shock. It
follows that the solution u containing discontinuities represents a weak solution
precisely when it satisfies the Rankine-Hugoniot condition (2.6) across shocks
and satisfies the differential form of the conservation law in smooth regions
[19].

2.1.3 Entropy Condition

Now that we have introduced the set of weak solutions, we are faced with the
problem of identifying a unique and physically correct solution [14, 17]. For a
non-linear field it follows the Lax entropy condition

∂

∂x
λp(uL) > s >

∂

∂x
λp(uR), p = 1, . . . ,m (2.8)

from the Rankine-Hugoniot condition with λ1 = ∂
∂xf(u) for the scalar case

(m = 1), condition (2.8) means that characteristics should go into the shock
instead of evolving out of the shock as time advances [11]. Solutions should
satisfy this condition when a shock is present to not be an unphysical solution.

In this thesis, we want to derive physical solutions with the help of entropy
conditions by extending this idea to a formal framework we can use later on.
Therefore, we introduce the convex function called entropy function U(u) and
the corresponding entropy flux F (u) which we call entropy flux pair (U,F ).
This entropy flux pair must satisfy the following condition〈

∂

∂u
U,

∂

∂u
f

〉
=

∂

∂u
F, (2.9)

12



2 Physical Model - Governing Equations

with the new set of entropy variables w := ∂
∂uU . We require the entropy vari-

ables to symmetrize the system of conservation laws. Therefore, it is possible
to treat the entropy variables as independent variables which we can write as

∂

∂t
u+

∂

∂x
f =

∂

∂w
u
∂

∂t
w +

∂

∂w
f
∂

∂x
w = 0, (2.10)

with ∂
∂wu and ∂

∂wf being symmetric matrices. Taking a look at thermody-
namics, we know that entropy is produced by dissipative processes, hence we
introduce viscous terms to our conservation laws with the aim to identify a
correct physical solution by regularizing the conservation law

∂

∂t
uϵ +

∂

∂x
f(uϵ) = ϵ

∂2

∂x2
uϵ, (2.11)

so that the shock discontinuities are smoothed out entirely guaranteering the
existence of a strong solution which satisfies the conservation laws in differential
form [1, 20]. On this basis, we are able to define the so called entropy solution
as the limit of this viscous solution

u = lim
ϵ→0

uϵ, ϵ > 0. (2.12)

With the help of the introduced entropy variables w, we are able to derive a
regularized entropy equation

∂

∂t
U ϵ +

∂

∂x
F ϵ = ϵ

〈
wϵ,

∂2

∂x2
uϵ
〉
, (2.13)

which can be rewritten as an inequality

∂

∂t
U ϵ +

∂

∂x
F ϵ ≤ ϵ

∂

∂x

〈
wϵ,

∂

∂x
uϵ
〉
, (2.14)

using the product rule for the viscous terms as well as the symmetric positive
definitely property of the Hessian of the entropy function [21]. If we now
take the limit ϵ → 0 and integrate over the domain Ω, we obtain an entropy
inequality ∫

Ω

∂

∂t
U +

∂

∂x
Fdx ≤ 0 (2.15)
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2 Physical Model - Governing Equations

which states that the (mathematical) entropy can only remain the same or
decrease in time [20]. This property is directly linked to the concept of ther-
modynamic entropy which states the same reversed property. In other words,
the mathematical entropy is related to the physical entropy, except that it has
the opposite sign.

2.1.4 Riemann Problem

To incorporate the entropy stability property into our numerical schemes, we
want to derive entropy stable Riemann solvers. A so called Riemann problem
[13, 22] considers a single interface with two different constant states uL and
uR meeting at the same spatial position. As we will see in the next chapter,
our numerical methods for hyperbolic conservation laws are developed based on
the Riemann problem 2.1. For the sake of simplicity, we consider the following

Figure 2.1: An example Riemann problem in one space dimension with the
jump JuK = u+ − u−, where u− is the right interface state of u and u+ is the
left interface state of u.

Cauchy problem for a one-dimensional system of hyperbolic conservation laws

∂

∂t
u+

∂

∂x
f(u) = 0, (2.16)
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2 Physical Model - Governing Equations

and the piecewise constant initial condition

u0(x) =

{
uL, x ≤ 0

uR, x > 0.
(2.17)

A system with m eigenvalues, each corresponding to a characteristic, results
in m waves spreading out from the starting point. Depending on the char-
acteristics these waves can be classified as a shock wave, a contact wave and
rarefraction wave [17]. For more details we refer to the literature, specifically
[17] and [11] and to Sod’s shock tube problem, see Figure 2.2. The goal is to

Figure 2.2: Different wave formations appearing in Sod’s shock tube test case.

find a solution of this Riemann problem by finding an intermediate state uM
which is connected to uL and uR by a discontinuity satisfying the Rankine-
Hugoniot condition. This solution can be found numerically with a so called
Riemann solver. Exact Riemann solvers are available in the literature for many
hyperbolic systems [23], but they are computationally expensive. An alterna-
tive is to use approximate Riemann solvers. Although approximative Riemann
solvers can be very dissipative they usually yield a robust scheme with good
numerical results and are therefore a common choice.

An easy and well-known example for an approximative Riemann solver is the
so called Rusanov [24] or local Lax-Friedrichs [25] flux. The idea is to take
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2 Physical Model - Governing Equations

a rudimentary central flux and add a viscous term dependent on the maxi-
mum wave speed λmax = max{maxp |λp(uL)|,maxp |λp(uR)|} of the system of
equations

f∗ =
1

2
(fL + fR)−

λmax

2
(uR − uL) . (2.18)

This choice of Riemann solver neglects most of the knowledge about all the
special types of waves in the Riemann problem by simply taking the fastest
wave speed. As a result, the LLF is a very robust numerical scheme regardless
of the dissipative character that this choice brings with it. By studying the
waves of the Riemann problem more accurately, it is possible to derive less
dissipative and therefore more accurate Riemann solvers, which, however, have
an increased complexity and computational costs. These solvers are sometimes
fitted for a specific use case and have to be choosen more carefully. Further
well-known solvers are for example the Roe [26] or Harten-Lax-van-Leer (HLL)
[27] Riemann solver.

2.2 Euler Equations

To get a better idea of the Equations used in this thesis, we start with the un-
derlying Euler equations which are a set of non-linear hyperbolic conservation
laws and form the basis for our considered equations. They represent a special
case and simplification of the well-known Navier-Stokes equations by neglect-
ing viscosity and thermal conductivity. Although considering zero viscosity is
helpful in a mathematical sense and leads to hyperbolic characteristics, it con-
fronts us with problems at shocks due to the lack of dissipative properties. The
Euler equations are used for fluid mechanics of gaseous flows and are based on
the fundamental principles of mass, momentum and energy conservation.
Therefore, the Euler equations in 2D can be stated as

∂

∂t


ρ
ρv1
ρv2
ρet


︸ ︷︷ ︸

u

+
∂

∂x1


ρv1

ρv21 + p
ρv1v2

(ρet + p)v1


︸ ︷︷ ︸

f(u)

+
∂

∂x2


ρv2
ρv1v2
ρv22 + p

(ρet + p)v2


︸ ︷︷ ︸

g(u)

=


0
0
0
0

 (2.19)

with the vector of conserved quantities u, the flux vector f(u) in x1-direction
and the flux vector g(u) in x2-direction. Here, ρ is the density of the gas, v1, v2
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are the velocities in x- and y-direction, ρv1, ρv2 the momentum in x1- and x2-
direction and et denotes the specific total energy. By choosing the ideal gas
law as equation of state, the pressure p is given by

p = ρRT = (γ − 1)(ρet − 1

2
ρ(v21 + v22)) (2.20)

where R is the gas constant, T is the temperature, and γ =
cp
cv

is the total heat
capacity ratio with cp denoting the specific heats at constant pressure and cv
denoting the specific heats at constant volume.

Due to its crucial role in this thesis, we also want to emphasize the mathemat-
ical entropy

U = − ρs

γ − 1
, (2.21)

with the physical specific entropy

s = log(p)− γlog(ρ), (2.22)

and the entropy flux

F = − ρs

γ − 1
v, (2.23)

with v = (v1, v2). Smooth solutions fullfil the entropy-conservation property,

∂

∂t
U +

∂

∂x1
F1 +

∂

∂x2
F2 = 0, (2.24)

which is usually not guaranteed for solutions featuring shocks. In this thesis
we try to improve our numerical solutions by using the entropy inequality

∂

∂t
U +

∂

∂x1
F1 +

∂

∂x2
F2 ≤ 0, (2.25)

as an additional criterion for our weak solutions which we then call entropy
stable solution. The entropy variables are denoted by

w = U ′(u) =

(
γ − s

γ − 1
− ρv2

2p
,
ρv1
p
,
ρv2
p
,−ρ

p

)T

. (2.26)
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2.3 Ideal Magnetohydrodynamics Equations

Now that we got to know the Euler equations, we are able to extend these to
the ideal MHD equations by coupling the effect of magnetic fields to the model.
By introducing an additional generalized Lagrangian multiplier (GLM) [28, 29]
part into the equations, we obtain an improved version called ideal GLM-MHD
equations, which is able to deal with the so called divergence-free condition by
transporting divergence of the magnetic field away. In other words, this means
that the magnetic field which is initially assumed to be divergence-free does
not remain divergence-free during the simulation since numerical errors occur
which are then transported away [30]. To obtain physical correct solutions
when the divergence-free condition is not fulfilled by the numerical scheme, it
is needed to add non-conservative terms to the equations since they are an
essential part of the system [31] and needed to fulfill condition (2.8).

Thus, the equations are simply an extension of the Euler equations with the flux
vector f(u)Euler, g(u)Euler by an MHD flux vector part f(u)MHD, g(u)MHD and
an GLM flux vector part f(u)GLM, g(u)GLM as well as the non-conservative
terms ΓPowell

x1
, ΓPowell

x2
, ΓGLM

x1
, ΓGLM

x2
with the vector of quantities u. Here,

we added v3 as an additional velocity in x3-direction with v⃗ = (v1, v2, v3),
B⃗ = (B1, B2, B3)

T denotes the magnetic field vector, ch denotes the hyperbolic
divergence cleaning speed and ψ the so called divergence-correcting field. Since
we work with µ0 = 1 in this thesis, we dropped the permeability factor of the
medium in the equations stated below. We point out here, however, that these
equations are now no longer conservation equations.
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∂

∂t



ρ
ρv1
ρv2
ρv3
ρe
B1

B2

B3

Ψ


︸ ︷︷ ︸

u

+
∂

∂x1



ρv1
ρv21 + p
ρv1v2
ρv1v3

( 12ρ||v⃗||
2 + γp

γ−1 )v1
0
0
0
0


︸ ︷︷ ︸

f(u)Euler

+



0
1
2 ||B⃗||2 −B2

1

−B1B2

−B1B3

v1||B⃗||2 −B1(v⃗ · B⃗)
0

v1B2 − v2B1

v1B3 − v3B1

0


︸ ︷︷ ︸

f(u)MHD

+



0
0
0
0

chψB1

chψ
0
0

chB1


︸ ︷︷ ︸

f(u)GLM

+
∂

∂x2



ρv2
ρv1v2
ρv22 + p
ρv2v3

( 12ρ||v⃗||
2 + γp

γ−1 )v2
0
0
0
0


︸ ︷︷ ︸

g(u)Euler

+



0
−B1B2

1
2 ||B⃗||2 −B2

2

−B2B3

v2||B⃗||2 −B2(v⃗ · B⃗)
v2B1 − v1B2

0
v2B3 − v3B2

0


︸ ︷︷ ︸

g(u)MHD

+



0
0
0
0

chψB2

chψ
0
0

chB2


︸ ︷︷ ︸

g(u)GLM

+
∂B1

∂x1



0
B1

B2

B3

v⃗ · B⃗
v1
v2
v3
0


︸ ︷︷ ︸

ΓPowell
x1

+
∂ψ

∂x1



0
0
0
0
v1ψ
0
0
0
v1


︸ ︷︷ ︸

ΓGLM
x1

+
∂B2

∂x2



0
B1

B2

B3

v⃗ · B⃗
v1
v2
v3
0


︸ ︷︷ ︸

ΓPowell
x2

+
∂ψ

∂x2



0
0
0
0
v2ψ
0
0
0
v2


︸ ︷︷ ︸

ΓGLM
y

=



0
0
0
0
0
0
0
0
0


.

(2.27)

By choosing the calorically perfect gas assumption, we can close the system
with pressure given by

p = (γ − 1)

(
ρet − 1

2
(ρ||v⃗||2 + ||B⃗||2 + ψ2)

)
. (2.28)
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Again we are also interested into the entropy pair (U,F (U)) of the underlying
equations which leads to the same mathematical and physical entropy as well
as the same entropy flux as in the Euler equations case. The entropy variables
read

w = U ′(u) =

(
γ − s

γ − 1
− ρ||v⃗||2

2p
,
ρv1
p
,
ρv2
p
,
ρv3
p
,−ρ

p
,
ρB1

p
,
ρB2

p
,
ρB3

p
,
ρψ

p

)T

.

(2.29)

2.4 Multi-Component Euler Equations

In contrast to the single-component Euler equations which observe a single
chemical species, like hydrogen, the multi-component Euler equations are able
to describe multiple different chemical species, like hydrogen mixed with oxy-
gen. As we will see in a further section, chemical species are also able to inter-
act through chemical reaction networks allowing to simulate various complex
natural phenomena and technical applications like combustion and detonation
processes. In the following, we want to show how the single-component Euler
equations can be extended into the multi-component case and which special
properties have to be taken into account for our applications.

The multi-component Euler equations used in this thesis can be stated as

∂

∂t



ρ1
...
ρN
ρv1
ρv2
ρet


︸ ︷︷ ︸

u

+
∂

∂x1



ρ1v1
...

ρNv1
ρv21 + p
ρv1v2

(ρet + p)v1


︸ ︷︷ ︸

f(u)

+
∂

∂x2



ρ1v2
...

ρNv2
ρv1v2
ρv22 + p

(ρet + p)v2


︸ ︷︷ ︸

g(u)

=



0
...
0
0
0
0


, (2.30)

whereas the total mass continuity equation is replaced by N continuity equa-
tions for each of the species with ρk being the partial density of species k and
ρ =

∑ns
k=1 ρk being the total density of the mixture of all species. Using the

ideal gas law we can close the system stating the pressure p as

p :=

N∑
k=1

ρkR̃kT, R̃k =
Rinf

mk
, (2.31)
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with R̃k being the specific gas constant and mk being the molar mass of species
k. The temperature T can be determined using a calorically perfect gas as-
sumption from the following equation

ρe =
N∑
k

ρkek, ek := cvkT, (2.32)

which holds for the compressible Euler case with ρe := ρet − (ρv)2/2ρ being
the internal energy. Following the Mayer’s relation we get

R = cp − cv, R̃k = cpk − cvk, (2.33)

which leads to

γ =
cp
cv
, γk =

cpk
cvk

. (2.34)

Therefore, we can compute

γ =

∑N
k=1 ρkcvkγk∑N
k=1 ρkcvk

(2.35)

so that we can calculate the pressure as

p = (γ − 1)(ρet − 1

2
ρ||v||2). (2.36)

In the case of multi-component Euler, we can state the mathematical entropy
as

U = −ρs := −
N∑
k=1

ρksk (2.37)

with the specific entropy of species k as

sk := cvk log(T )− R̃k log(ρk) (2.38)

and the entropy flux

F = −ρsv (2.39)
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with s being the specific entropy of the mixture. We obtain the following
entropy variables [7]

w = U ′(u) =
1

T

(
g1 −

1

2
v21 . . . gN − 1

2
v21 v1 − 1

)T

, (2.40)

with

gk := hk − Tsk, hk := ek + R̃kT, 1 ≤ k ≤ N, (2.41)

being the Gibbs function and specific enthalpy of species k.

To reduce confusion, let us briefly mention here that there are several equivalent
forms with the same weak solution of the multi-component equations model.
The one we use in this thesis is usually referred to as the symmetric formulation,
where the total density continuity equation is replaced by N species continuity
equations. Another often used form is the so called unsymmetric formulation
where we use the single-component Euler equations and add N − 1 species
continuity equations as follows

∂

∂t



ρ
ρv1
ρv2
ρet

ρY1
...

ρYN−1


︸ ︷︷ ︸

u

+
∂

∂x1



ρv
ρv21 + p
ρv1v2

(ρet + p)v1
ρY1v1

...
ρYN−1v1


︸ ︷︷ ︸

f(u)

+
∂

∂x2



ρv2
ρv1v2
ρv22 + p

(ρet + p)v2
ρY1v2

...
ρYN−1v2


︸ ︷︷ ︸

g(u)

=



0
0
0
0
0
...
0


, (2.42)

where Yk denotes the mass fraction of species k and the remaining mass fraction
YN can be calculated by YN = 1−

∑N−1
k=1 Yk. Other less frequently encountered

formulations are the Gamma formulation and the 1
γ−1 formulation which can

be viewed in [32].

Although the multi-component equations look similar to the single-component
case, they encounter problems that do not occur in the single-component case
and are characteristic to the multi-component case.
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Positivity

A well known problem of multi-component equations is the mass fraction pos-
itivity issue. Physically, all mass fractions have to be nonnegative Yk ≥ 0, k =
1, . . . , N as otherwise we would get negative partial densities ρYk < 0. Numer-
ically this condition can not be guaranteed trivially.

A possibility to ensure positive mass fractions is to use a so called uncoupled
approach for the numerical solution of multi-component equations. In short,
with this approach we treat the single-component Euler equations and the
additional species equations seperately which means that we use a classical
single-component Euler scheme for the Euler part and simply advect the addi-
tional species equations seperately [33]. This approach is simple to implement
and provides positive mass fractions, but leads to poor solutions since it is
lacking in a theoretical point of view [34]. This is, in fact, a reason we are
deriving an entropy-conservative flux for the so called coupled approach of the
ideal multi-component GLM-MHD equations seen in the next chapter. Briefly,
it means that we are working with the system of equations in (2.42) as a whole
instead of treating the species equations seperately. The interested reader is
referred to Larrouturou [34], who proposed a modification of the numerical
flux, so that the positivity of mass fractions is guaranteed. The system used in
this thesis satisfies the mass fraction positivity by construction.

Pressure Oscillations

An even more serious problem are the pressure oscillations developing at ma-
terial fronts seperating species which are not evoked due to the high-order
accuracy of the scheme, but are an intrinsic problem of the multi-component
nature of the equations which can arise even with a first-order scheme [33,
35]. These pressure oscillations are in fact a huge problem compared to the
mass fraction positivity since they can not be circumvented so easily. So far,
it is known to be solvable by introducing a non-conservative scheme which is
contrary to the most important property of our desired scheme [32]. Further-
more, even though it is possible to control the conservation errors to a decent
degree, it is not able to handle strong shocks which is another main task of our
required scheme in this thesis. We therefore refrain from presenting this solu-
tion idea in more detail at this point and refer to Abgrall [32] for the so called

23



2 Physical Model - Governing Equations

quasi conservative approach. However, this means for us that we are not able
to tackle the pressure oscillation problem so easily and have to hope that our
other mechanisms introduced in this thesis are sufficient to prevent/minimize
this kind of problem in our simulations.

2.5 Multi-Component Ideal Magnetohydrodynamics
Equations

Now that we have seen how to extend the single-component Euler equations to
the multi-component case, we are able to extend the ideal GLM-MHD equa-
tions analogue to the multi-component case. Therefore, the ideal GLM-MHD
equations written in a more compact form compared to (2.27) can be stated as

∂

∂t



ρ1
...
ρN
ρv1
ρv2
ρv3
ρet

B1

B2

B3

ψ


︸ ︷︷ ︸

u

+
∂

∂x1



ρ1v1
...

ρNv1
ρv21 + p+ 1

2 ||B⃗||2 −B2
1

ρv1v2 −B1B2

ρv1v3 −B1B3

(12ρ||v⃗||
2 + γp

γ−1)v1 + v1||B⃗||2 −B1(v⃗ · B⃗) + chψB1

chψ
v1B2 − v2B1

v1B3 − v3B1

chB1


︸ ︷︷ ︸

f(u)
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+
∂

∂x2



ρ1v2
...

ρNv2
ρv1v2 −B1B2

ρv22 + p+ 1
2 ||B⃗||2 −B2

2

ρv2v3 −B2B3

(12ρ||v⃗||
2 + γp

γ−1)v2 + v2||B⃗||2 −B2(v⃗ · B⃗) + chψB2

v2B1 − v1B2 + chψ
0

v2B3 − v3B2

chB2


︸ ︷︷ ︸

g(u)

+
∂B1

∂x1



0
...
0
B1

B2

B3

v⃗ · B⃗
v1
v2
v3
0


︸ ︷︷ ︸

ΓPowell
x1

+
∂ψ

∂x1



0
...
0
0
0
0
v1ψ
0
0
0
v1


︸ ︷︷ ︸

ΓGLM
x1

+
∂B2

∂x2



0
...
0
B1

B2

B3

v⃗ · B⃗
v1
v2
v3
0


︸ ︷︷ ︸

ΓPowell
x2

+
∂ψ

∂x2



0
...
0
0
0
0
v2ψ
0
0
0
v2


︸ ︷︷ ︸

ΓGLM
x2

=



0
...
0
0
0
0
0
0
0
0
0



(2.43)

with f(u) and g(u) being the flux vectors in x1- and x2-direction incorporated
with the GLM flux vector part. Similar to the multi-component Euler case, we
can calculcate the pressure as

p = (γ − 1)

(
ρet − 1

2
(ρ||v⃗||2 + ||B⃗||2 + ψ2)

)
(2.44)

with

γ =

∑N
k=1 ρkcvkγk∑N
k=1 ρkcvk

. (2.45)
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The entropy pair is the same as the one from the multi-component Euler case,

(U,F (U)) = (−ρs,−ρsv), (2.46)

which leads to the entropy variables

w = U ′(u) =
1

T

(
g1 −

1

2
v21, . . . , gN − 1

2
v21, v1, v2, v3,−1, B1, B2, B3, ψ

)T

.

(2.47)

The entropy variables, together with the entropy flux potential,

F = (

N∑
k=1

rkρkv1) +
1

2T
u||B⃗2||+ 1

T
chB1ψ, (2.48)

will be fundamental for our entropy-conservative flux derivation in the next
chapter.

2.6 Chemical Networks

The extension of the Euler and ideal GLM-MHD equations to the multi-
component case opens up many new possibilities for simulation applications.
One great new opportunity is to simulate chemical reactions, which have many
areas of application like combustion processes, hypersonic reacting flows, or
pre-mixed detonations. Chemical reactions cause the generation and/or de-
struction of chemical species under the restraint of mass conservation. De-
pending on the partial densities and temperature, a conversion of species takes
place. In the following, we will show how we are able to extend the multi-
component equations stated in the previous sections. We will give an example
based on the multi-component Euler equations leading to the multi-component
reactive Euler equations. The extension of the ideal GLM-MHD equations is
done analogously.

Chemical reactions represent a source term which has to be added to our system
of equations as follows

∂

∂t
u+

∂

∂x1
f(u) +

∂

∂x2
g(u) = S(u), (2.49)
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with a source term S containing the production rate of each species k. The
multi-component reactive Euler equations can then be written as

∂

∂t



ρ1
...
ρN
ρv1
ρv2
ρe


︸ ︷︷ ︸

u

+
∂

∂x1



ρ1v1
...

ρNv1
ρv21 + p
ρv1v2

(ρet + p)v1


︸ ︷︷ ︸

f(u)

+
∂

∂x2



ρ1v2
...

ρnsv2
ρv1v2
ρv22 + p

(ρet + p)v2


︸ ︷︷ ︸

g(u)

=



ω̇1
...
ω̇N

0
0
0


︸ ︷︷ ︸

S(u)

(2.50)

with

ω̇k =Wk

nr∑
l=1

(τ bk,l − τ fk,l)

(
Kf

l

N∏
k=1

(
ρk
Wk

)τfk,l
−Kb

l

N∏
k=1

(
ρk
Wk

)τbk,l
)

(2.51)

where ωk is the production rate,Wk the molecular weight of each species k. Kf
l

and Kb
l are the forward and backward reaction rates of each chemical reaction

l = 1, . . . , nr where nr is the total number of reactions. Furthermore, τ fk,l and

τ bk,l are the stoichiometric coefficients of species k as integer numbers of the
elementary reaction mechanism consisting of N species and nr reactions

N∑
k=1

τ fk,lχk ⇔
N∑
k=1

τ bk,lχk, l = 1, . . . , nr (2.52)

with χk being the chemical formulation of species k. The pressure p is given
by

p = (γ − 1)

(
ρet − 1

2
(ρ||v||2)−

N∑
k=1

qkρk

)
(2.53)

where qk is the chemical heat released during a chemical reaction. Chemical
reaction equations are usually pretty stiff depending on the reaction rates K.
One of the two important formulations of reaction rates used in this thesis is
the Arrhenius form

K = ATB exp

(
−Tign
T

)
(2.54)
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with A being some empirical coefficient, B being some empirical exponent and
Tign being the empirical activation temperature of the chemical reaction. A
very complete collection of reaction rates and coefficients can be found in the
CHEMKIN databases [36]. A tougher formulation leading to more stiffness is
the Heaviside form which is used in very temperature sensitive settings with
usually high activation energies

K =

{
Da T ≥ Tign

0 T < Tign
(2.55)

with Da being the Damkohler number. The latter formulation works like a step
function and activates and deactivates the chemical reactions with full power
depending on the actual temperature in contrast to the Arrhenius form which
distributes the chemical reaction rate across a temperature range.
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3 Mathematical Model - Numerical
Scheme

3.1 Introduction

In the previous chapter, we have familiarized ourselves with the governing equa-
tions we want to solve. Now, we want to develop a numerical scheme which
allows us to solve these equations for our applications in the best way possible.
Since the perfect method does not exist, we have to make compromises and
try to combine the best of all worlds in the hope to create a robust and well
working numerical scheme for our kind of applications. Hence, we will intro-
duce two different numerical schemes, list their advantages and disadvantages,
and explain how we combine those properly.

The following chapter is organized as follows. First, we will introduce a very
robust and easy to implement numerical method called Finite Volume (FV)
method, which is well-known in the world of fluid dynamics and will act as a
safety net for our numerical scheme. Here, we go into the mathematical mod-
eling of the FV method and discuss the major advantages (robustness) and
disadvantages in relation to our applications. Second, we will introduce our
numerical goal scheme called discontinuous Galerkin spectral element method
(DGSEM) and again provide the mathematical formulation as well as the ad-
vantages and disadvantages of the scheme. Since robustness is an important
endeavour for us, we will also address the importance of entropy stability for
our schemes and derive suitable entropy-conservative fluxes for our governing
equations. Following this, we will provide a convex blending scheme which
connects our high-order DG solver with our safety net first-order FV solver to
the so called DGFV hybrid method. In this regard, we will explain why the
DGFV hybrid method is needed in the presence of shocks and how it is able to
produce robust solutions. Although the shock-capturing blending scheme does
a good job in producing robust solutions, sometimes it might be necessary to
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use an additional positivity-preserving scheme. In this work we will introduce a
positivity-preserving scheme specially developed for our shock-capturing blend-
ing scheme which is able to rescue our solution a posteriori. Finally, we will
discuss the mathematical model of chemical networks and time integration. We
want to mention briefly, that we use the method of lines with which we can
separate the temporal discretization from the spatial discretization. Therefore,
we will first deal with the spatial discretization and only at the end with the
temporal discretization.

3.2 Baseline: Finite Volume Method

In this section, we will show how to discretize the spatial derivative of our equa-
tions with the FV method. Although we are working with hyperbolic systems
of conservation laws, we will derive the FV method for scalar conservation laws
in 1D which works analogously.

For simplicity, let us say we want to construct the FV method for the non-linear
conservation laws in one space dimension

∂u

∂t
+
∂f(u)

∂x
= 0. (3.1)

First, we need to discretize the domain Ω = [xL, xR] into (Nq + 1) equidistant
non-overlapping so called control volumes (or finite volumes)

Qi = [xi− 1
2
, xi+ 1

2
], ∪Nq

i=0Qi = Ω (3.2)

bounded by the cell boundaries xi− 1
2
, xi+ 1

2
associated with the point of coordi-

nate xi, defined as

xi = xL + (i+
1

2
)∆x, i = 0, . . . , Nq. (3.3)

Hereby, we define the control volume size ∆x = xR−xL
Nq+1 with the cell borders

xi− 1
2
= xi −

∆x

2
= xL + i∆x, i = 0, . . . , Nq + 1 (3.4)

xi+ 1
2
= xi +

∆x

2
= xL + (i+ 1)∆x, i = 0, . . . , Nq + 1. (3.5)
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In contrast to finite difference (FD) methods (which we will not discuss further
in this thesis and refer to [37]), we use the integral form of the conservation
law as a starting point to derive the FV method. This means, that instead of
approximating point values like the FD methods do, we will trace the cell mean
value as an integral of our quantity u over each one of these finite volumes

uni :=
1

∆x

∫
Qi

u(x, tn)dx ≡ 1

∆x

∫ x
i+1

2

x
i− 1

2

u(x, tn)dx, (3.6)

for at some discrete time tn := n∆t, n = 0, 1, . . . , with time step ∆t. Now
we can integrate our conservation law (3.1) by integrating over the spatial
sub-domain Qi

∂

∂t

∫
Qi

u(x, t)dx+ f
(
u
(
xi+ 1

2
, t
))

− f(u(xi− 1
2
, t)) = 0, (3.7)

which gives us the integral form of the conservation law. Since we want to
calculate an approximation for the solution of the cell averages un+1

i at some
time tn+1 in the future, we can also integrate over a discrete time sub-domain
[tn, tn+1] ∫

Qi

u(x, tn+1)dx−
∫
Qi

u(x, tn)dx =∫ tn+1

tn
f(u(xi− 1

2
, t))dt−

∫ tn+1

tn
f(u(xi+ 1

2
, t))dt, (3.8)

with a time step ∆t = tn+1 − tn in the size of the discrete time sub-domain.
Since we are working with cell mean values, we rearrange and divide by the
spatial domain size ∆x

1

∆x

∫
Qi

u(x, tn+1)dx = (3.9)

1

∆x

∫
Qi

u(x, tn)dx− 1

∆x

[∫ tn+1

tn
f(u(xi− 1

2
))dt−

∫ tn+1

tn
f(u(xi+ 1

2
))

]
.

(3.10)
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Then, we define our average surface fluxes as follows

f
n
i+ 1

2
:=

1

∆t

∫ tn+1

tn
f(u(xi+ 1

2
))dt,

f
n
i− 1

2
:=

1

∆t

∫ tn+1

tn
f(u(xi− 1

2
))dt, (3.11)

and can therefore insert (3.11) as well as (3.6) into (3.9) leading to

un+1
j = unj − ∆t

∆x
(f

n
i+ 1

2
− f

n
i− 1

2
). (3.12)

To get a fully discrete method, we now only have to find an approximation of
(3.11) based on the values un at time tn. As we are working with hyperbolic
conservation laws, we know that information propagates as a wave with finite
speed. Therefore, we only need to evaluate the values uni , u

n
i+1 on both sides of

the surface xi+ 1
2
, respectively uni−1, u

n
i for xi− 1

2
, as long as we adjust the time

step size ∆t appropriately to the fastest wave speeds in the hyperbolic system.
This means that we use can use some numerical flux function

f
n
i+ 1

2
≈ f∗ni+ 1

2
= f∗(uni , u

n
i+1), (3.13)

f
n
i− 1

2
≈ f∗ni− 1

2
= f∗(uni−1, u

n
i ), (3.14)

as an approximation for the average surface flux which leads to the fully discrete
FV method

un+1
j = unj − ∆t

∆x

(
f∗(uni , u

n
i+1)− f∗(uni−1, u

n
i )
)
. (3.15)

As we can see, the FV method has many obvious advantages. First of all, it is a
very simple method to understand and to implement. Due to its derivation on
the basis of the integral form which is closer to the physics, it is able to handle
strong shocks when using appropriate numerical flux functions, which is the
main property we rely on in our shock capturing blending scheme. Since we
derived a conservative discretization using control volumes with conservative
numerical fluxes between these control volumes, we obtain a fully conservative
method if one disregards the boundary conditions.
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One of the main disadvantages of the FV method is the representation of
the values as a piecewise constant polynomial (cell mean value) resulting in
a low first-order accuracy. There are possibilities to construct higher order
FV methods by reconstructions like for example piecewise linear polynomials
leading to second order accuracy. Another idea to construct more robust high-
order schemes is to examine multiple candidate stencils like the essentially
non-oscillatory (ENO) as well as weighted essentially non-oscillatory (WENO)
methods [38, 39]. Such stencil based high-order FV methods do have the
downside to become computationally expensive [40]. This is where our next
method can show its full strength since it can adjust its accuracy arbitrarily
high with ease.

3.3 High-Order: Discontinuous Galerkin Spectral
Element Method

Now, that we have seen how to build a FV method which will be acting as a
safety net due to its shock robustness capabilities, we will present a high-order
discontinuous Galerkin spectral element method (DGSEM) which will function
as the method of choice in the absence of shocks due to its accuracy advantage.

3.3.1 DGSEM in 1D

Just like in the derivation of the FV method, we will construct the DGSEM
method for the conservation laws in one space dimension. Similar to the FV
method, we divide the domain Ω = [xL, xR] into non-overlapping elements

Qi =

[
xi −

∆xi
2
, xi +

∆xi
2

]
, (3.16)

in the physical domain with center xi. To save computing operations, we
transform every element Qi onto the same reference space E = [−1, 1] of size 2

Qi
x(ξ)−−⇀↽−−
ξ(x)

E, (3.17)

by the linear coordinate mapping

x(ξ) = xi +
∆xi
2
ξ, ξ ∈ [−1, 1]. (3.18)
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Since the Jacobian of this transformation is given by

J =
∂x

∂ξ
=

∆xi
2
, (3.19)

we can transform the whole conservation law into reference space

J ∂u

∂t
+
∂f(u)

∂ξ
= 0, (3.20)

with the flux function

∂f(u)

∂x
=
∂f(u)

∂ξ

∂ξ

∂x
= J −1∂f(u)

∂ξ
, (3.21)

and the inverse Jacobian J −1 = ∂ξ
∂x .

Let us now come to the heart of the DG method which is the variation formula-
tion. Since our conservation law contains a derivative onto the flux function, it
means that our flux function has to be differentiable. Due to the fact that this
is usually not the case, especially for non-linear conservation laws, we have to
use a trick to overcome this issue. A clever idea is to move the derivative from
the flux function onto some other smooth function. Therefore, we multiply our
conservation law with an infinitely differentiable smooth testfunction ϕ(ξ) and
integrate the equation over the reference element E∫

E
J ∂u

∂t
ϕdξ +

∫
E

∂f(u)

∂ξ
ϕdξ = 0. (3.22)

Now we can use integration by parts to move the derivative from the flux
function onto the smooth testfunction∫

E
J ∂u

∂t
ϕdξ + [fϕ]1−1 −

∫
E
f
∂ϕ

∂ξ
dξ = 0, (3.23)

leading to the so called weak formulation which works as the basis for the DG
method.

Similar to the FV method, we allow the solution to be discontinuous across
element interfaces. Therefore, we have a Riemann problem on the interface
which will be solved approximately due to computational efficiency. Typical

34



3 Mathematical Model - Numerical Scheme

choices in this thesis are the local Lax-Friedrichs (LLF) [25] or Harten-Lax-Leer
(HLL) [27] numerical flux. This means we can replace the surface flux by our
approximative Riemann solver f∗∫

E
J ∂u

∂t
ϕdξ + [f∗ϕ]1−1 −

∫
E
f
∂ϕ

∂ξ
dξ = 0. (3.24)

By using integration by parts once again on the so called volume integral, we
are able to create a strong formulation∫

E
J ∂u

∂t
ϕdξ + [(f∗ − f)ϕ]1−1 +

∫
E

∂f

∂ξ
ϕdξ = 0. (3.25)

as a basis for the DG method which is equivalent to the weak formulation due
to the so called summation-by-parts (SBP) property for the Legendre-Gauss-
Lobatto (LGL) operator with collocation which is able to mimic integration by
parts in discrete. For more information about SBP operators we refer to [41].

In contrast to the FV method, which used first-order accurate cell mean values
inside the finite volumes, we now use a polynomial of degree Np inside each el-
ement, allowing us to switch between different orders of accuracy by adjusting
the polynomial degree Np. Fortunately, we are working in the reference space
and are able to do this so called polynomial Ansatz with the reference coordi-
nate ξ, allowing us to build just one Ansatz for the reference space instead of
building one Ansatz for each physical element. We use a nodal interpolation
of the solution,

u(x(ξ), t)|Qi ≈ uQi(ξ, t) =

Np∑
j=0

uQi
j (t)lj(ξ), (3.26)

where we use the Lagrange basis functions

lj(ξ) =

Np∏
i=0,i ̸=j

ξ − ξi
ξj − ξi

, j = 0, . . . , Np, (3.27)

which satisfy the Kronecker’s property lj(ξi) = δij , i, j = 0, . . . , Np, meaning
that

δij =

{
1, i = j

0, i ̸= j.
(3.28)
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This way we are able to use collocated quadrature rules since we use a nodal
polynomial representation based on LGL points {ξi}

Np

i=0, which includes the
boundaries x = −1 and x = 1, in the reference element. Now our polynomial
coefficients are also directly our values at the grid points, leading to

uQi(ξi, t) =

Np∑
j=0

uQi
j (t)lj(ξi) = uQi

i (t). (3.29)

We use the same Ansatz for the flux function f(u) which leads to

f(u) ≈
Np∑
j=0

fj(t)lj(ξ). (3.30)

A problem arises due to the fact that we try to approximate our flux function
f(u) with a polynomial of degree Np although the flux function is not neces-
sarily linear in u which means that the flux function might have a much higher
polynomial degree. A good example is the Burgers equation with f(u) = u2

2
which leads to a flux polynomial of degree 2Np. To be efficient we use colloca-
tion of the interpolation to be able to calculate the coefficients directly,

fj(t) = f(u(ξj , t)) (3.31)

Unfortunately, this approach has aliasing errors [42].

Now we can derive the DGSEM by discretizing the spatial part of the trans-
formed conservation law

∆xi
2

∫ 1

−1

∂u

∂t
lj(ξ)dξ︸ ︷︷ ︸

I

+

∫ 1

−1

∂f(u)

∂ξ
lj(ξ)dξ︸ ︷︷ ︸

II

= 0. (3.32)

We begin to discretize the first summand I with our polynomial approach for
the solution u

∆xi
2

∫ 1

−1

∂u

∂t
lj(ξ)dξ =

∆xi
2

∫ 1

−1

 Np∑
l=0

∂u

∂t
(t)lj(ξ)

 li(ξ)dξ, (3.33)
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and evaluate the integrals numerically with an LGL quadrature

∆xi
2

∫ 1

−1

 Np∑
l=0

∂u

∂t
(t)ll(ξ)

 lj(ξ)dξ ≈
∆xi
2

Np∑
k=0

 Np∑
l=0

∂u

∂t
(t)ll(ξk)

 lj(ξk)wk.

(3.34)

Property (3.28) leads to

∆xi
2

∂uj(t)

∂t
wj , j = 0, ..., Np, (3.35)

due to the Kronecker property. This result can also be written in a compact
matrix-vector notation

∆xi
2

∫ 1

−1

∂u

∂t
lj(ξ)dξ ≈

∆xi
2
M u̇(t), (3.36)

with the LGL mass matrix

Mlk = ⟨ll, lk⟩Np = δlkwk, l, k = 0, . . . , Np. (3.37)

Here we use the double underlined notation to outline a matrix and a single
underlined notation to outline a vector. As we already showed above, we apply
integration by parts on the second summand II∫ 1

−1

∂f(u)

∂ξ
lj(ξ)dξ = [f(u)lj(ξ)]

1
−1 −

∫ 1

−1
f(u)

∂lj(ξ)

∂ξ
dξ, (3.38)

and use an approximative Riemann solver on the surface flux

[f(u)lj(ξ)]
1
−1 −

∫ 1

−1
f(u)

∂lj(ξ)

∂ξ
dξ ≈

[
f∗(u+, u−)lj(ξ)

]1
−1

−
∫ 1

−1
f(u)

∂lj(ξ)

∂ξ
dξ.

(3.39)

Since the integral is of order 2Np − 1 and our LGL-SBP quadrature is exact
for polynomials of degree 2Np − 1, we can integrate the volume part exactly[
f∗(u+, u−)lj(ξ)

]1
−1

−
∫ 1

−1
f(u)

∂lj(ξ)

∂ξ
dξ

=
[
f∗(u+, u−)lj(ξ)

]1
−1

−
Np∑
k=0

 Np∑
l=0

fl(t)ll(ξk)

 lj(ξk)

∂ξk
wk,

(3.40)
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which can be written as

[
f∗(u+, u−)lj(ξ)

]1
−1

−
Np∑
k=0

 Np∑
l=0

fl(t)ll(ξk)

 lj(ξk)

∂ξk
wk

=
[
f∗(u+, u−)lj(ξ)

]1
−1

−
Np∑
k=0

fk(t)Dkjwk, (3.41)

with the differentiation matrix

Dkj =
∂lj(ξk)

∂ξk
, j, k = 0, . . . , Np. (3.42)

Again, we are able to write our result in a compact matrix-vector notation

[
f∗(u+, u−)lj(ξ)

]1
−1

−
Np∑
k=0

fk(t)Dkjwk = B f∗ −DT M f, (3.43)

with

B = diag(−1, 0, 0, . . . , 0, 0, 1). (3.44)

All in one we obtain the weak formulation in matrix-vector notation

∆xl
2
M u̇(t) +B f∗ −DT M f = 0, (3.45)

and since we use the LGL-Operator with the SBP property

(M D) + (M D)T = B, (3.46)

we are able to reformulate the weak formulation into an equivalent strong
formulation

∆xl
2
M u̇(t) +M Df = −B

[
f∗ − f

]
. (3.47)

The strong form can be rearranged so that we can discretize the conservation
equation directly in space with the DGSEM.

∆xl
2
U̇ +Df = −M−1B

[
f∗ − f

]
, (3.48)

which shows that the DGSEM for non-linear conservation laws can be con-
structed independently for arbirary flux functions. Again, to get a full space
discretization, we have to choose a proper numerical flux for the surface term
like the local Lax-Friedrichs flux.
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3.3.2 DGSEM in 2D and Curvilinear Elements

For the sake of completeness, we will additionally derive the DGSEM in 2D
with curvilinear elements since we will also be working with two dimensional
applications using different kind of geometries in this thesis. The interested
reader is referred to the book of Kopriva [43], which we used as orientation for
this subsection.

A way to do this is to create a mapping between the physical space and the
reference space similar to what we already did for the 1D case, but this time
we want to do a mapping of square elements into a curvilinear space. This way
it is possible to use the tensor-product ansatz to extend the DGSEM easily to
two dimensions by applying the 1D method in each direction.

We start with our conservation law in 2D

∂

∂t
u+

∂

∂x1
f +

∂

∂x2
g = 0, (3.49)

which we want to transform with a curvilinear mapping. Herefore, it is useful
to use the chain rule for the spatial derivatives resulting in

∂

∂x1
f =

∂

∂ξ
u
∂

∂x1
ξ +

∂

∂η
u
∂

∂x1
η, (3.50)

and

∂

∂x2
g =

∂

∂ξ
u
∂

∂x2
ξ +

∂

∂η
u
∂

∂x2
η, (3.51)

what can also be presented as

∇xf =

(
fx1

fx2

)
=

(
ξx1 ηx1

ξx2 ηx2

)(
fξ
fη

)
, (3.52)

or vice versa

∇ξf =

(
fξ
fη

)
=

(
x1ξ x2ξ
x1η x2η

)(
fx1

fx2

)
. (3.53)

Usually, we only know the one direction of the mapping, namely from the refer-
ence square to the physical space x⃗(ξ, η) which means that we need to derive the

39



3 Mathematical Model - Numerical Scheme

so called metric terms ξx1 , ξx2 , ηx1 , ηx2 from the inverse of the transformation,
it follows (

ξx1 ηx1

ξx2 ηx2

)
=

(
x1ξ x2ξ
x1η x2η

)−1

=
1

J

(
x2η −x2ξ
−x1η x1ξ

)
, (3.54)

with the Jacobian J := x1ξx2η − x1ηx2ξ. Now we are able to transform the
underlying equations (3.49)

J ∂

∂t
u+

∂

∂ξ
f̃ +

∂

∂η
g̃ = 0, (3.55)

with

f̃ := f(x2η) + g(−x1η) g̃ := f(−x2ξ) + (x1ξ), (3.56)

and respectively

f̃ξ = fξ(x2η) + f(x2ηξ) + gξ(−x1η) + g(−x1ηξ)
g̃η = fη(−x2ξ) + f(−x2ξη) + gη(x1ξ) + g(x1ξη).

As can be seen, the transformed equation looks similar to the transformed
1D equation in the subsection above which means that the derivation of our
DGSEM in 2D is straight forward.

Again, we divide the domain Ω = [x1L, x1R]× [x2L, x2R] into non-overlapping
elements Qi,j for which we have to determine the mapping x⃗Qi,j (ξ, η). The
metric terms determined by this mapping can then be used for the transforma-
tion of each element into the reference element E = [−1, 1]2. In this reference
space we are again able to use our polynomial Ansatz

u(x⃗, t)|Qi,j ≈ uQi,j (ξ, η, t) =

Np∑
k,l=0

u
Qi,j

k,l (t)lk(ξ)ll(η). (3.57)

For presentation reasons we drop the superscript Qi,j in the following.

Now we are again ready to apply the variation formulation of the conservation
law ∫∫

E
(Jut + f̃ξ + g̃η)li(ξ)lj(η)dξdη = 0, i, j = 0, ..., Np. (3.58)
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Below we will take a closer look at the three parts of the equation (3.58). We
start with the first term containing the time derivative where we insert our
polynomial Ansatz function as follows

∫∫
E
J (ξ, η)utli(ξ)lj(η)dξdη ≈

∫∫
E
J (ξ, η)

 Np∑
k,l

u̇kl(t)lk(ξ)ll(η)

 li(ξ)lj(η)dξdη.
(3.59)

Again, we are using the inexact but efficient LGL-quadrature for the integrals
leading to

∫∫
E
J utli(ξ)lj(η)dξdη ≈

Np∑
n,m=0

wnwm

 Np∑
k,l=0

u̇kllk(ξn)ll(ηm)


li(ξn)lj(ηm)J (ξn, ηm)

= J (ξi, ηj)wiwj u̇ij . (3.60)

Now we take the second term containing the spatial derivative in η direction∫∫
E
f̃ξli(ξ)lj(η)dξdη =

∫ 1

−1
lj(η)

[∫ 1

−1
f̃ξli(ξ)dξ

]
dη (3.61)

≈
Np∑
m=0

wm lj(ηm)︸ ︷︷ ︸
δmj

[∫ 1

−1
f̃ξ(ξ, ηm)li(ξ)dξ

]
dη (3.62)

= wj

[∫ 1

−1
f̃ξ(ξ, ηj)li(ξ)dξ

]
, (3.63)

where the last equation is similar to the 1D case apart from the extra integration
weight. Analogous to the 1D case, we receive

∫∫
E
f̃ξli(ξ)lj(η)dξdη ≈ wj

f̃∗(1, ηj)li(1)− f̃∗(−1, ηj)lj(−1)−
Np∑
n=0

wnf̃njDni

 .
(3.64)

It also follows the tensor product Ansatz for the flux function using a polyno-
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mial of degree Np on the LGL points

f̃(u(ξ, η, t)) ≈ f̃(ξ, η, t) =

Np∑
i,j=0

f̃(uij(t))︸ ︷︷ ︸
f̃ij

li(ξ)lj(η). (3.65)

We do the same for the second partial derivative

∫∫
E
g̃ηli(ξ)lj(η)dξdη ≈ wi

g̃∗(ξi, 1)lj(1)− g̃∗(ξi,−1)lj(−1)−
Np∑
m=0

wmg̃imDmj

 ,
(3.66)

leading to the 2D DGSEM

u̇ij =− 1

Jij

f̃∗(1, ηj) li(1)
wi

− f̃∗(−1, ηj)
li(−1)

wi
−

Np∑
n=0

wn

wi
Dnif̃nj

 (3.67)

− 1

Jij

g̃∗(ξi, 1) lj(1)
wj

− g̃∗(ξi,−1)
lj(−1)

wj
−

Np∑
n=0

wn

wj
Dnj g̃ni

 . (3.68)

The strong form matrix-vector notation

J u̇+Df̃ + g̃DT = S
[
f̃
∗ − f̃

]
+
[
g̃∗ − g̃

]
S. (3.69)

Let us now turn to the advantages and disadvantages of the DGSEM. As we
have seen, the DGSEM derivation is somewhat more complex than the FV
derivation, whereas the generic discretization of non-linear conservation equa-
tions is not much more difficult in the end. Furthermore, we are able to
calculate high-order accurate numerical simulations with low dispersion and
dissipation errors which allows us to resolve very fine structures of a solution.
The high-order capability also allows for more efficient calculations, since it is
able to produce evenly accurate results as, for example, the FV method but
with less degrees of freedom [1, 44]. Another advantage of the DGSEM is the
easy parallelization as well as the possible use of curvilinear meshes. Although
the standard DGSEM as derived above has great advantages, like for example
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higher-order accuracy compared to the FV method before, it has also disad-
vantages like stability issues for non-linear systems of conservation laws as well
as oscillation problems in areas where shocks are present which may lead to
negative densities or pressure. These and other issues will be adressed in the
following sections.

3.4 Entropy Stability

As we already know, our goal is to build a numerical scheme suitable for conser-
vation laws, which means we are trying to reproduce physical characteristics of
conservation laws in a discrete sense. The more physical characteristics can be
reproduced in a discrete sense by a numerical scheme, the better. Since we are
mostly working with conservation laws, an exception here are the GLM-MHD
equations, it is clear that our numerical scheme has to be able to conserve cer-
tain quantities in a discrete sense, like for example mass conservation, which is
also conserved in a physical sense. This property is also necessary to produce
weak solutions, which are an infinite class of solutions to which our numerical
scheme converges. However, as we saw, mass conservation is not enough to
identify a unique and physical solution. A way to identify these solutions is to
reproduce the second law of thermodynamics, which states that our numerical
scheme has to satisfy the entropy-stability property in a discrete sense. In this
thesis, we are able to clearly show the benefits of the entropy stability prop-
erty in practice (see chapter 5 and 6) which leads to increased robustnes for
non-linear and/or underresolved simulations.

Since the DGSEM is a relatively new scheme, it has to deal with problems
other schemes already have findings for. A good example is the FV community,
which is already advanced in a theoretical point of view. Therefore, it would
be beneficial to be able to rewrite parts of the DGSEM to be compatible with
the FV method. Due to the SBP property of our derived DGSEM which can
therefore be written in strong form, we are able to rewrite the volume integrals
of the DGSEM to be compatible with the FV method

Df =
N∑

m=0

Dimf
l
m =

f
l
i+1 − f

l
i

wi
, (3.70)

using the finite volume type flux differencing form [45, 46]. Now it is possible
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to construct an entropy-conserving high-order DGSEM, when we compute the
flux difference as

f
l
i+1 − f

l
i

wi
≈ 2

Np∑
m=0

Dimf
#,l
EC(ui, um) (3.71)

with an entropy-conserving two-point numerical flux function leading to a
entropy-conserving FV scheme and D being part of diagonal norm SBP op-
erator [47–49].

We would like to briefly mention here that this approximation is due to the
findings of Fisher and Carpenter [47] and it is possible to derive the standard
DG method by simple averages. Thereupon, it was extended to construct
entropy-stable schemes by Fisher and Carpenter [45] as well as kinetic energy
preserving schemes by Gassner et al. [50] and pressure equilibrium preserving
schemes by Shima et al. [51]. Another scheme with such properties was also
proposed by Ranocha [52].

In the following subsections we will derive an entropy conserving flux for the
multi-component Euler and the multi-component Ideal GLM-MHD equations.

3.4.1 Entropy Conservative Flux for Multi-Component Euler
Equations

To derive an entropy-conserving flux for the multi-component Euler equations,
we follow Gouasmi et al. [7] where we need to satisfy the entropy-conservation
condition by Tadmor [53]

JwK · f# = JFK, (3.72)

where w denotes the entropy variables derived in chapter 2,

f# = [f#1,1, f
#
1,2, . . . , f

#
1,N , f

#
2 , f

#
3 ]T , (3.73)

denotes the entropy-conserving interface flux for the N-component Euler equa-
tions and F =

∑N
k=1 R̃kρku denotes the entropy potential function. We define

the notation for the jump operator, arithmetic, and logarithmic means between
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two states at an interface, aL and aR, as

JaK(L,R) := aR − aL, (3.74)

a(L,R) :=
1

2
(aL + aR), (3.75)

aln(L,R) := JaK(L,R)/Jln(a)K(L,R). (3.76)

The logarithmic mean can be evaluated by the procedure given in [54]. Follow-
ing Roe’s technique [26], we will rewrite the jump terms as a linear combination
of jumps in algebraic variables

z = [z1,1, z1,2, . . . , z1,N , z2, z3] =

[
ρ1, ρ2, . . . , ρN , v1,

1

T

]
. (3.77)

It follows for the potential jump function

JFK =
N∑
k=1

R̃kJρkv1K =

(
N∑
k=1

R̃kz1,k

)
Jz2K +

N∑
k=1

R̃kz2Jz1,kK. (3.78)

For the entropy variables, we start with the first N components

gk
T

− u2

2T
=
e0k
T

+ cvk + R̃k − cvk ln(T ) + R̃k ln(ρk)−
u2

2T
(3.79)

= e0kz3 + cvk + R̃k + cvk ln(z3) + R̃k ln(z1,k)−
1

2
z22z3, (3.80)

which leads to

s
gk
T

− u2

2T

{
= Jz1,kK

R̃k

zln1,k
− Jz2Kz2z3 + Jz3K

(
e0k +

cvk

zln3
− 1

2
z22

)
. (3.81)

For the remaining entropy variables, we obtain

r u
T

z
= z3Jz2K + z2Jz3K, (3.82)

and

−
s
1

T

{
= −Jz3K. (3.83)
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Now we are able to insert our results into the entropy-conservation condition
(3.72)

N∑
k=1

z1,k

(
R̃k

zln1,k
f#1,k

)
+ Jz3K

(
(−z3z2)

N∑
k=1

f#1,k + z3f
#
2

)
(3.84)

+ Jz3K

(
N∑
k=1

(e0k + cvk
1

zln3
− 1

2
z22)f

#
1,k + z2f

#
2 − f#3

)
(3.85)

=

(
N∑
k=1

R̃kz1,k

)
Jz2K +

N∑
k=1

R̃kz2Jz1,kK. (3.86)

Now we can formulate this scalar condition into a system of N + 3 equations

R̃k

zln1,k
f#1,k = R̃kz2, 1 ≤ k ≤ N, (3.87)

(−z3z2)
N∑
k=1

f#1,k + z3f
#
2 =

(
R̃kz1,k

)
, (3.88)

N∑
k=1

(
e0k + cvk

1

zln3
− 1

2
z22

)
f#1,k + z2f

#
2 − f#3 = 0. (3.89)

Therefore, the entropy conservative flux for the multi-component Euler equa-
tions is

f#1,k = ρlnk v1 (3.90)

f#2 =
1

1/T

(
N∑
k=1

R̃kρk

)
+ v1

N∑
k=1

f#1,k (3.91)

f#3 =
N∑
k=1

(
e0k + cvk

1

(1/T )ln
− 1

2
v21

)
f#1,k + v1f

#
2 . (3.92)

If we use this numerical flux in the surface term as well as the volume term of
the DGSEM, we get an entropy-conservative DGSEM which is only feasable for
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smooth simulations. For more complex simulations with shocks a dissipative
numerical flux is needed in the surface leading to an entropy-stable DGSEM
which is known to be more robust and provides more physical solutions than the
standard DGSEM derived the section before. We also show these advantageous
properties in practice in chapter 5 and 6.

3.4.2 Entropy-Conservative Flux for Multi-Component Ideal
GLM-MHD Equations

Similar to the entropy-conserving flux for the multi-component Euler equa-
tions, we are now able to introduce an entropy-conserving flux for the multi-
component ideal GLM-MHD equations. Again, we have to satisfy condition
(3.72) where w denotes the entropy variables (2.47) for the multi-component
ideal GLM-MHD equations. Furthermore, we need the entropy flux potential
(2.48) to calculate the N-component ideal GLM-MHD entropy-conservative in-
terface flux

f# =
[
f#1,1, f

#
1,2, . . . , f

#
1,N , f

#
2 , f

#
3 , f

#
4 , f

#
5 , f

#
6 , f

#
7 , f

#
8 , f

#
9

]T
. (3.93)

We will use the algebraic variables

z = [z1,1, z1,2, . . . , z1,N , z2, z3, z4, z5, z6, z7, z8, z9]
T (3.94)

=

[
ρ1, ρ2, . . . , ρN , v1, v2, v3,

1

T
,B1, B2, B3, ψ

]T
. (3.95)

First, we rewrite our entropy variables into an algebraic variable formulation
leading to

1

T

(
gk −

1

2
||v⃗||2

)
= e0kz5 + cvk + R̃k + cvk ln z5 + R̃k ln z1,k −

1

2
z5(z

2
2 + z23 + z24),

(3.96)

for 1 ≤ k ≤ N as well as

v1
T

= z2z5,
v2
T

= z3z5,
v3
T

= z4z5 (3.97)

−1

T
= −z5,

B1

T
= z5z6,

B2

T
= z5z7 (3.98)

B3

T
= z5z8,

ψ

T
= z5z9. (3.99)
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Now, we have to examine the jump of the, in algebraic variables formulated,
entropy variables, leading to

s
1

T
(gk −

1

2
||u⃗||2)

{
= Jz1,kK

R̃k

zln1,k
− Jz2Kz2 z5 − Jz3Kz3 z5 − Jz4Kz4 z5

+ Jz5K
(
e0k +

cvk

zln5
− 1

2
(z22 + z23 + z24)

)
, (3.100)

for 1 ≤ k ≤ N and

rv1
T

z
= Jz5Kz2 + Jz2Kz5,

rv2
T

z
= Jz5Kz3 + Jz3Kz5 (3.101)

rv3
T

z
= Jz5Kz3 + Jz3Kz5,

s
−1

T

{
= −Jz5K (3.102)

s
B1

T

{
= Jz5Kz6 + Jz6Kz5,

s
B2

T

{
= Jz5Kz7 + Jz7Kz5 (3.103)

s
B3

T

{
= Jz5Kz8 + Jz8Kz5,

s
ψ

T

{
= Jz5Kz9 + Jz9Kz5. (3.104)

Additionally, we need to examine the jumps of the entropy flux potential

JFK = Jz2K

(
N∑
k=1

R̃kz1,k

)
+

N∑
k=1

R̃kz2Jz1,kK + Jz9Kchz5 z6 + Jz6Kchz5 z9

+ Jz5Kchz6z9 + Jz5K
1

2
(z2z26 + z2z27 + z2z28) + Jz2K

1

2
(z5 z26 + z5 z27 + z5 z28)

+ Jz6K(z2 z5 z6) + Jz7K(z2 z5 z7) + Jz8K(z2 z5 z8)− z6(Jz5K(z2z6 + z3z7 + z4z8)

+ Jz2Kz5 z6 + Jz3Kz5 z7 + Jz4Kz5 z8 + Jz6Kz5 z2 + Jz7Kz5 z3 + Jz8Kz5 z4).
(3.105)
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Following the entropy conservation conditions (3.72) we obtain the following
system of N+8 equations

f#1,kR̃k
1

zln1,k
= R̃kz2, 1 ≤ k ≤ N, (3.106)

f#2 z5 − (z2 z5)

N∑
k=1

f#1,k =

N∑
k=1

R̃kz
ln
1,k +

1

2
z5(z26 + z27 + z28)− z6 z6 z5, (3.107)

f#3 z5 − z3 z5

N∑
k=1

f#1,k = −z6 z7 z5, (3.108)

f#4 z5 − z4 z5

N∑
k=1

f#1,k = −z6 z8 z5, (3.109)

N∑
k=1

(
e0k +

cvk

zln5
− 1

2
(z22 + z23 + z24)

)
f#1,k − f#5 + z2f

#
2 + z3f

#
3 + z4f

#
4 (3.110)

+ z6f
#
6 + z7f

#
7 + z8f

#
8 + z9f

#
9 = chz6z9 +

1

2
(z2z26 + z2z27 + z2z28)

− z6(z2z6 + z3z7 + z4z8),

f#6 z5 = chz5 z9 + z9 z2 z6 − z6 z5 z2, (3.111)

f#7 z5 = z5 z2 z7 − z5 z6 z3, (3.112)

f#8 z5 = z5 z2 z8 − z6 z5 z4, (3.113)

f#9 z5 = chz5 z6. (3.114)
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By a simple transformation we get the entropy-conservative flux function in
algebraic formulation

f#1,k = z2z
ln
1,k, 1 ≤ k ≤ N, (3.115)

f#2 = z2

N∑
k=1

f#1,k +

N∑
k=1

R̃k
z1,k
z5

+
1

2
(z26 + z27 + z28)− z6

2, (3.116)

f#3 = z3

N∑
k=1

f#1,k − z6 z7, (3.117)

f#4 = z4

N∑
k=1

f#1,k − z6 z8, (3.118)

f#5 =

N∑
k=1

(e0k +
cvk

zln5
− 1

2
(z22 + z23 + z24))f

#
1,k + z2f

#
2 + z3f

#
3 + z4f

#
4 (3.119)

+ z6f
#
6 + z7f

#
7 + z8f

#
8 + z9f

#
9 − chz6z9 −

1

2
(z2z26 + z2z27 + z2z28)

+ z6(z2z6 + z3z7 + z4z8),

f#6 = chz9, (3.120)

f#7 = z2 z7 − z6 z3, (3.121)

f#8 = z2 z8 − z6 z4, (3.122)

f#9 = chz6. (3.123)
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Therefore, the entropy-conservative interface flux f# for the multi-component
ideal GLM-MHD equations is defined as

f#1,k = v2ρ
ln
k , 1 ≤ k ≤ N

f#2 = v1

N∑
k=1

f#1,k +
1

1/T

(
N∑
k=1

R̃kρk

)
+

1

2
(B2

1 +B2
2 +B2

3)−B1
2
,

f#3 = v2

N∑
k=1

f#1,k −B1B2,

f#4 = v3

N∑
k=1

f#1,k −B1B3,

f#5 =
N∑
k=1

(
e0k +

cvk
(1/T )ln

− 1

2
(v21 + v22 + v23)

)
f#1,k + v1f

#
2 + v2f

#
3 + v3f

#
4

(3.124)

+B1f
#
6 +B2f

#
7 +B3f

#
8 + ψf#9 − chB1ψ − 1

2
(v1B2

1 + v1B2
2 + v1B2

3)

+B1(v1B1 + v2B2 + v3B3),

f#6 = chψ,

f#7 = v1B2 −B1 v2,

f#8 = v1B3 −B1 v3,

f#9 = chB1. (3.125)

Using entropy-conservative interface fluxes leads to an entropy-conservative
scheme with virtually no dissipation. To obtain a more stable scheme we need
to add dissipation, for example by using the LF type dissipation,

f#(uL, uR) = fEC(uL, uR)−
1

2
D [JuK](L,R) , (3.126)

with the Roe-type dissipation matrices

D = R|Θ|R−1, (3.127)

and R being the matrix of right eigenvectors and Θ being a diagonal matrix
with the eigenvalues of the flux [55]. The derivation of the dissipation matrices
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for the Euler and ideal GLM-MHD case is not trivial, thus we refer the reader
to [7] and [31]. We want to point out that the LLF scheme can also be written
as a Roe-type operator, hereby all the diagonal entries of Θ are filled with the
maximum eigenvalue [55].

3.5 Shock-Capturing Blending Scheme

Even if an entropy-stable high-order DGSEM shows an improved robustness
over the standard high-order DGSEM, it still continues to struggle with shocks.
To overcome this issue, we combine the best of both worlds, the robust-
ness of the first-order FV method as well as the accuracy of the high-order
DGSEM. Therefore, our recipe deals with the combination of our high-order
nodal DGSEM with the first-order FV method. A plausible idea is to construct
a FV method on a subcell grid which directly uses the nodal LGL values of the
high-order DGSEM as subcell average values for the FV method. This gives us
the opportunity to construct the FV method in a similar fashion to the DGSEM
with an identical surface term and a volume term which we are able to blend.
Further advantages are that we do not have to store additional degrees of free-
dom for the FV method and that we meet our important conservation property.

The SBP property of our DGSEM which makes the weak formulation and the
strong formulation equivalent and finally leads to a split-form DG scheme, is
not only needed to be able to use symmetric two-point flux functions with
additional desirable properties such as entropy-conservation derived for FV
methods. Due to the fact that we are now able to rewrite the DGSEM volume
term in a FV kind of surface flux, we are able to interchange the DGSEM
volume term, which is the main issue for oscillations while shocks are present,
with the robust and shock approved first-order FV method when needed.

Roughly speaking, we want to use our high-order entropy-stable DGSEM as
much as possible to obtain more accurate results while we want to switch to
the robust first-order FV method when stability problems occur. Since the
surface terms of the DGSEM are algebraically equal to the FV surface terms,
we do not have to worry about this part of the scheme. The difficulty lies in the
volume part of the DGSEM which is the high-order polynomial inside the DG
element. By dividing each DG element into Np+1 so called subcells of size wi,
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we are able to use our first-order FV method inside the DG element, see Figure
3.1. Now, we get an accurate high-order and a robust first-order solution of the

Figure 3.1: Schematic of a DG element in reference space divided into FV
subcells of size wi adapted from [55].

volume term which can then be chosen appropriately or be blended together.
This way, we do not have to use pure FV inside the DG element, but just
as much as needed, which prevents the FV method to dominate and provide
a first-order result. Usually, it is already sufficient to use a maximum of 50
percent FV method to stabilize the solution. The following procedure is based
on Hennemann et al. [8]. Similar procedures have also been used in [55–58].

3.5.1 Shock Indicator

An important question now is how to decide if a DG element needs blending
with the FV method and how much blending is needed to stabilize the solution.
Since the DGSEM is working with polynomials inside the element, an idea by
Persson and Peraire [59] is to pick a quantity of interest, usually a quantity
which has to be positive like pressure, and compare its modal energy of the
highest polynomial modes to its overall modal energy. Since we derived our
DGSEM as a nodal based scheme with Lagrange polynomials, we first have
to transform our observed quantity into a modal based representation with
Legendre polynomials defined as

⟨ζ, ζ⟩L2 = ⟨
Np∑
j=0

mjL̃j ,

Np∑
j=0

mjL̃j⟩L2 =

Np∑
i,j=0

mimj⟨L̃i, L̃j⟩L2 =

Np∑
j=0

m2
j , (3.128)
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with the modal coefficients {mj}
Np

j=0, mNp being the highest mode and ζ being
the indicator variable. Now if we want to calculate the energy share of the
highest mode compared to the total energy of the polynomial, we calculate

E =

(
m2

Np∑Np

j=0m
2
j

)
. (3.129)

To overcome possibly arising odd/even effects, Hennemann et al. [8] proposed
to evaluate additionally the second highest mode mNp−1 compared to the total
energy of the polynomial without the influence of the highest mode

E = max

(
m2

Np∑Np

j=0m
2
j

,
m2

Np−1∑Np−1
j=0 m2

j

)
. (3.130)

The question that now arises is how we know if the energy share of the high-
est/second highest mode is indeed critical and that if the element needs FV
stabilisation. Again, [59] brings a threshold into play which decides if the
energy share presents a shock in the element or not

T (Np) = a · 10−c(Np+1)
1
4 . (3.131)

Based on this, [8] has proposed the parameters a = 0.5, c = 1.8 resulting from
insights of various numerical experiments leading to

T (Np) = 0.5 · 10−1.8(Np+1)
1
4 . (3.132)

Whether this choice is perfect is up for debate, but it actually works well for
our kind of applications (see Chapter 6).

3.5.2 Blending Factor α

Now that we know the modal energy and also have a suitable threshold, we are
able to translate these findings into a blending factor α ∈ [0, 1] which states
the share of FV needed for stabilisation. An easy mapping would for example
be a step function

α =

{
1, E ≥ T
0, E < T ,

(3.133)
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where we use full FV if the highest mode energy compared to the total mode
energy is greater or equal to the designed threshold and full DG if not. Another
possibility is to do a smooth mapping, that enables values between 0 and 1 like
the one from [8]

α =
1

1 + exp(−9.21024
T (E − T ))

, (3.134)

where we get α ≈ 0 for E = 0 and α ≈ 1 for E = 1.

For performance reasons, it is also possible to clip extreme edge values and use
just one scheme instead of both (which would be necessary for α ∈ (0, 1))

α̃ :=


0, α < αmin

α, αmin ≤ α ≤ 1− αmin

1, 1− αmin < α,

(3.135)

where we usually choose αmin = 0.001.

Apart from this, we can also adjust the range of our blending coefficient by
setting a maximum α ∈ [0, αmax ≤ 1] which helps to get more accurate results
in simulations with rather weak shocks. As reported by Henneman et al. [8],
in some cases sudden changes in the discretization operator might generate ar-
tifacts in the solution. Therefore, it is advantageous to propagate the blending
coefficient also to neighboring elements (NE)

αfinal = max
NE

{α, 0.5αNE}, (3.136)

where we take the calculated blending coefficient for the corresponding ele-
ment or at least fifty percent of the highest blending coefficient of the elements
sharing a face with this element.

3.5.3 Convex Blending

The basis for our scheme is the split form DGSEM in strong form which can
be written as

J u̇+RDG = Ju̇+M−1
[
∆ f̃ +B(f∗ − f)

]
= 0, (3.137)
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with the standard FV differencing matrix

∆ :=


−1 1 0 . . . . . . 0
0 −1 1 0 . . . 0

· · · . . .
. . .

. . .
. . .

...
0 . . . 0 −1 1 0
0 . . . . . . 0 −1 1

 , (3.138)

for the volume term. Our first-order FV discretization we derived in section
3.2 has the form

u̇i +
1

∆xi
(f∗

i+ 1
2

− f∗
i− 1

2

) = 0, (3.139)

with the control volume size ∆xi. Since we are working on a subcell grid based
on Gauss-Lobatto nodes, our control volumes have different sizes which are
given by the Gauss-Lobatto quadrature weights leading to

J u̇i +
1

wi
(f∗(i,i+1) − f∗(i−1,i)) = 0, (3.140)

whereby J denotes the Jacobian which transforms the DG element into the
reference element on the interval E = [−1, 1] and i ∈ {0, . . . , Np} denotes the
subcell elements inside the DG element. This FV discretization on the subcell
grid can also be written in matrix vector notation as

J u̇+RFV := Ju̇+M−1∆ fFV = 0, (3.141)

with fFV = (f∗(L,0), f
∗
(0,1), . . . , f

∗
(Np−1,Np)

, f∗(Np, R))
T ∈ RNp+2. By introducing

the following fluxes

f̃FV
0 = f0, (3.142)

f̃FV
i = fFV

i = f∗(i−1,i), i ∈ {1, . . . , Np} (3.143)

f̃FV
Np+1 = fNp , (3.144)

we are able to rewrite (3.141) in a similar fashion as the strong form DGSEM

J u̇+RFV = J u̇+M−1
[
∆ f̃

FV
+B(f∗ − f)

]
= 0. (3.145)
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Now we can see that it is possible to directly blend the first-order FV operator
with the high-order DG operator as follows

R := αRFV + (1− α)RDG, (3.146)

with the blending function α (3.134). Since we got both schemes on the same
subcell grid, we can simply put everything together

J u̇+M−1
[
∆
(
αf̃

FV
+ (1− α)f̃

)
+B(f∗ − f)

]
= 0. (3.147)

Therefore, we only have to calculate the volume contribution of both schemes
and blend them together to obtain our hybrid DGSEM solution. A more com-
pact notation can be taken from [8], where we can apply our blending directly
to the volume flux

f̃α0 = f0, (3.148)

f̃αi := αf∗(i−1,i) + (1− α)f̃i i ∈ {1, . . . , Np} (3.149)

f̃αNp+1 = fNp (3.150)

and obtain the original strong formulation for our hybrid scheme

J u̇+RFV = J u̇+M−1
[
∆ f̃

α
+B(f∗ − f)

]
= 0. (3.151)

3.6 Positivity-Preserving Scheme

Although our hybrid scheme, consisting of a high-order DGSEM and a first-
order FV, works pretty well in capturing shocks and thereby stabilizing the
solution, there are difficult simulations in which it might not be sufficient. A
common method to overcome this issue is to monitor the simulation and to
intervene if necessary with a posteriori scheme. A well-known scheme is the
positivity-preserving limiter by Zhang and Shu [60].

Another possibility, developed by Rueda-Ramı́rez and Gassner [10], is to use
the hybrid scheme framework for an a posteriori positivity limiter. Since we
are calculating the volume update with our high-order DGSEM as well as our
first-order FV method, we are able to use the FV method solution as a safe
solution. Based on this, it is possible to recalculate the volume update with
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a stronger blending coefficient α leading to a larger FV share in the solution
or completely switch to the FV solution which is known to be very robust and
positivity-preserving under the right CFL condition and Riemann solvers.

In the following subsections we will discuss the main idea of the positivity-
preserving scheme from Rueda-Ramı́rez and Gassner [10] and how to apply it
for the critical quantities like density or pressure. In addition, we will introduce
an extension to the scheme to make it work for multi-component simulations.

3.6.1 Density Correction

As a basis for this scheme, we assume that the calculated FV solution is a
safe solution (taking into account a suitable Riemann flux and time integra-
tion), which preserves the positivity of critical quantities like density or pres-
sure. Since our main high-order scheme also needs a suitable high-order time
integration scheme to achieve high-order accuracy, usually a high-order Runge-
Kutta (RK) time integration scheme like the strong-stability preserving (SSP)
RK methods of Spiteri and Ruuth [61] is used which, applied with pure FV
method look as follows

us+1
safe = assu

s +∆tsu̇s, FV +

s−1∑
i=1

(
asiu

i +∆tbsiu̇
i
)
, (3.152)

with the RK coefficients asi, bsi and the time-step size ∆ts = bss∆t of the s
RK-stage.

Now, we apply a threshold to the solution, which prohibits too strong deviations
from the safe solution

ρ ≥ βρsafe, (3.153)

by the factor β ∈ (0, 1]. A good value, according to [10], is β = 0.1 which
means that the hybrid solution has to be larger than ten percent of the safe
FV solution

ρ ≥ 0.1ρsafe. (3.154)

On closer inspection, this is even a stronger condition than positivity

ρ ≥ βρsafe > 0, (3.155)
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as long as the safe solution really is positive.

Since we are using the stage update of the RK method for the pure FV method
as well as for the hybrid method, we obtain the following relation for the density
quantity

ρsafe − ρ = ∆ts
(
ρ̇s, FV − ρ̇s

)
. (3.156)

Then, we rewrite this relation by adding zero to the equation

ρsafe − ρnew + aρ = ∆ts
(
ρ̇s,FV − ρ̇s

)
, (3.157)

which means that we added and subtracted βρsafe to the equation and defined
ρnew = βρsafe as well as ap = βρsafe−ρ. This way, we can control our positivity
condition (3.153) by checking if it violates the condition ap > 0. If this should
be the case, we have to correct the blending factor by correcting the solution
to be ρ = ρnew. As a consequence, we want to change the hybrid solution of
the density ρ to our new solution ρnew by rewriting (3.157) as follows

ρsafe − ρnew = ∆ts
(
ρ̇s,FV − ρ̇s,new

)
, (3.158)

with ρ̇s,new = ρ̇s +
aρ
∆ts . Therefore, we can recalculate our blending coefficient

a posteriori as

αnew = α+
aρ

∆ts (ρ̇s,FV − ρ̇s,DG)
, (3.159)

so that we are able to compute the blending difference ∆α = αnew − α which
we can use to calculate the corrected solution and its time derivative as

us+1
new = us+1 +∆α∆ts

(
u̇FV − u̇DG

)
, (3.160)

u̇s+1
new = u̇s+1 +∆α

(
u̇FV − u̇DG

)
. (3.161)

Due to the element-wise blending of the hybrid method, it is also necessary to
apply the positivity-preserving element-wise by calculating the new blending
coefficient as the maximum over all degrees of freedom Np of an element

αnew = max
i

{αi
new}, i ∈ {1, . . . , Np}. (3.162)
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3.6.2 Pressure Correction

Now that we have corrected the density quantity, it is necessary to check if we
also have to correct the resulting pressure quantity based on the similar con-
dition p ≥ βpsafe. Since the pressure does not depend linearly on the blending
coefficient, we have to solve a non-linear equation for αnew

g(αnew) = p(unew(αnew))− βpsafe = 0, (3.163)

which can be solved with any suitable iterative method like Newton’s method

αn+1
new = αn − g(αn)

∂p(αn)/∂α
. (3.164)

Due to the chain rule we have to calculcate

∂p

∂α
=
∂u

∂α

∂p

∂u
, (3.165)

where we get

∂u

∂α
= ∆ts

(
u̇FV − u̇DG

)
, (3.166)

derived from the RK update of the hybrid scheme. The second part, ∂p
∂u , is

dependent on the equation of state of the underlying equations. Again, we
compute the corrected solution by using our new blending coefficient as we did
for the density correction in the step before.

3.6.3 Partial Density Correction

Although this positivity-preserving scheme works fine by satisfying the posi-
tivity constraint for the overall density and pressure for the multi-component
versions of equations, we cannot guarantee that the density components satisfy
the positivity constraints. Therefore, we have to adapt the density correction
described above to obtain positivity in each partial density.

Instead of applying the density correction to the total density ρ, we have to
apply it to each density component ρk, k ∈ {1, . . . , N}, which results in the
positivity of the total density simultaneously. Therefore, we calculate

aρk = βρk,safe − ρk, k ∈ {1, . . . , N}, (3.167)
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and check if ∃k : aρk > 0. Is that the case, we calculate our new blending
coefficient

αnew = α+max
k

 aρk

∆ts
(
ρ̇s,FVk − ρ̇s,DG

k

)
 , (3.168)

so that even the most critical component is saved. Like before, these steps have
to be done for all degrees of freedom of the underlying DG element. As we will
see in chapter 5, the positivity-preserving scheme is able to rescue simulations
even under very difficult circumstences.

3.7 Adaptive Mesh Refinement

Sometimes it might be that simulations have different regions with flow features
that need high resolution, be it a turbulent flow or a shock wave, or regions
where the solution is very regular. If this is the case, it is possible to save some
computational effort with the adaptive mesh refinement (AMR) technique by
refining the mesh locally and dynamically when necessary and otherwise work-
ing with very coarse elements, see [62, 63]. We focus on a 2:1 mesh refinement
by halving an element in one dimension. In order to integrate the AMR into
our numerical scheme with conforming grids, we must now also allow for non-
conforming grids. How this works with the DG method is explained in the
following subchapter.

3.7.1 Non-Conforming h-Refinement

Until now, we have worked with a conforming mesh. For the AMR we want
to split elements with a 2:1 refinement which can be seen in Figure 3.2 which
is called h-refinement since we split the interface at a hanging node, see for
example [64]. The halving of the elements creates some problems that have to
be solved. First, it forces us to introduce a new data structure for storing the
different sized elements. A simple and straightforward method is a tree-data
structure that works with parent elements and child elements. Second, how
do we determine when such a refinement happens? Here, we can now take a
shortcut and simply use the shock indicator of the shock-capturing process.
The last and most difficult question is how we move our solution between these
different sized refinement levels since the interfaces do not match anymore. A
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Figure 3.2: A schematic tree data structure of a non-conforming mesh.

way to solve this issue is to construct conservative prolongation (coarse to fine
mesh) and restriction (fine to coarse mesh) operators with the mortar element
method [65, 66] discussed in the following.

3.7.2 Mortar Element Method

For the DG method, the only thing we need to do between element interfaces
is to calculate the numerical fluxes between those [67, 68]. In the mortar
element method we do not calculate the numerical fluxes directly, but first
project the solution of each element interface onto the mortar. The numerical
fluxes are then computed on the mortar and are then projected back to the
respective element interface. Therefore, we first have to derive eight different
operators. That means, we need four operators which project the solution of
the refined element onto their own respective mortar P eR1

→m1 , P eR2
→m2 as

well as the backprojection Pm1→eR1 , Pm2→eR2 . This works as follows; first we
need to select the polynomial order of our mortar space to be the maximum of
polynomial degree Np and M1 and respectively Np and M2

J1 = max(Np,M1), J2 = max(Np,M2). (3.169)
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Now we want to derive the projections named above using L2-projection. Let
us assume we got the values uR1 , uR2 so that∫ 1

−1
um1R1 l

m1
i (ξ)dξ =

∫ 1

−1
uR1 l

m1
i (ξ)dξ, i = 0, ..., J1 (3.170)∫ 1

−1
um2R2 l

m2
i (ξ)dξ =

∫ 1

−1
uR2 l

m2
i (ξ)dξ, i = 0, ..., J2, (3.171)

with the Lagrange polynomials lm1
i , lm2

i on the mortar grids m1,m2. Now we
can do an L2-projection to obtain

∫ 1

−1

 J1∑
j=0

um1R1jl
m1
j (ξ)

 lm1
i (ξ)dξ =

∫ 1

−1

(
M1∑
k=0

uR1iklk(ξ)

)
lm1
i (ξ)dξ (3.172)

⇔
J1∑
j=0

um1R1j

∫ 1

−1
lm1
j (ξ)lm1

i (ξ)dξ︸ ︷︷ ︸
=(I1)

=

M1∑
k=0

uR1ik

∫ 1

−1
lk(ξ)l

m1
i (ξ)dξ︸ ︷︷ ︸

=(II1)

, (3.173)

and∫ 1

−1

 J2∑
j=0

um2R2jl
m2
j (ξ)

 lm2
i (ξ)dξ =

∫ 1

−1

(
M2∑
k=0

uR2iklk(ξ)

)
lm2
i (ξ)dξ (3.174)

⇔
J2∑
j=0

um2R2j

∫ 1

−1
lm2
j (ξ)lm2

i (ξ)dξ︸ ︷︷ ︸
=(I2)

=

M2∑
k=0

uR2ik

∫ 1

−1
lk(ξ)l

m2
i (ξ)dξ︸ ︷︷ ︸

=(II2)

. (3.175)

Using exact quadrature rules for the integrals leads to the mass matrices of the
mortars

(I1) =

∫ 1

−1
lm1
j (ξ)lm1

i (ξ)dξ =:Mm1
ij , i, j = 0, ..., J1 (3.176)

(I2) =

∫ 1

−1
lm2
j (ξ)lm2

i (ξ)dξ =:Mm2
ij , i, j = 0, ..., J2, (3.177)
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and

(II1) =

∫ 1

−1
lk(ξ)l

m1
i (ξ)dξ =

J1∑
j=0

wjl
m1
i (ξj) lk(ξj)︸ ︷︷ ︸

=δkj

(3.178)

= wkl
m1
i (ξk) =: VeR1

→m1

ik , k = 0, ..., NR1 ; i = 0, ..., J1 (3.179)

(II2) =

∫ 1

−1
lk(ξ)l

m2
i (ξ)dξ =

J2∑
j=0

wjl
m2
i (ξj) lk(ξj)︸ ︷︷ ︸

=δkj

(3.180)

= wkl
m2
i (ξk) =: VeR2

→m2

ik , k = 0, ..., NR2 ; i = 0, ..., J2. (3.181)

It follows in matrix-vector notation

Mm1um1R1
= VeR1

→m1uR1
(3.182)

Mm2um2R2
= VeR2

→m2uR2
, (3.183)

where V denotes a rectangular matrix which leads to the solution of the refined
elements onto the mortar as

um1R1
= (Mm1)−1VeR1

→m1uR1
(3.184)

um2R2
= (Mm2)−1VeR2

→m2uR2
. (3.185)

Now we know how to do the outward projection but not how to project the
calculated numerical flow back. It follows

M1∑
k=0

f∗R1k

∫ 1

−1
lk(ξ)li(ξ)dξ =

J1∑
j=0

f∗m1R1j

∫ 1

−1
lm1
j (ξ)li(ξ)dξ (3.186)

M2∑
k=0

f∗R2k

∫ 1

−1
lk(ξ)li(ξ)dξ =

J2∑
j=0

f∗m2R2j

∫ 1

−1
lm1
j (ξ)li(ξ)dξ, (3.187)

which can be written in matrix-vector notation

M eR1f∗
R1

= Vm1→eR1f∗
m1R1

(3.188)

M eR2f∗
R2

= Vm2→eR2f∗
m2R2

, (3.189)
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leading to

⇒ f∗
R1

= (M eR1 )−1Vm1→eR1︸ ︷︷ ︸
=:P

m1→eR1

f∗
m1R1

(3.190)

⇒ f∗
R2

= (M eR2 )−1Vm2→eR2︸ ︷︷ ︸
=:P

m2→eR2

f∗
m2R2

. (3.191)

The remaining operators P eL→m1 , P eL→m2 , Pm1→eL and Pm2→eL are then sim-
ply calculated by projection.

It should be mentioned here that we described the standard mortar element
method for simplicity. There are also entropy-stable mortar element methods,
as for example in Friedrich et al. [64]. These entropy-stable mortar element
methods are more expensive than the one described above, but are relevant to
prove entropy stability.

3.8 Time Integration

As we have seen, we have built a numerical scheme to solve the spatial deriva-
tives of the governing equations leading to a system of ODE’s which can be
solved with classical numerical methods. Due to the high-order property of our
numerical scheme, it is necessary to use a high-order ODE solver so that the
temporal error does not dominate the spatial error too much and therefore the
order of the overall procedure remains intact. Furthermore, we also need an
ODE solver whose stability area is large enough for our purposes, see Gassner
and Kopriva [69].

Although there are many different procedures to solve a system of ODE’s like
explicit, implicit, or implicit-explicit time integrators, we choose the explicit
high-order SSP Runge-Kutta procedures for our scheme. This has the advan-
tage that such an explicit method is less computationally intensive than an
implicit method, since no system of equations has to be solved, and it is also
easier to implement. Since we are working with governing equations which
have hyperbolic character, we are able to calculate the maximum wave speeds
and are thus able to state a suitable time step restriction, which is needed to
guarantee the stability of the scheme. Consequently, an implicit procedure is
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not necessary in this case, as we generally do not consider a stiff problem in
which it would be useful, the interested reader is nevertheless referred to [70].
It should be mentioned briefly that in this work we will indeed have to deal
with stiff problems, but these stem from the chemical reaction networks and
are therefore not a problem for us as they are solved with an external package
KROME [71] that is able to apply subcycling. For the sake of completeness, it
should be mentioned here that time integration is also a current research topic,
like local time stepping methods for AMR simulations [72, 73] or space-time
DG methods [74].

Since we work with an external package for time integration in this work, it is
easy to switch between many different time integration methods (see chapter
4). Nevertheless, for the sake of completeness, we want to mention one of the
most common time integration methods for our kind of problems. As we know
solutions to hyperbolic PDE’s are not always smooth, especially when talking
about non-linear systems of hyperbolic PDE’s used in this thesis where shock
waves can develop even from smooth initial conditions leading to spurious os-
cillations or overshoots. Therefore, a desirable non-linear stability requirement
for numerical methods would be the strong stability preserving (SSP) [61, 75].
A class of time integration methods designed for hyperbolic PDE’s are the ex-
plicit strong-stability preserving Runge-Kutta methods (SSPRK) [61].

A stable time integration scheme alone is not sufficient to guarantee the stabil-
ity of the overall scheme. What is required is an additional time step condition
called Courant-Friedrich-Levy (CFL) time step condition [76] which would not
be necessary using an implicit time integration scheme. However, we are quite
familiar with our hyperbolic system and know the maximum wave velocities,
so that we can estimate a stable timestep. In our case the CFL condition can
be stated as

∆t =
CFL

|λmax|
∆xeff(Np), CFL ∈ (0, 1] (3.192)

with the approximation of the maximal wave speed λmax, the characteristic
length of the mesh discretization ∆xeff(Np) which in our case is dependent on
the element size of the DG element ∆x and the polynomial degree Np in 1D.
Simply explained, with the help of this condition we can ensure that wave prop-
agation or information propagation does not take place beyond one element,
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as our procedure could not act this.

A typical problem of chemical reactions, especially for problems with high
stiffness, is the time step restriction which is usually way lower than the one
of the advection step of the conservation law. That is also the reason why it is
common to treat the advection step of the underlying conservation law and the
reaction step of the ODE system separately. This way it is possible to solve
the advection step with an already tailored numerical scheme and the ODE
system with an efficient ODE solver. Due to the large time step difference it
is then possible to subcycle the reaction part to catch up with the advection
step which leads to a reduced computational effort than treating the system as
a whole. This means we have an advection step of the flow

Sa : ut + f(u)x1 + g(u)x2 = 0 (3.193)

without any chemical reactions and a reaction step

Sr :
∂Yk
∂t

=
ω̇k

ρ
, k = 1, . . . , N (3.194)

with a fixed total density and constant specific internal energy. Now we can
use either a first-order accurate Lie-Trotter splitting scheme [77]

u⃗n+1 = S(∆t)
r ◦ S(∆t)

a un, (3.195)

or a second order Strang splitting scheme [78]

u⃗n+1 = S
(∆t

2
)

a ◦ S∆t
r ◦ S(∆t

2
)

a un, (3.196)

to approximate a solution for the next time step. In the following thesis we use
our derived numerical scheme for the advection part and an external chemistry
solver for the reaction part. Due to the high stiffness applications used in this
thesis, we have refrained from resorting to special splitting solvers implemented
in OrdinaryDiffEq.jl. For the interested reader, the Julia packages Catalyst.jl
[79] and OrdinaryDiffEq.jl [80] are recommended.
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To build a simulation framework with the capabilities needed for this thesis is
a massive undertaking. Therefore, it is only plausible to use an already exist-
ing simulation framework and benefit from what is already there. In general,
it is easier to add missing features into an existing code, as long as the data
structures fit the project, than reinventing the wheel and programming a com-
plete framework yourself. This approach is not only time saving, it is also an
opportunity to add your knowledge and features to a broader audience which
might result in further scientific continuation from other scientists. Especially
in today’s fast-paced world with more and more different programming lan-
guages, algorithms, and methods, it is important that new ideas can be tried
out quickly and easily without disproportionate effort. In order to remain true
to these thoughts, we have decided to use a relatively new but already well
established simulation framework called Trixi.jl [9] which was designed with a
similar thought in mind.

In this chapter, we will briefly introduce the main framework we are using in
this thesis in Section 1, which is providing useful features and compatible data
structures for our research. Here, we will look at the main functionalities the
code already offers as well as the needed functionalities we introduced into the
framework. Furthermore, we will describe the rough structure of the simula-
tion framework and show how convenient it typically is to install and start a
simulation. Thereby, we will briefly touch on how everyone is able to extend
the existing code with additional features. Afterwards, we show interesting
functionalities of a powerful package already existing in Julia, which is used
as a key ingredient in the simulation framework, namely the DifferentialEqua-
tions.jl package [80] in Section 2. Next, we will introduce another package into
the existing simulation framework, called KROME [71], which opens the door
to the world of applied chemistry in Section 3. Last, we will take a look in the
mesh generation possibilities of our chosen framework and show how easy it is
to create a mesh needed for our purposes.
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4.1 Introduction to Trixi.jl

The simulation framework used for this thesis is the so called Trixi.jl open-
source code written in Julia. Although still very young, it is already a very
powerful computational fluid dynamics (CFD) code for mainly hyperbolic par-
tial differential equations (PDEs). It is meant to be fast, easy to understand,
and extensible [9]. Among others, this is the case because of its mainly under-
lying highly parallelizable discontinuous Galerkin (DG) method as well as the
povided parallelization techniques, the modular implementation and the com-
prehensive documentation. These are just a few of the properties that have
been convincing points to use this simulation framework as a foundation stone
for our research.

In the following subsections, we will enumerate the most important features
of Trixi.jl as well as highlight features we brought into this framework for our
research. We will outline the basic structure the code is implemented. Further,
we will give a short introduction into the installation process of Trixi.jl and show
how we can start and modify an already available simulation file, called elixir.
In the end, we will roughly discuss the possibilities and steps to participate in
the expansion of the simulation framework.

4.1.1 Main Features

Although Trixi.jl is an adaptive high-order numerical simulation framework of
hyperbolic PDEs in Julia and its features are therefore strongly tailored to this
task area, it is not only limited to this area. Anyway, the focus of Trixi.jl lies
in the simulation of high-order methods for hyperbolic PDEs in up to three
space dimensions. Similar to our research focus, Trixi.jl is specialized in hy-
perbolic PDEs as described in chapter 2. It supports many different equations
as for example compressible Euler equations and ideal magnetohydrodynam-
ics (MHD) equations, which have been extended by us to multi-component
equations which are even allowing chemical network simulations. To give an
impression of the many features this framework provides, we list the main
features Trixi.jl offers [81] and mark our involvement with added in thesis in
corner brackets where functionalities not yet integrated into the main code are
marked with a (*):

• 1D, 2D, and 3D simulations on line/quad/hex/simplex meshes
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– Cartesian and curvilinear meshes

– Conforming and non-conforming meshes

– Structured and unstructured meshes

– Hierarchical quadtree/octree grid with adaptive mesh refinement

– Forests of quadtrees/octrees with p4est via P4est.jl

• High-order accuracy in space in time

• Discontinuous Galerkin methods

– Kinetic energy-preserving and entropy-stable methods based on flux
differencing for single-component equations

– Entropy-stable methods based on flux differencing for multi-component
Euler equations by Gouasmi [added in thesis]

– Entropy-stable methods based on flux differencing for multi-component
ideal MHD equations adapted from Gouasmi[added in thesis]

– Entropy-stable shock capturing for cartesian meshes

– Entropy-stable shock capturing for curvilinear meshes [added in
thesis]

– Positivity-preserving limiting by Zhang & Shu

– Positivity-preserving limiting for single-component Equations by Rueda-
Ramı́rez & Gassner [added in thesis]*

– Positivity-preserving limiting for multi-component Equations adapted
from Rueda-Ramı́rez & Gassner [added in thesis]*

– Finite difference summation by parts (SBP) methods

• Compatible with the SciML ecosystem for ordinary differential equations

– Explicit low-storage Runge-Kutta time integration

– Strong stability preserving methods

– CFL-based and error-based time step control

• Native support for differentiable programming

– Forward mode automatic differentiation via ForwardDiff.jl
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• Periodic and weakly-enforced boundary conditions

• Multiple governing equations:

– Compressible Euler equations

– Magnetohydrodynamics (MHD) equations

– Multi-component compressible Euler equations [added in thesis]

– Multi-component MHD equations [added in thesis]

– Acoustic perturbation equations

– Hyperbolic diffusion equations for elliptic problems

– Lattice-Boltzmann equations (D2Q9 and D3Q27 schemes)

– Shallow water equations

– Several scalar conservation laws (e.g., linear advection, Burgers’
equation)

• Multi-physics simulations

– Self-gravitating gas dynamics

– Chemical networks with KROME.jl [added in thesis]*

• Shared-memory parallelization via multithreading

• Visualization and postprocessing of the results

– In-situ and a posteriori visualization with Plots.jl

– Interactive visualization with Makie.jl

– Postprocessing with ParaView/VisIt via Trixi2Vtk

As can be seen, this thesis has brought many useful extensions into the simula-
tion framework like multi-component Euler and ideal MHD equations, entropy-
stable DGSEM for multi-component Euler and ideal MHD equations, single-
component positivity-preserving limiting by Rueda-Ramı́rez and Gassner adapted
to multi-component flows, chemical networks with KROME as well as the ex-
tension of the entropy-stable shock capturing scheme to curvilinear grids.
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4.1.2 Code Structure

Now that we have seen the main features of Trixi.jl, we can take a quick look
at the overall code structure of this framework which allows us to easily extend
the existing code base with additional features. A discretization of our con-
servation laws can be divided in roughly two parts. Since we are using partial
differential equations, it follows that we got partial derivatives for at least two
variables. In our case, these are usually one time derivative and between one
and three spatial derivatives (1D-3D). Then it is a common approach to do a
semidiscretization using the so called method of lines. The idea is to discretize
all spatial derivatives so that we obtain an ordinary differential equation (ODE)
problem which is only dependent on the time derivative. A great advantage of
this method is that ODEs are very well researched and therefore have a wide
range of methods for solving such kind of equations.

This is also one of the reasons why the method of lines approach is used in
Trixi.jl [9]. By discretizing the spatial part of the equations with a high-order
DGSEM, we obtain an ODE problem which can be solved by another well
designed subpackage called OrdinaryDiffEq.jl, which is part of the package
DifferentialEquations.jl [80] discussed later in this chapter.

This means that our discretization in two parts looks as follows. In the first
part, we semidiscretize by only discretizing the spatial parts of the equations
with a solver integrated in Trixi.jl. The choice of the mesh, the equations,
the initial condition, and boundary condition as well as the source term also
belong to the semidiscretization part. In the second part, we now got an ODE
problem which can be solved by a well suited time integration scheme out of
the OrdinaryDiffEq.jl package [80].

Since the time integration scheme does not live in the Trixi.jl environment, it
is a not trivial task to intervene in the time integration steps and stages. For
some features, however, it is necessary to be able to perform a task between
time integration steps and stages. The solution for this is called a callback.
A callback is a function that is called at each time step or stage and briefly
interrupts the time integration. Such a callback function can be used for input
and output files, the step size control of the time integration scheme, a screen
output, AMR, positivity limiting as well as using a chemical network solver.
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4.1.3 User Experience

The purpose of an open source simulation framework is to make it accessible
to the general public. This applies in particular for potential users as well as
developers. In order to get a little closer to this goal, it is important that the
code is not only easy to understand but also easy to use. That is why we will
now briefly outline the installation process of Trixi.jl for new users and explain
how to start and configure an existing test case called elixir.

Let us begin with the installation process. Since Trixi.jl is a Julia package, it
is very easy to install and run. First of all, we need to install Julia on our
machine. This step differs depending on the operating system and can be done
following the official Julia installation instructions [82]. Once we started Julia,
we have to import Julia’s builtin package manager by executing the following
command:

julia> import Pkg

Now we can install all necessary packages to run Trixi.jl, including Trixi.jl itself
as well as OrdinaryDiffEq.jl which is needed by Trixi.jl to run a simulation:

julia> Pkg.add(["Trixi", "OrdinaryDiffEq"])

Other useful packages for users are Trixi2Vtk and Plots which can be used to
visualize solutions generated by Trixi:

julia> Pkg.add(["Trixi2Vtk, "Plots"])

Now that we have installed all necessary and useful packages, we can load the
Trixi package:

julia> using Trixi
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Since Trixi already has a huge base of test cases, they had to be subdivided
into subfolders in the examples/ subdirectory. To see a list of all examples
already existing in Trixi, we simply have to run the following command:

julia> get examples()

Now we can start any out of hundreds already existing test cases in Trixi with
the command trixi include. An exemplary test case can be executed by:

julia> trixi include("examples/p4est 2d dgsem/

elixir eulermulti diffraction 90 amr.jl")

An easy way to visualize the solution is by loading the Plots package:

julia> using Plots

and use the plot function to gerenate a plot:

julia> plot(sol)

Resulting in a heatmap of all primitive variables in Figure (4.1).

To modify an existing example, we can change the parameters of desire in the
elixir file or simply overwrite these at the start of the simulation. The latter
case can be done very easily once we know the typical function names in the
elixir file. Let us illustrate this process by modifying a few parameters in the
default example. As we could see at the start of the default example, it runs
to the final time of Tend = 0.6:

Time integration

-----------------------

Start time: 0.0

Final time: 0.6 ← elixir

time integrator: SSPRK54

74



4 Simulation Framework and Packages

Figure 4.1: A reactive multi-component Euler diffraction simulation with AMR
and 20700 total degrees of freedom in the beginning using a HOHQMesh gener-
ated P4est mesh. The simulation runs until the endtime T=0.6 with CFL=0.9
using the SSPRK54 time integration scheme as well as the third-order DGFV
hybrid scheme.

Should we decide to run the simulation until time Tnew = 0.2, we can simply
overwrite the timespan tuple tspan with our new endtime as follows:

julia> trixi include("examples/p4est 2d dgsem/

elixir eulermulti diffraction 90 amr.jl",

tspan=(0.0, 0.2))

Resulting in a simulation running to time Tend = 0.2:
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Time integration

-----------------------

Start time: 0.0

Final time: 0.2 ← new

time integrator: SSPRK54

Let us now take a look at the solution by generating a plot:

julia> plot(sol)

Resulting in a less developed shock front heatmap of all primitive variables in
Figure (4.2).

In a similar manner, it is also possible to write and use a completely new
initial condition. So far, the elixir uses an initial condition already predefined
in Trixi.jl:

DGFloat64 SemidiscretizationHyperbolic

-------------------------------

spatial dimensions: .... 2

mesh: .................. P4estMesh{2, Float64}
equations: ............. CompressibleEulerMulticomponentEquations2D

initial condition: ..... initial condition diffraction 90

boundary conditions: ... 6

B3: .................. typeof(boundary condition slip wall)

B4: .................. typeof(boundary condition slip wall)

B6: BoundaryConditionDirichlet{typeo...tial condition diffraction 90)}
B1: .................. typeof(boundary condition slip wall)

B5: .................. typeof(boundary condition slip wall)

B2: .................. typeof(boundary condition slip wall)

source terms: .......... nothing

solver: ................ DG

total DOFs: ............ 20700
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Figure 4.2: A reactive multi-component Euler diffraction simulation with AMR
and 20700 total degrees of freedom in the beginning using a HOHQMesh gener-
ated P4est mesh. The simulation runs until the endtime T=0.2 with CFL=0.9
using the SSPRK54 time integration scheme as well as a third-order hybrid
scheme.

We now want to use an own initial condition, which is not already included
in Trixi.jl, without modifying the existing elixir. In this example we want to
increase the effect of the chemistry source term by increasing the temperatures.
We can simply define a new initial condition function in the Julia REPL as
follows:
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julia> function new IC(x, t,

equations::CompressibleEulerMulticomponentEquations2D)

if x[1] < 0.5

rho1 = 11.0

rho2 = eps()

rho = rho1+rho2

rho v1 = rho * 6.18

rho v2 = rho * 0.0

rho e = 4970.0

else

rho1 = 1.0

rho2 = eps()

rho = rho1+rho2

rho v1 = rho * 0.0

rho v2 = rho * 0.0

rho e = 550.0

end

return SVector(rho v1, rho v2, rho e, rho1, rho2)

end

Now, we are ready to start the elixir again and override the previously used
initial condition with our new created initial condition:

julia> trixi include("examples/p4est 2d dgsem/

elixir eulermulti diffraction 90 amr.jl",

tspan=(0.0, 0.2), initial condition=new IC)

The analysis callback shows that our initial condition has really been overwrit-
ten with our new created initial condition:
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DGFloat64 SemidiscretizationHyperbolic

-------------------------------

spatial dimensions: .... 2

mesh: .................. P4estMesh{2, Float64}
equations: ............. CompressibleEulerMulticomponentEquations2D

initial condition: ..... new IC ← new

boundary conditions: ... 6

B3: .................. typeof(boundary condition slip wall)

B4: .................. typeof(boundary condition slip wall)

B6: BoundaryConditionDirichlet{typeo...tial condition diffraction 90)}
B1: .................. typeof(boundary condition slip wall)

B5: .................. typeof(boundary condition slip wall)

B2: .................. typeof(boundary condition slip wall)

source terms: .......... nothing

solver: ................ DG

total DOFs: ............ 20700

To take a look at the solution of this new test case, again, we just create a
heatmap plot:

julia> plot(sol)

Resulting in a different heatmap where the influence of the chemistry source
terms dominate in Figure (4.3). Due to the much higher temperatures on
the overall domain, the reactant component ρ1 is quickly transformed into the
product component ρ2 and is therefore only present at the inflow boundary.

4.1.4 Developer Experience

Developers as well as more advanced users often have further demands on a code
than just easy usability. A code that is as clearly structured as possible with
many modular approaches is often the way to go. This way new developers and
users have the opportunity to integrate new features without having to change
other parts of the code. On the one hand, this allows faster familiarization
with the source code, as only specific code fragments need to be understood,
and on the other hand, it reduces the general programming effort. Not all
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Figure 4.3: A reactive multi-component Euler diffraction simulation with
adapted initial conditions and AMR as well as 20700 total degrees of freedom
in the beginning using a HOHQMesh generated P4est mesh. The simulation
runs until the endtime T=0.2 with CFL=0.9 using the SSPRK54 time integra-
tion scheme as well as a third-order hybrid scheme.

code modules have to be adapted to the new features. In the following, we will
briefly describe the installation process of Trixi for developers and then give
an example of how easy it can be to integrate new features into this framework.

The installation process is quite straightforward. This time, however, we as-
sume that we have already installed Julia on our machine. Since we want
to edit files in Trixi, we need a local copy on our machine. This means we
download Trixi from github using the following command:

git clone git@github.com:trixi-framework/Trixi.jl.git

Then we go to the folder where Trixi lives:

80



4 Simulation Framework and Packages

cd Trixi.jl

Now we first have to install all dependencies for Trixi:

julia --project=@. -e ’import Pkg; Pkg.instantiate()’

Since developers also have to visualize solutions, we also need to install post-
processing tools:

julia -e ’import Pkg; Pkg.add(["Trixi2Vtk", "Plots"])’

Last but not least, we need an ODE solver package for time integration:

julia -e ’import Pkg; Pkg.add("OrdinaryDiffEq")’

To now use our local Trixi code instead of the Trixi package, we have to start
Julia as follows:

julia --project=@.

Let us assume that we need an additional feature for our research not included
in Trixi, this can be e.g. new governing equations, a new positivity limiter, or
even a different solver. Since Trixi is build in a modular manner, we can just
create a new file and implement our new features. Let us take a new positivity
limiter as an example. Currently, Trixi has a folder called callbacks stage where
all callback functions are stated which can be called between stages of the time
integration.
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callbacks stage

* callbacks stage.jl

* positivity zhang shu.jl

* positivity zhang shu dg1d.jl

* positivity zhang shu dg2d.jl

* positivity zhang shu dg3d.jl

* positivity rueda-ramirez gassner.jl

* positivity rueda-ramirez gassner dg1d.jl

* positivity rueda-ramirez gassner dg2d.jl

More precisely, the positivity limiters are mostly used here, since they are called
not only at each step but also at each stage. If we want to add a new limiter,
we can simply use the existing limiters as a guide. Assuming we want to build
a new positivity limiter called please survive for the 2D case, we create two
new files called positivity please survive.jl and positivity please survive dg2d.jl.

callbacks stage

* callbacks stage.jl

* positivity zhang shu.jl

* positivity zhang shu dg1d.jl

* positivity zhang shu dg2d.jl

* positivity zhang shu dg3d.jl

* positivity rueda-ramirez gassner.jl

* positivity rueda-ramirez gassner dg1d.jl

* positivity rueda-ramirez gassner dg2d.jl

* positivity please survive.jl

* positivity please survive dg2d.jl

Let us suppose that we are able to reuse the existing infrastructure of pos-
itivity zhang shu.jl so we just copy everything into positivity please survive.jl
and rename it properly. Now we can build our actual method for limiting into
positivity please survive dg2d.jl. Afterwards, we just need to adjust two more
files. First, we have to include our new method file positivity please survive.jl
into our callbacks stage.jl file and second, we have to export our new function
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PositivityPreservingLimiterPleaseSurvive into the main Trixi module Trixi.jl.

Assuming we have tested our new method extensively and found it to be good,
we can now make it available to other users of Trixi. A good way to do this
is to create a new branch on github containing all necessary changes to the
source code. Since Trixi has control structures to check the operability and
coverage of the code, we also need to create a test example which uses our
new developed positivity limiter. Now, if we think everything is just fine, we
can simply create a pull request on github to merge our branch into the main
code of Trixi. Main developers will now join in and scrutinize the code and, if
necessary, make suggestions for improvements. If everything is OK, the code
will be merged into the main code. It can be as simple as this.

4.2 Time Integration with DifferentialEquations.jl

As we have already indicated in section 1, the simulation framework we work
with can roughly be divided into two parts. One part is the semidiscretization
of the spatial dimension with methods implemented in Trixi.jl and the other
part is the time integration of the resulting ODE from Trixi which is done with
an external package. In the following, we will give a short overview about the
main features of this powerful package and give an introduction into the ODE
solver afterwards.

4.2.1 Main Features

DifferentialEquations.jl is a julia written package which allows to numerically
solve different kinds of differential equations. The documentation of this pack-
age lists the following solvable equations:

• Discrete equations (function maps, discrete stochastic (Gillespie/Markov)
simulations)

• Ordinary differential equations (ODEs) [used in thesis]

• Split and Partitioned ODEs (Symplectic integrators, IMEX Methods)

• Stochastic ordinary differential equations (SODEs or SDEs)

• Stochastic differential-algebraic equations (SDAEs)
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• Random differential equations (RODEs or RDEs)

• Differential algebraic equations (DAEs)

• Delay differential equations (DDEs)

• Neutral, retarded, and algebraic delay differential equations (NDDEs,
RDDEs, and DDAEs)

• Stochastic delay differential equations (SDDEs)

• Experimental support for stochastic neutral, retarded, and algebraic de-
lay differential equations (SNDDEs, SRDDEs, and SDDAEs)

• Mixed discrete and continuous equations (Hybrid Equations, Jump Dif-
fusions)

• (Stochastic) partial differential equations ((S)PDEs) (with both finite
difference and finite element methods)

As we can see, the DifferentialEquations.jl package provides a variety of solvable
equations, including ODEs, which have to be solved in Trixi.jl. Since the
included ODE solver OrdinaryDiffEq.jl is so extensive, it is also completely
independent and usable on its own, although it is only a component package in
the DifferentialEquations.jl ecosystem [80]. Since even this component package
is far too extensive, we will just give an abbreviated overview over the different
available ODE solvers.

• Non-Stiff Equations

– Explicit Runge-Kutta Methods

∗ Euler - Canonical forward Euler method

∗ Midpoint - Second order midpoint method

∗ Heun - Second order Heun’s method

∗ RK4 - Canonical Runge-Kutta Order 4 method

∗ . . . and at least 17 more

– Explicit Strong-Stability Preserving Runge-Kutta Methods for Hy-
perbolic PDEs (Conservation Laws)
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∗ SSPRK22 - Two-stage, second order strong stability preserving
method of Shu and Osher

∗ SSPRK33 - Three-stage, third order strong stability preserving
method of Shu and Osher

∗ SSPRK54 - Five-stage, fourth order strong stability preserving
method of Spiteri and Ruuth [used in thesis]

∗ . . . and at least 10 more

– Low-Storage Methods

∗ ORK256 - 5-stage, second order low-storage method for wave
propogation equations.

∗ CarpenterKennedy2N54 - The five-stage, fourth order low-storage
method of Carpenter and Kennedy [used in thesis]

∗ . . . and at least 41 more

– Parallelized Explicit Extrapolation Methods

– Adams-Bashforth Explicit Methods

• Stiff Equations

– SDIRK Methods

– Fully-Implicit Runge-Kutta Methods

– Rosenbrock Methods

– Stabilized Explicit Methods

– . . . and many more

Since Trixi.jl is predominantly specialised in conservation laws, we mostly use
explicit strong-stability preserving Runge-Kutta methods for hyperbolic PDEs
as well as low-storage methods.

4.2.2 ODE Solver

Let us now go into more detail how to use the ODE solver of OrdinaryDiffEq.jl.
Let us assume we got to solve an ordinary differential equation

du

dt
= f(u, p, t),
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on some time interval t ∈ [0, T ] with some right hand side f(u, p, t) dependent
on the current state variable u, some parameter p and the current time t.
Considering we want to solve some ODE with this package we simply do the
following. First we need to install OrdinaryDiffEq.jl:

julia> using OrdinaryDiffEq

and define our right hand side with our desired function, here 5u− 3:

julia> f(u,p,t) = 5u-3

with the initial condition of u(2) = 1:

julia> u2 = 1

We now want to numerically solve this ordinary equation for time t = 3.0:

julia> tspan = (2.0, 3.0)

Now we have all the ingredients needed to define our ODE problem:

julia> prob = ODEProblem(f, u2, tspan)

and solve it with OrdinaryDiffEq using the Tsitouras 5/4 Runge-Kutta method:

julia> sol = solve(prob, Tsit5(), reltol=1e-8, abstol=1e-8)

By loading the Plots package:

julia> using Plots
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we can now plot our numerical solution:

julia> plot(sol,linewidth=5,title="Solution to the ODE", xaxis="Time

(t)",yaxis="u(t)",label="Numerical Solution")

and overlay it with the exact solution u(t) = 2
5 exp(5(t− 2)) + 3

5 :

julia> plot!(sol.t, t->0.4*exp(5*(t-2))+0.6,lw=3,ls=:dash,label="True

Solution")

Figure 4.4: Numerical and exact ODE solution for tspan = (2.0, 3.0).

4.2.3 Integration in Trixi.jl

With Trixi.jl it basically works the same way. We have to define our ODE
problem prob, which we name ode in Trixi, where we have to state our right
hand side (which first has to be semidiscretized by Trixi.jl) together with an
initial condition as well as the time interval tspan to be calculated.

We have to load the necessary packages, here OrdinaryDiffEq.jl, first:
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using OrdinaryDiffEq

Let us assume we want to solve some hyperbolic PDE with Trixi. Therefore,
we first have to carry out the semidiscretization. We collect all data structures
and functions needed for the spatial discretization of our hyperbolic PDE:

semi = SemidiscretizationHyperbolic(mesh, equations, initial condition,

solver, boundary conditions=boundary conditions, source terms=nothing,

chemistry terms=chemistry term)

Now we can state our ODE problem with the just created semidiscretized right
hand side together with some time interval tspan = (0.0, 0.6):

ode = semidiscretize(semi, tspan)

and solve it using some time integration scheme from OrdinaryDiffEq.jl:

sol = solve(ode, SSPRK54(), dt=0.1, save everystep=false,

callback=callbacks);

4.3 Chemical Networks with KROME.jl

Since we introduced multi-component equations into Trixi.jl as one part of
this thesis, we now also have the possibility to introduce chemical reactions
by implementing a chemical networks solver into Trixi.jl. So far, our multi-
component equations in 2D looked as follows:

∂

∂t
u+

∂

∂x1
f(u) +

∂

∂x2
g(u) = S(u), (4.1)
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whereas, for the multi-component Euler equations, we got

u =



ρv1
ρv2
ρet
ρy1
ρy2
...

ρyN


, f(u) =



ρv21 + p
ρv1v2

(ρet + p)v1
ρv1y1
ρv1y2

...
ρv1yN


, g(u) =



ρv1v2
ρv22 + p

(ρet + p)v2
ρv2y1
ρv2y2

...
ρv2yN


, S(u) =



0
0
0
0
0
...
0


for the vectors of the conserved variables, the flux in the x1- and x2-direction
and source terms. To add the chemical reaction feature to this equations,
we now have to add source terms with rate of changes ω̇i to the individual
component concentrations [83, 84]

S(u) =
(
0, 0, 0, ω̇1, ω̇2, . . . , ω̇N

)
.

In addition to the already existing multi-component advection solver, for (4.1)
with S(u) = 0, we now need an additional solver for systems of ODEs of chem-
ical kinetics.

A very powerful package to solve this kind of ODEs is KROME. This Fortran
package, consisting of a Python pre-processor, was invented to simplify the
usage of chemical networks in large numerical simulations in any numerical code
[71]. In addition to solving chemical networks, KROME also provides a large
set of features corresponding to physical phenomenon connected to chemistry.
Especially astrophysical phenomena like photochemistry, heating, cooling, dust
treatment, and reverse kinetics [71] can be simulated with KROME. In the
following subsection, we will focus on reaction rates and show how easy it is to
introduce new chemical networks into Trixi.jl with KROME.

4.3.1 KROME in Trixi.jl

To understand what is happening under the hood of KROME, we have to
explain the rate equations first. These ODEs describe the formation and de-
struction of the density components via a given set of chemical reactions. The
total production rate of each number density ni is the difference between the
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production (first sum) and the destruction (second sum) of every single reaction

dni
dt

=
∑
j∈F̃i

Kf
j

∏
r∈R̃j

nr(j)

−
∑
j∈D̃i

Kb
j

∏
r∈R̃j

nr(j)

 . (4.2)

Hereby we denote Kf
j ,K

b
j to be the forward or backward reaction rate coef-

ficient of the jth reaction belonging to the set of formation F̃i or the set of
destruction D̃i of species i. In addition, R̃j is the set of reactants of reaction
j and nr(j) the number density of each reactants of reaction j.

Instead of solving these ODEs in Trixi.jl itself, again, we want to use an already
existing package in Trixi. For this purpose, a Julia wrapper had been created
and added to the Trixi framework named KROME.jl. We have integrated the
necessary infrastructure for this package into Trixi.jl in such a way that new
chemical networks can be implemented with minimal effort. In the following,
we will show how easy it can be done.

Suppose we have a multi-component elixir with two components, a and b, as
a starting point. We first have to state the reaction equations, which, in this
example, looks as follows:

a→ b,

in a separate file. Therefore, we create a new file diffraction reaction and store
it in the elixir folder. Let us assume that we use the Arrhenius form, which
means that the reaction rate is dependent of the temperature and looks as
follows

ω = −K̃ρY e
−T̃
Tgas .

where Tgas =
p
ρ is the temperature, K̃ = 2566.4 some constant and T̃ = 50 the

constant activation temperature. Then our diffraction reaction file has to look
as follows:

@format:idx,R,P,rate

1,FK1,FK2,2566.4d0*n(1)*exp(-50d0/Tgas)
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where we have to state the index number of the reaction, the reactant, the
product, and the reaction rate in Arrhenius form. Once we created this file, we
go into our Trixi.jl folder and build our KROME configuration by executing:

JULIA KROME CUSTOM ARGS="-n;/path to Trixi.jl/examples

/path to elixir folder/diffraction reaction;" julia -e ’using Pkg;

Pkg.build("KROME")’

followed by starting julia. The only thing we need to do now is to activate
the chemistry in the elixir file. For this purpose, we choose the in this thesis
introduced chemistry term called chemical reaction network :

chemistry term = chemical reaction network

and pass this to the semidiscretization:

semi = SemidiscretizationHyperbolic(mesh, equations, initial condition,

solver, boundary conditions=boundary conditions, source terms=nothing,

chemistry terms=chemistry term)

Despite that, we need to activate KROME as a chemistry callback:

chemistry callback = KROMEChemistryCallback()

and pass this callback to the callback set:

callbacks = CallbackSet(summary callback,

analysis callback,

alive callback,

save solution,

chemistry callback,

stepsize callback)
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Then, we start our elixir file as we always do while the magic happens behind
the scenes. As we can see, including new chemical reactions into Trixi.jl is
very simple since we just need a reaction file which has to be compiled with
KROME as well as activated chemistry terms and callbacks in the elixir file.

4.4 Mesh Generation

An important feature for numerical simulations is the mesh generation. Trixi.jl
is able to create and handle different kinds of meshes. In the following sub-
sections we will give a brief overview of the provided mesh types and their
features in Trixi.jl and focus on the mesh generation of complex geometries
with HOHQMesh.jl for Trixi.

4.4.1 Main Features

The most simple meshes are created with the Trixi.jl internal mesh type called
TreeMesh which is only able to use cartesian coordinates in 1D, 2D and 3D for
hypercubical domains. To create and use curvilinear meshes in 1D, 2D and 3D,
we can use StructuredMesh by setting domain boundary curves or by setting
a complete transformation mapping. For more complex geometries, we can
use the unstructured mesh type UnstructuredMesh2D which enables arbitrary
domains generated by HOHQMesh.jl. An example how to use HOHQMesh.jl
with Trixi.jl will be given in the next subsection. Further mesh types are
P4estMesh which uses the sophisticated P4est library and allows for curvilinear
meshes in 2D and 3D as well as the DGMultiMesh which allows for affine meshes
but is only usable with the DGMulti solver. It follows an overview of these
mentioned mesh types and their features in Trixi, which can also be read upon
on [85].

Features TreeMesh StructuredMesh UnstructuredMesh2D P4estMesh DGMultiMesh

Spatial Dimension 1D, 2D, 3D 1D, 2D, 3D 2D 2D, 3D 1D, 2D, 3D

Coordinates cartesian curvilinear curvilinear curvilinear affine

Connectivity h-nonconforming conforming conforming h-nonconforming conforming

Element Type line, square, cube line, quad, hex quad quad, hex simplex, quad, hex

Adaptive Mesh Refinement Yes No No Yes No

Solver Type DGSEM DGSEM DGSEM DGSEM DGMulti

Domain hypercube mapped hypercube arbitrary arbitrary arbitrary

Weak Form Yes Yes Yes Yes Yes

Flux Differencing Yes Yes Yes Yes Yes

Shock Capturing Yes Yes [added in thesis] Yes [added in thesis] Yes [added in thesis] No

Nonconservative Equations Yes Yes Yes Yes Yes
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4.4.2 Trixi.jl with HOHQMesh

Since some of our applications have to be calculated on more complex geome-
tries, we have to use a mesh type which is able to work with these geometries.
For this reason, we introduced shock-capturing capabilities for the curvilinear
mesh types StructuredMesh, UnstructuredMesh2D and P4estmesh in Trixi. In
the following we will focus on UnstructuredMesh2D and P4estMesh which are
able to read in 2D geometries created with HOHQMesh.jl.

HOHQMesh.jl is a high-order hex-quad mesh generator created and developed
in Fortran by David Kopriva and wrapped into a julia package. Since it pro-
vides high-order boundary curve information, it is very well suited for high-
order spectral element methods like the DGSEM. More information can be
found here [86]. In the following, we will show how to set up a mesh with
HOHQMesh and integrate it into Trixi.

Since HOHQMesh is integrated into the Trixi framework as a registered Julia
package, we can simply install it using the Julia package manager:

julia> import Pkg; Pkg.add("HOHQMesh")

Let us say we want to create a mesh that looks like Figure (4.5), therefore,
we need to create a control file which can be read by HOHQMesh.jl. Among
other things, this control file states the domain which we want to mesh and
autogenerates a fitting mesh for it. Usually, the control file can be divided into
two blocks, the control input and the model.

In the control input we have to set the run parameters with the names of the
mesh file, the plot file, and stats file. Furthermore, we have to set the mesh file
format to ABAQUS required by P4estMesh in Trixi, some polynomial order
like Np = 1 of the interpolant which represents the curved boundaries on the
elements and the plot file format which can be set to skeleton for the element
boundaries without nodes or sem for the element boundaries with nodes:
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\begin{CONTROL INPUT}
\begin{RUN PARAMETERS}

mesh file name = diffraction.mesh

plot file name = diffraction.tec

stats file name = diffraction.txt

mesh file format = ABAQUS

polynomial order = 1

plot file format = skeleton

\end{RUN PARAMETERS}

Additionally, we have to set the background grid size inside the control input
block, which is controlled by a spatial step size [∆x1 = 0.1,∆x2 = 0.1,∆x3 =
0.0]:

\begin{BACKGROUND GRID}
background grid size [0.1, 0.1, 0.0]

\end{BACKGROUND GRID}

Last but not least, we can activate a smoothing routine to create nicer quadri-
lateral elements with the following block:

\begin{SPRING SMOOTHER}
smoothing = ON

smoothing type = LinearAndCrossBarSpring

number of iterations = 25

\end{SPRING SMOOTHER}
\end{CONTROL INPUT}

Now, we can create our own outer boundaries in the model block. This can be
done by connecting single lines stating a start point and end point as follows:
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\begin{MODEL}
\begin{OUTER BOUNDARY}
\begin{END POINTS LINE}

name = B1

xStart = [0.0,2.0,0.0]

xEnd = [1.0,2.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B2

xStart = [1.0,2.0,0.0]

xEnd = [1.0,0.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B3

xStart = [1.0,0.0,0.0]

xEnd = [5.0,0.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B4

xStart = [5.0,0.0,0.0]

xEnd = [5.0,5.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B5

xStart = [5.0,5.0,0.0]

xEnd = [0.0,5.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B6

xStart = [0.0,5.0,0.0]

xEnd = [0.0,2.0,0.0]

\end{END POINTS LINE}
\end{OUTER BOUNDARY}

\end{MODEL}
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Since we have finished our control file, it is time to create the mesh. Therefore,
we have to load HOHQMesh.jl first:

julia> using HOHQMesh

Because we need to tell HOHQMesh where to find our control file, we have to
state the path

control file = joinpath("out", "diffraction.control")

and can then generate our mesh with HOHQMesh using the generate mesh
function:

output = generate mesh(control file)

To visualize our generated mesh, we can open the diffraction.tec file with Par-
aview leading to 4.5.

4.5 Creating an Elixir

Now we have the most important building blocks for our work and can begin to
build the first application examples. Based on the examples considered in this
chapter, we will now create a test case that combines all the building blocks
in one Elixir. More specifically, we create a test case with Trixi.jl using a time
integration procedure from OrdinaryDiffEq.jl, a chemical network created with
KROME.jl, and a mesh we create with HOHQMesh.jl using P4estMesh. We
use P4estMesh here so that we can also calculate our test case with AMR.

In the following, we want to test the detonation diffraction problem for the
reactive multi-component Euler equations on the prior with HOHQMesh de-
veloped unstructured and partially curved grid using the P4estMesh type with
AMR. Hereby, we test a detonation diffraction on an angle of ninety degrees
which is a quite challenging task for high-order schemes like ours since the
pressure or density might drop below zero. In particular, we got an instream
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Figure 4.5: A with HOHQMesh.jl created mesh for the ninety degrees diffraction
corner test case.

boundary on the left developing a shock front moving to the right. This shock
wave is then diffracted at the ninety degrees corner. Furthermore, due to the
high temperature at the shock front, a detonation takes place, which trans-
forms one component into the other.

The initial condition looks as follows

(ρ, v1, v2, ρe, Ya , Yb
) =

{
(11, 6.18, 0, 970, 1, 0), x < 0.5
(1, 0, 0, 55, 1, 0), x ≥ 0.5

, (4.3)
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with the following parameters regarding the components

(γa , γb
) = (1.2, 1.2) (4.4)

(R̃a, R̃b) = (0.287, 0.287) (4.5)

(qa, qb) = (50, 0). (4.6)

On the upper left instream boundary we set the initial solution using Dirichlet
boundary conditions whereas all other boundaries are set to be reflective. We
use the already in subsection 4.3 discussed reaction

a→ b

as well as the temperature dependent Arrhenius form for reaction rates

ω = −K̃ρY e
−T̃
Tgas .

where Tgas = p
ρ is the temperature, K̃ = 2566.4 is some constant and T̃ = 50

the constant activation temperature.

The simulation will run until Tend = 0.6 with CFL = 0.9 using the SSPRK54
time integration scheme. We set the grid to have elements of size ∆x1 = ∆x2 =
0.1 resulting in 2300 elements for the underlying geometry. We solve this ex-
ample with our fourth-order DGSEM shock capturing scheme which leads to
overall 36800 degrees of freedom. Since we use AMR with three more levels
(∆x1 = ∆x2 = 0.05, ∆x1 = ∆x2 = 0.025, ∆x1 = ∆x2 = 0.0125), we will have
more degrees of freedom at the shock front during the simulation.

Now, that we have all necessary information about our test case, we can start to
create our elixir called elixir eulermulti diffraction 90 amr.jl. In the following,
we will use some parts from the previous subsections. We begin by loading all
necessary packages for our example:

01 using Downloads: download

02 using OrdinaryDiffEq

03 using KROME

04 using Trixi
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In this case, we have to be able to download the not in Trixi.jl created mesh
(line 1), we need our time integration scheme from OrdinaryDiffEq.jl (line 2),
the chemical network solver KROME (line 3), and our Trixi framework (line 4)
to solve the spatial discretization as well as to put everything together. Now
we have to choose the right equations and hand over the necessary parameters
stated in (4.4):

05 equations = CompressibleEulerMulticomponentEquations2D(

06 gammas = (1.2, 1.2),

07 gas constants = (0.287, 0.287),

08 heat of formations = (50.0, 0.0))

Next, we have to create an initial condition function using the values stated in
(4.3):

09 function initial condition diffraction 90(x, t,

10 equations::CompressibleEulerMulticomponentEquations2D)

11 if x[1] < 0.5

12 rho1 = 11.0

13 rho2 = 0.0

14 rho = rho1 + rho2

15 rho v1 = rho * 6.18

16 rho v2 = rho * 0.0

17 rho e = 970.0

18 else

19 rho1 = 1.0

20 rho2 = 0.0

21 rho = rho1 + rho2

22 rho v1 = rho * 0.0

23 rho v2 = rho * 0.0

24 rho e = 55.0

25 end

26 return SVector(rho v1, rho v2, rho e, rho1, rho2)

27 end

and set this function as initial condition:
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28 initial condition = initial condition diffraction 90

Since this particular test case is not periodic, we need to define specific bound-
ary conditions as described above:

29 boundary condition dirichlet = BoundaryConditionDirichlet(

30 initial condition)

31 boundary conditions = Dict( :B1 => boundary condition slip wall,

32 :B2 => boundary condition slip wall,

33 :B3 => boundary condition slip wall,

34 :B4 => boundary condition slip wall,

35 :B5 => boundary condition slip wall,

36 :B6 => boundary condition dirichlet)

In addition, we also have to define our chemistry terms, which are already
predefined in Trixi.jl called chemical reaction network :

37 chemistry term = chemical reaction network

Now, we have to choose our solver, including the polynomial order Np = 2,
the surface (LLF), and volume fluxes (central) as well as the shock capturing
scheme with the associated shock capturing variable pressure:
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38 surface flux = flux lax friedrichs

39 volume flux = flux central

40 polydeg = 2

41 basis = LobattoLegendreBasis(polydeg)

42 indicator sc = IndicatorHennemannGassner(equations, basis,

43 alpha max = 1.0,

44 alpha min = 0.0,

45 alpha smooth = true,

46 variable = pressure)

47 volume integral = VolumeIntegralShockCapturingHG(indicator sc;

48 volume flux dg = volume flux,

49 volume flux fv = surface flux)

50 solver = DGSEM(polydeg = polydeg, surface flux = surface flux,

51 volume integral = volume integral)

Furthermore, we have to choose an appropriate mesh, in this case we use the
P4estMesh type for the HOHQMesh created mesh called diffraction.inp:

52 mesh file = joinpath("examples/p4est 2d dgsem","diffraction.inp")

53 mesh = P4estMesh{2}(mesh file)

Now we got everything we need for the semidiscretization with Trixi.jl and can
hand it over to create a semidiscretization:

54 semi = SemidiscretizationHyperbolic(mesh, equations,

55 initial condition, solver,

56 boundary conditions = boundary conditions,

57 source terms = nothing,

58 chemistry terms = chemistry term)

The spatial semidiscretization is now completed, so we can start to set the
necessary parameter for the ODE solver as well as requiered callbacks. Since
our ODE problem needs a time interval, we define the tuple tspan and hande
it over to our ODE problem:
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59 tspan = (0.0, 0.6)

60 ode = semidiscretize(semi, tspan)

Moreover, we want to have a summary, an analysis of our simulation as well as
a saved solution every 100 timesteps:

61 summary callback = SummaryCallback()

62 analysis interval = 100

63 analysis callback = AnalysisCallback(semi,

64 interval = analysis interval)

65 alive callback = AliveCallback(analysis interval = analysis interval)

66 save solution = SaveSolutionCallback(interval = 100,

67 save initial solution = true,

68 save final solution = true)

Due to the fact that we want to use AMR in this simulation, we have to set
the necessary parameters of the AMR callback. For the AMR, we use the same
indicator of Hennemann and Gassner with the exact same parameters as for
the shock capturing above:

69 amr indicator = IndicatorHennemannGassner(semi,

70 alpha max = 1.0,

71 alpha min = 0.0,

72 alpha smooth = true,

73 variable = pressure)

In addition, we have to set the base, med and max level with the corresponding
thresholds for our AMR:

74 amr controller = ControllerThreeLevel(semi, amr indicator,

75 base level = 0,

76 med level = 1, med threshold = 0.05,

77 max level = 3, max threshold = 0.1)
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Here we choose to use the underlying mesh as a base level, which will be
refined to the med level = 1 if the AMR indicator is above the threshold
med threshold=0.05 and to the max level = 3 if the AMR indicator strikes
out above the threshold of max threshold = 0.1. Now we put the AMR indica-
tor and the AMR controller into the corresponding AMR callback:

78 amr callback = AMRCallback(semi, amr controller,

79 interval = 5,

80 adapt initial condition = true,

81 adapt initial condition only refine = true)

and want the mesh to change every five timesteps. Speaking of timesteps,
instead of taking uniform timesteps which usually do not fit for the whole
simulation, we want to use adaptive timesteps using the CFL condition which
we override with the following callback:

82 stepsize callback = StepsizeCallback(cfl = 0.9))

The last callback we need, is the chemistry callback which activates the reaction
network for every timestep:

83 chemistry callback = KROMEChemistryCallback())

Now we have to collect all defined callbacks:

84 callbacks = CallbackSet(summary callback,

85 analysis callback,

86 alive callback,

87 save solution,

88 amr callback,

89 stepsize callback,

90 chemistry callback)
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We can run the simulation by using OrdinaryDiffEq.jl with a corresponding
time integration scheme SSPRK54, our ODE problem, a dummy time step size
and the just now defined callbacks:

91 sol = solve(ode, SSPRK54(), dt=1.0,

92 save everystep = false, callback = callbacks);

93 summary callback()

To start the simulation we now have to compile the chemical network (see
subsection 4.3), create the necessary mesh (see subsection 4.4), start Julia and
Trixi.jl (see subsection 4.1) and run the just created elixir as follows:

julia> trixi include("examples/p4est 2d dgsem/

elixir eulermulti diffraction 90 amr.jl")

To visualize the simulation with Trixi2Vtk we simply have to load it:

julia> using Trixi2Vtk

and then create vtu files out of the Trixi.jl produced h5 files which can be
visualized by Paraview:

julia> trixi2vtk(joinpath("out", "solution 0*.h5"), output directory =

"out")

The result can be seen in Figure 4.6.
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Figure 4.6: Solution of the created elixir in section 4.5 for the detonation diffrac-
tion test case.
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In this chapter, we will show that the basic underlying schemes work properly
and fulfill important properties for robustness. Therefore, we first provide the
experimental order of convergence (EOC) to demonstrate the high-order capa-
bility of our scheme as well as the correct implementation of the underlying
methods. Thereupon, entropy-stability as well as entropy-conservation will be
examined which is expected to be an important cornerstone of receiving the
correct solution out of the weak solution set. Since high-order schemes are
quite fragile when shocks appear in the simulation, we also have to verify that
our scheme is capable of providing (correct) solutions when shocks are present.
Sometimes, there are situations where even our very robust shock-capturing
scheme is not capable of providing a solution since some physical values, usu-
ally density or pressure, become negative using high-order simulations. As our
future applications, especially when chemical networks come into play, will suf-
fer from such problems, it is important to overcome these. Hence, we will show
that our positivity-preserving scheme, which is based on our shock-capturing
scheme, is capable of keeping the solution alive by switching back to a safe
first-order scheme. Since some of these applications have only small areas in
the domain where higher refinement is needed, they can also profit from adap-
tive mesh refinement (AMR), which manages to refine and coarsen the mesh
dynamically during the simulation. We will show that this feature is able to
produce faster and better results with less computational effort. Last but not
least, we will verify the correct implementation of the chemical network solver
by solving a one dimensional detonation wave example.

5.1 Multi-Component Euler Equations

5.1.1 Convergence Studies

Since our main goal is to present the advantages of high-order methods over
low-order methods like the first-order FV method, we have to show that our DG
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method really is a high-order scheme. For this purpose, we will verify our stan-
dard DGSEM as well as the entropy-conserving DGSEM and entropy-stable
DGSEM to be high-order by showing the experimental order of convergence
(EOC) using a manufactured solution. We verify the experimental order of
convergence in 1D. The following test cases are adapted from [9].

Setup

To conduct our convergence tests, we create an analytical solution by using a
smooth initial condition in combination with a source term, also referred to as
manufactured solution. As initial condition we choose

(ρ, p, v, Y1 , Y2 , Y3 , Y4) =
(
ϕ, ϕ2, 1, 1

15 ,
2
15 ,

4
15 ,

8
15

)
,

with ϕ = (2+0.1 ∗ sin(π ∗ (x− t))) and the following parameters regarding the
different components (

γ1 , γ2 , γ3 , γ4

)
= (1.4, 1.6, 1.8, 1.2)

(R̃1, R̃2, R̃3, R̃4) = (0.4, 0.6, 0.8, 0.2).

The simulation takes place in the spatial domain Ω = [−1, 1] using periodic
boundary conditions. The additional source terms for the manufactured solu-
tion are given by

(ρ, p, v, Y1 , Y2 , Y3 , Y4) =
(
0, ϕ, ϕ, 1

15 ,
2
15 ,

4
15 ,

8
15

)
,

with ϕ = −((0.4∗sin(π(t−x))−8)+1)∗0.1π∗(π−1)∗cos(π(t−x))
2 .

Solver

The simulation is observed up to the final time of Tend = 0.4 with a time step
size based on the CFL condition of CFL = 0.5. In time we use the five-stage,
fourth-order low-storage method of Carpenter and Kennedy, whereas we use
the DGFV hybrid method with polynomial degrees Np = 3 and Np = 4 in
space.
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DOF ||ρv||2 ||ρv||∞ EOC2 EOC∞
128 8.36e-08 4.94e-07 — —
256 5.16e-09 3.11e-08 4.02 3.99
512 3.26e-10 1.96e-09 3.99 3.99
1024 2.02e-11 1.22e-10 4.01 4.00
2048 1.27e-12 7.65e-12 4.00 4.00
4096 8.02e-14 5.10e-13 3.98 3.91

mean 4.00 3.98

DOF ||ρe||2 ||ρe||∞ EOC2 EOC∞
128 2.49e-07 1.35e-06 — —
256 1.53e-08 9.07e-08 4.03 3.89
512 1.14e-09 6.71e-09 3.75 3.76
1024 6.27e-11 4.26e-10 4.18 3.98
2048 3.97e-12 2.69e-11 3.98 3.99
4096 2.32e-13 1.73e-12 4.10 3.95

mean 4.01 3.91

DOF ||ρ1||2 ||ρ1||∞ EOC2 EOC∞
128 5.19e-09 2.80e-08 — —
256 3.17e-10 1.59e-09 4.03 4.14
512 2.43e-11 1.07e-10 3.71 3.89
1024 1.24e-12 6.78e-12 4.29 3.98
2048 7.58e-14 3.95e-13 4.03 4.10
4096 4.19e-15 2.49e-14 4.18 3.99

mean 4.05 4.02

DOF ||ρ2||2 ||ρ2||∞ EOC2 EOC∞
128 1.04e-08 5.59e-08 — —
256 6.35e-10 3.18e-09 4.03 4.14
512 4.85e-11 2.14e-10 3.71 3.89
1024 2.48e-12 1.36e-11 4.29 3.98
2048 1.52e-13 7.89e-13 4.03 4.10
4096 8.38e-15 4.98e-14 4.18 3.99

mean 4.05 4.02

DOF ||ρ3||2 ||ρ3||∞ EOC2 EOC∞
128 2.07e-08 1.12e-07 — —
256 1.27e-09 6.36e-09 4.03 4.14
512 9.70e-11 4.28e-10 3.71 3.89
1024 4.96e-12 2.71e-11 4.29 3.98
2048 3.03e-13 1.58e-12 4.03 4.10
4096 1.68e-14 9.96e-14 4.18 3.99

mean 4.05 4.02

DOF ||ρ4||2 ||ρ4||∞ EOC2 EOC∞
128 4.15e-08 2.24e-07 — —
256 2.54e-09 1.27e-08 4.03 4.14
512 1.94e-10 8.56e-10 3.71 3.89
1024 9.93e-12 5.42e-11 4.29 3.98
2048 6.06e-13 3.16e-12 4.03 4.10
4096 3.35e-14 1.99e-13 4.18 3.99

mean 4.05 4.02

Table 5.1: Experimental Order of Convergence for the conservative variables
using the standard DGSEM with polynomial degree Np = 3 and different
degrees of freedom (DOF).

Result

First, we take a look at our standard DGSEM, thus we use a central Riemann
solver for the volume flux and a dissipative Riemann solver, namely the local
Lax-Friedrichs Riemann solver, for the surface flux. Since most of our experi-
ments will be performed with a fourth-order scheme, we focus on the polyno-
mial degree Np = 3 which should result in a fourth-order convergence rate, see
table 5.1. Second, we examine an entropy-stable DGSEM which means that
we use an entropy-conserving Riemann solver, namely the multi-component
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DOF ||ρv||2 ||ρv||∞ EOC2 EOC∞
128 8.52e-08 5.12e-07 — —
256 5.47e-09 3.23e-08 3.96 3.99
512 3.25e-10 2.02e-09 4.07 4.00
1024 2.08e-11 1.22e-10 3.97 4.05
2048 1.28e-12 7.53e-12 4.02 4.02
4096 8.09e-14 4.93e-13 3.99 3.93

mean 4.00 4.00

DOF ||ρe||2 ||ρe||∞ EOC2 EOC∞
128 5.60e-07 2.50e-06 — —
256 5.69e-08 2.27e-07 3.30 3.47
512 4.01e-09 1.56e-08 3.83 3.86
1024 3.60e-10 1.74e-09 3.48 3.16
2048 1.53e-11 9.19e-11 4.55 4.24
4096 8.49e-13 5.08e-12 4.17 4.18

mean 3.87 3.78

DOF ||ρ1||2 ||ρ1||∞ EOC2 EOC∞
128 2.05e-08 7.52e-08 — —
256 2.17e-09 7.15e-09 3.24 3.39
512 1.54e-10 5.97e-10 3.82 3.58
1024 1.38e-11 6.47e-11 3.49 3.21
2048 5.85e-13 3.49e-12 4.56 4.21
4096 3.22e-14 1.93e-13 4.18 4.18

mean 3.86 3.72

DOF ||ρ2||2 ||ρ2||∞ EOC2 EOC∞
128 4.11e-08 1.50e-07 — —
256 4.33e-09 1.43e-08 3.24 3.39
512 3.08e-10 1.19e-09 3.82 3.58
1024 2.75e-11 1.29e-10 3.49 3.21
2048 1.17e-12 6.97e-12 4.56 4.21
4096 6.44e-14 3.85e-13 4.18 4.18

mean 3.86 3.72

DOF ||ρ3||2 ||ρ3||∞ EOC2 EOC∞
128 8.21e-08 3.01e-07 — —
256 8.67e-09 2.86e-08 3.24 3.39
512 6.17e-10 2.39e-09 3.82 3.58
1024 5.51e-11 2.59e-10 3.49 3.21
2048 2.34e-12 1.39e-11 4.56 4.21
4096 1.29e-13 7.70e-13 4.18 4.18

mean 3.86 3.72

DOF ||ρ4||2 ||ρ4||∞ EOC2 EOC∞
128 1.64e-07 6.02e-07 — —
256 1.73e-08 5.72e-08 3.24 3.39
512 1.23e-09 4.78e-09 3.82 3.58
1024 1.10e-10 5.18e-10 3.49 3.21
2048 4.68e-12 2.79e-11 4.56 4.21
4096 2.58e-13 1.54e-12 4.18 4.18

mean 3.86 3.72

Table 5.2: Experimental Order of Convergence for the conservative variables
using the entropy-stable DGSEM with polynomial degree Np = 3 and different
degrees of freedom (DOF).

entropy-conservative flux for the volume flux and the local Lax-Friedrichs type
Riemann solver for the surface flux, see table 5.2.

For verifying reasons only, we also examine an entropy-conservative scheme,
which means that we use an entropy-conserving Riemann solver, namely the
multi-component entropy-conservative flux, both, for the volume flux as well
as for the surface flux, see table 5.3. This scheme does only work, when we
are using a smooth test case which does not develop any shocks during the
simulation. Therefore, this scheme is not used for any kind of application dur-
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ing this thesis, since it would not fulfill necessary laws of thermodynamics for
non-smooth kind of applications. To illustrate the odd-even effect for entropy-

DOF ||ρv||2 ||ρv||∞ EOC2 EOC∞
128 1.39e-06 5.19e-06 — —
256 1.73e-07 6.49e-07 3.00 3.00
512 2.17e-08 8.13e-08 3.00 3.00
1024 2.71e-09 1.02e-08 3.00 3.00
2048 3.38e-10 1.27e-09 3.00 3.00
4096 4.23e-11 1.60e-10 3.00 2.99

mean 3.00 3.00

DOF ||ρe||2 ||ρe||∞ EOC2 EOC∞
128 2.68e-06 1.12e-05 — —
256 3.35e-07 1.39e-06 3.00 3.01
512 4.19e-08 1.73e-07 3.00 3.00
1024 5.24e-09 2.16e-08 3.00 3.00
2048 6.55e-10 2.71e-09 3.00 3.00
4096 8.19e-11 3.40e-10 3.00 2.99

mean 3.00 3.00

DOF ||ρ1||2 ||ρ1||∞ EOC2 EOC∞
128 5.52e-08 2.62e-07 — —
256 6.89e-09 3.23e-08 3.00 3.02
512 8.61e-10 4.02e-09 3.00 3.01
1024 1.08e-10 5.02e-10 3.00 3.00
2048 1.35e-11 6.28e-11 3.00 3.00
4096 1.68e-12 7.89e-12 3.00 2.99

mean 3.00 3.00

DOF ||ρ2||2 ||ρ2||∞ EOC2 EOC∞
128 1.10e-07 5.24e-07 — —
256 1.38e-08 6.46e-08 3.00 3.02
512 1.72e-09 8.04e-09 3.00 3.01
1024 2.15e-10 1.00e-09 3.00 3.00
2048 2.69e-11 1.26e-10 3.00 3.00
4096 3.36e-12 1.58e-11 3.00 2.99

mean 3.00 3.00

DOF ||ρ3||2 ||ρ3||∞ EOC2 EOC∞
128 2.21e-07 1.05e-06 — —
256 2.76e-08 1.29e-07 3.00 3.02
512 3.44e-09 1.61e-08 3.00 3.01
1024 4.31e-10 2.01e-09 3.00 3.00
2048 5.38e-11 2.51e-10 3.00 3.00
4096 6.73e-12 3.16e-11 3.00 2.99

mean 3.00 3.00

DOF ||ρ4||2 ||ρ4||∞ EOC2 EOC∞
128 4.42e-07 2.10e-06 — —
256 5.51e-08 2.58e-07 3.00 3.02
512 6.89e-09 3.22e-08 3.00 3.01
1024 8.61e-10 4.02e-09 3.00 3.00
2048 1.08e-10 5.02e-10 3.00 3.00
4096 1.35e-11 6.31e-11 3.00 2.99

mean 3.00 3.00

Table 5.3: Experimental Order of Convergence for the conservative variables
using the entropy-conservative DGSEM with polynomial degree Np = 3 and
different degrees of freedom (DOF).

conservative schemes, a phenomenon already observed in the literature [87–89],
we show that the scheme indeed has a lower experimental order of convergence
as expected and opposed to the standard and entropy-stable scheme, see table
5.4. This phenomenon can only be observed for odd polynomial orders and
therefore, the last convergence tables have been obtained with an odd poly-
nomial degree of Np = 3 and an even polynomial degree of Np = 2. It can
be observed, that although the correct third-order convergence rate has been
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achieved for the even polynomial degree Np = 2, the higher odd polynomial
degree of Np = 3 does not deliver a fourth-order convergence rate but instead
just a third-order convergence rate. Since an entropy-conservative scheme is
not favorable in real world applications anyway, this phenomenon does not
present a problem.

DOF ||ρv||2 ||ρv||∞ EOC2 EOC∞
128 9.90e-06 3.80e-05 — —
256 1.16e-06 3.96e-06 3.09 3.26
512 1.31e-07 4.42e-07 3.15 3.16
1024 1.67e-08 7.16e-08 2.96 2.63
2048 1.63e-09 7.54e-09 3.36 3.25
4096 1.90e-10 9.52e-10 3.11 2.98

mean 3.13 3.06

DOF ||ρe||2 ||ρe||∞ EOC2 EOC∞
128 2.78e-05 1.19e-04 — —
256 4.80e-06 2.09e-05 2.54 2.52
512 6.98e-07 2.68e-06 2.78 2.96
1024 1.06e-07 4.76e-07 2.73 2.49
2048 1.13e-08 6.44e-08 3.23 2.89
4096 1.06e-09 6.01e-09 3.41 3.42

mean 2.94 2.86

DOF ||ρ1||2 ||ρ1||∞ EOC2 EOC∞
128 9.61e-07 3.94e-06 — —
256 1.69e-07 6.34e-07 2.51 2.64
512 2.61e-08 1.05e-07 2.70 2.59
1024 3.80e-09 1.85e-08 2.78 2.50
2048 4.11e-10 2.55e-09 3.21 2.86
4096 3.90e-11 1.93e-10 3.40 3.73

mean 2.92 2.86

DOF ||ρ2||2 ||ρ2||∞ EOC2 EOC∞
128 1.92e-06 7.89e-06 — —
256 3.38e-07 1.27e-06 2.51 2.64
512 5.21e-08 2.10e-07 2.70 2.59
1024 7.60e-09 3.71e-08 2.78 2.50
2048 8.23e-10 5.10e-09 3.21 2.86
4096 7.79e-11 3.85e-10 3.40 3.73

mean 2.92 2.86

DOF ||ρ3||2 ||ρ3||∞ EOC2 EOC∞
128 3.84e-06 1.58e-05 — —
256 6.76e-07 2.54e-06 2.51 2.64
512 1.04e-07 4.20e-07 2.70 2.59
1024 1.52e-08 7.41e-08 2.78 2.50
2048 1.65e-09 1.02e-08 3.21 2.86
4096 1.56e-10 7.71e-10 3.40 3.73

mean 2.92 2.86

DOF ||ρ4||2 ||ρ4||∞ EOC2 EOC∞
128 7.69e-06 3.16e-05 — —
256 1.35e-06 5.07e-06 2.51 2.64
512 2.09e-07 8.41e-07 2.70 2.59
1024 3.04e-08 1.48e-07 2.78 2.50
2048 3.29e-09 2.04e-08 3.21 2.86
4096 3.12e-10 1.54e-09 3.40 3.73

mean 2.92 2.86

Table 5.4: Experimental Order of Convergence for the conservative variables
using the entropy-conservative DGSEM with polynomial degree Np = 2 and
different degrees of freedom (DOF).
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5.1.2 Mass, Momentum, Energy and Entropy Conservation

Since we are studying Euler equations, it is important to verify that our scheme
is able to comply with the conservation property of mass, momentum, and
energy which are intrinsic for the Euler equations. Moreover, being able to
control the entropy is a key ingredient for a robust numerical scheme while
being able to converge to a physical correct and unique solution. For this
purpose an additional conservation equation, namely the entropy-conservation,
has to be satisfied. To meet this additional property, special conservative fluxes
have been derived. To show that these fluxes are really entropy-conservative,
we use a simple test case with a rather weak shock since entropy-conservation
can only be achieved by disabling dissipation terms which would then stabilize
the solution.

Setup

To check the entropy-conservation, we initialize the initial condition with a
weak shock wave

(ρ, p, v1, v2, Y1 , Y2 , Y3 , Y4)

=

{
(1.1691, 1.245, 0.1882, 0.1882, 1

15 ,
2
15 ,

4
15 ,

8
15), x ≤ 0.5 (left side)

(1.0, 1.0, 0.0, 0.0, 1
15 ,

2
15 ,

4
15 ,

8
15), x > 0.5 (right side)

in the spatial domain [-2, 2] using periodic boundary conditions.

Solver

We run the simulation to the final time Tend = 2.0 with a relatively small time
step using CFL = 0.3 to have smaller time integration errors. Again, we use
the five-stage, fourth-order low-storage method of Carpenter and Kennedy for
time integration. For this test we choose polynomial degree Np = 3 resulting in
a fourth-order DG scheme and DOF = 128 degrees of freedom in each spatial
dimension.

Result

First, we want to check the mass, momentum and energy conservation. For
this purpose, we calculate the differences in total mass and total momentum
accumulated over the entire domain at Tend = 2 compared to the total mass
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and momentum accumulated over the whole domain at Tstart = 0 for the EC
DGSEM in 1D and 2D, see table 5.5 and table 5.6. As can be seen, we get mass,
momentum and energy conservation within machine precision. Second, we

ρv1 ρ1 ρ2 ρ3 ρ4 ρe

|∆U | 6.8E-17 8.6E-16 1.7E-15 3.4E-15 6.9E-15 2.4E-16

Table 5.5: Difference in accumulated total mass, momentum, and energy over
the whole domain at time Tend = 2 to the accumulated total mass, momentum
amd energy over the entire domain at time Tstart = 0 in 1D calculated with
the fourth-order EC DGSEM and DOF = 128 degrees of freedom.

ρv1 ρv2 ρ1 ρ2 ρ3 ρ4 ρe

|∆U | 1.8E-16 1.9E-16 2.7E-14 5.5E-14 1.1E-13 2.2E-13 4.1E-14

Table 5.6: Difference in accumulated total mass, momentum, and energy over
the whole domain at time Tend = 2 to the accumulated total mass, momentum
and energy over the entire domain at time Tstart = 0 in 2D calculated with the
fourth-order EC DGSEM and DOF = 1282 degrees of freedom.

want to verify that our scheme really is entropy-conservative or entropy-stable.
Therefore, we analyse the total entropy change throughout the simulation over
the entire domain. For an entropy-conservative scheme we do not expect the
entropy to change during the simulation, whereas for an entropy stable scheme
we do expect an entropy change. Our results show that we get an entropy
change of zero within machine accuracy for the entropy-conservative scheme,
while for the entropy-stable scheme we can see a significant entropy drop as
expected, see table 5.7.

5.2 Multi-Component Ideal MHD Equations

Similar to the multi-component Euler case, we now want to show that our
entropy-stable and entropy-conservative method is also high-order for the multi-
component ideal MHD equations. Therefore, we will show the experimental or-
der of convergence using a periodic solution adapted from the single-component
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EC ES

|∆S| in 1D 8.0E-17 4.1E-04

|∆S| in 2D 2.3E-17 2.8E-05

Table 5.7: Total entropy change over the entire domain at time Tend = 2 in 1D
and 2D calculated with the fourth-order entropy-conservative DG method and
the entropy-stable DG method using DOF = 128 degrees of freedom in each
spatial dimension.

ideal MHD equation convergence test from [90]. Furthermore, we will also show
that the basic conservation properties are fulfilled by our method. The follow-
ing test cases are adapted from [9].

5.2.1 Convergence Studies

In the following, we will show the experimental order of convergence with the
single-component ideal MHD convergence setup taken from [90] adapted to the
multi-component case. More precisely, we use a smooth Alfvén wave test case
in 2D. Here, an Alfvén wave with forty-five degrees inclination to the x-axis
moves over a periodic domain and returns to the start position every integer
time step t ∈ N, so that the final solution can be compared with the starting
solution.
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Setup

The initial condition can be stated as

ρ
p
v1
v2
v3
B1

B2

B3

ψ
Y1
Y2



=



1.0
0.1

−ϕB ∗ sin(α)
ϕB ∗ cos(α)

0.1 ∗ cos(2πϕx)
cos(α) + v1
sin(α) + v2

v3
0
1
3
2
3



(5.1)

with α = ϕ
4 , ϕx = x ∗ cos(α) + y ∗ sin(α) and ϕB = 0.1 ∗ sin(2πϕx) and the

following parameters regarding the components

(γ1, γ2) = (2.0, 4.0) (5.2)(
R̃1, R̃2

)
= (1.0, 2.0) .

The simulation takes place in the spatial domain Ω = [0,
√
2] × [0,

√
2] using

periodic boundary conditions.

Solver

The simulation takes place in the temporal domain T = [0.0, 2.0] with a time
step size determined by the CFL condition CFL = 0.5 as well as the GLM
speed GLM = 0.5. We use the five-stage, fourth-order low-storage method of
Carpenter and Kennedy for the time integration as well as the fourth-order
entropy-stable DGSEM with polynomial degree Np = 3 for the spatial integra-
tion using the LLF surface flux as well as the in this thesis derived EC volume
flux.

Result

For a polynomial degree of Np = 3, we should expect a convergence order of
four, which we indeed achieve as we see in table 5.8. Hereby, we calculated the
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L2 and L∞ error as well as the corresponding EOCs for 16 − 512 degrees of
freedom per spatial dimension.
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DOF ||ρv1||2 ||ρv1||∞ EOC2 EOC∞
16 3.04e-04 1.43e-03 — —
32 1.58e-05 1.29e-04 4.27 3.47
64 9.08e-07 7.42e-06 4.12 4.12
128 5.63e-08 4.82e-07 4.01 3.94
256 3.51e-09 3.03e-08 4.00 3.99
512 2.19e-10 1.89e-09 4.00 4.00

mean 4.08 3.91

DOF ||ρv2||2 ||ρv2||∞ EOC2 EOC∞
16 3.04e-04 1.43e-03 — —
32 1.58e-05 1.29e-04 4.27 3.47
64 9.08e-07 7.42e-06 4.12 4.12
128 5.63e-08 4.82e-07 4.01 3.94
256 3.51e-09 3.03e-08 4.00 3.99
512 2.19e-10 1.89e-09 4.00 4.00

mean 4.08 3.91

DOF ||ρv3||2 ||ρv3||∞ EOC2 EOC∞
16 4.83e-04 2.71e-03 — —
32 3.42e-05 1.83e-04 3.82 3.89
64 1.34e-06 1.10e-05 4.68 4.05
128 7.99e-08 6.78e-07 4.06 4.02
256 4.96e-09 4.25e-08 4.01 3.99
512 3.09e-10 2.66e-09 4.00 4.00

mean 4.12 3.99

DOF ||ρe||2 ||ρe||∞ EOC2 EOC∞
16 3.43e-04 1.05e-03 — —
32 1.67e-05 8.53e-05 4.36 3.62
64 1.04e-06 6.69e-06 4.01 3.67
128 6.53e-08 4.41e-07 3.99 3.92
256 4.08e-09 2.78e-08 4.00 3.99
512 2.55e-10 1.74e-09 4.00 4.00

mean 4.07 3.84

DOF ||B1||2 ||B1||∞ EOC2 EOC∞
16 3.52e-04 1.59e-03 — —
32 1.76e-05 1.24e-04 4.32 3.68
64 1.07e-06 8.17e-06 4.04 3.93
128 6.69e-08 5.34e-07 4.01 3.93
256 4.17e-09 3.34e-08 4.01 4.00
512 2.60e-10 2.09e-09 4.00 4.00

mean 4.07 3.91

DOF ||B2||2 ||B2||∞ EOC2 EOC∞
16 3.52e-04 1.59e-03 — —
32 1.76e-05 1.24e-04 4.32 3.68
64 1.07e-06 8.17e-06 4.04 3.93
128 6.69e-08 5.34e-07 4.01 3.93
256 4.17e-09 3.34e-08 4.01 4.00
512 2.60e-10 2.09e-09 4.00 4.00

mean 4.07 3.91

DOF ||B3||2 ||B3||∞ EOC2 EOC∞
16 4.75e-04 2.71e-03 — —
32 3.22e-05 1.84e-04 3.88 3.88
64 1.45e-06 1.09e-05 4.47 4.08
128 8.64e-08 6.80e-07 4.07 4.01
256 5.36e-09 4.25e-08 4.01 4.00
512 3.34e-10 2.66e-09 4.00 4.00

mean 4.09 3.99

DOF ||ψ||2 ||ψ||∞ EOC2 EOC∞
16 2.84e-04 1.04e-03 — —
32 9.49e-06 5.33e-05 4.90 4.29
64 4.67e-07 2.51e-06 4.34 4.41
128 2.82e-08 1.48e-07 4.05 4.08
256 1.75e-09 9.16e-09 4.02 4.02
512 1.09e-10 5.71e-10 4.00 4.00

mean 4.26 4.16

DOF ||ρ1||2 ||ρ1||∞ EOC2 EOC∞
16 1.01e-04 4.51e-04 — —
32 5.69e-06 2.51e-05 4.16 4.17
64 2.73e-07 1.42e-06 4.38 4.15
128 1.68e-08 9.12e-08 4.02 3.96
256 1.02e-09 5.43e-09 4.04 4.07
512 6.36e-11 3.37e-10 4.00 4.01

mean 4.12 4.07

DOF ||ρ2||2 ||ρ2||∞ EOC2 EOC∞
16 2.03e-04 9.02e-04 — —
32 1.14e-05 5.01e-05 4.16 4.17
64 5.46e-07 2.83e-06 4.38 4.15
128 3.36e-08 1.82e-07 4.02 3.96
256 2.04e-09 1.09e-08 4.04 4.07
512 1.27e-10 6.73e-10 4.00 4.01

mean 4.12 4.07

Table 5.8: EOC for the conservative variables using the entropy-stable DGSEM with
polynomial degree Np = 3 and different degrees of freedom in a single dimension for
the multi-component ideal MHD equations.
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5.2.2 Mass, Momentum, Energy and Entropy Conservation

Since we do not only want to use the multi-component Euler equations but also
want to calculate applications with the multi-component ideal MHD equations,
we have to show the correctness of our method for these equations as well. Since
the ideal MHD equations are basically just an extension of the Euler equations,
we have to show here again the conservation properties of our method for
mass, momentum, energy, and entropy while using our fourth-order entropy
conservative DGSEM. However, we would like to briefly mention here that the
ideal GLM-MHD equations no longer represent a conservation law.

Setup

Similar to the Euler case, we work again with a weak shock wave testcase,
which is just stable enough to not break but can still prove the conservation
properties of our method. The initial condition is basically an ideal GLM-MHD
adapted version of the initial conditions of the Euler equations in the previous
section which look as follows

(ρ, p, v1, v2, v3, B1, B2, B3, ψ, Y1, Y2)

=

{
(1.1691, 1.245, 0.1882ϕc, 0.1882ϕs), 0.0, 1.0, 1.0, 1.0, 0.0,

1
3 ,

2
3), r ≤ 0.5

(1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 13 ,
2
3), r > 0.5

with ϕc = cos(arctan(x2/x1)), ϕs = sin(arctan(x2/x1)) and the radius r =
|x⃗|2 =

√
x21 + x22 to the center of the blast wave while we use the following

parameters regarding the components

(γ1, γ2) = (2.0, 4.0) (5.3)(
R̃1, R̃2

)
= (1.0, 2.0) .

The simulation takes place in the spatial domain Ω = [−2, 2] × [−2, 2] using
periodic boundary conditions.

Solver

We start the simulation with a CFL condition of CFL = 0.5 and the GLM
speed GLM = 0.5 for the temporal domain T = [0.0, 2.0]. Again, we use the
five-stage, fourth-order low-storage method of Carpenter and Kennedy for the
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time integration as well as the fourth-order entropy-conservative DGSEM with
polynomial degree Np = 3 for the spatial integration.

Result

We begin with the mass and momentum conservation, where we calculate the
difference in total mass and total momentum accumulated over the entire do-
main at time Tend = 2.0 as well as at time Tstart = 0.0 which lies within
machine precision, see table 5.9.

ρv1 ρv2 ρv3 ρ1 ρ2 ρe

|∆U | 3.2E-17 1.8E-17 7.6E-18 5.3E-14 1.1E-13 3.6E-16

Table 5.9: Difference in accumulated total mass, momentum, and energy over
the whole domain at time Tend = 2 to the accumulated total mass, momentum,
and energy over the entire domain at time Tstart = 0 in 2D calculated with the
fourth-order DGSEM and DOF = 1282 degrees of freedom.

Since we want to verify that our scheme really is entropy-conservative or
entropy-stable, we analyse the total entropy change throughout the simulation
over the entire domain. For an entropy-conservative scheme, we do not expect
the entropy to change during the simulation, whereas for an entropy-stable
scheme we do expect an entropy change, see table 5.10.

EC ES

|∆S| 9.9E-19 7.1E-05

Table 5.10: Total entropy change over the entire domain at time Tend = 2
in 2D calculated with the fourth-order entropy-conservative DGSEM and the
entropy-stable DGSEM using DOF = 1282 degrees of freedom.

5.3 Shock Capturing Scheme

In the following section we will show that our shock capturing scheme is able to
ensure robust simulations in a shock dominated environment and demonstrate
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that the entropy stabilization property yields an even more robust simulation.

5.3.1 Sod’s shock-tube problem

One should assume that a test case, which is widely used as a benchmark
for the single-component Euler equations should also be a useful test case for
the multi-component Euler equations as long as the test case gets adapted
properly. A quick and easy way to adapt the single-component case to the
multi-component case is to simply define the left side density and the right side
density as individual components in the multi-component system and equip
them with different heat capacity ratios. This kind of Sod’s shock-tube for
multi-component Euler equations has already been used in several publications
[7, 91] with the objective to compare different numerical methods to a reference
solution. Sod’s shock-tube is a highly appreciated 1D Riemann problem for
Euler equations, since it is able to clearly visualize three different characteristics
of the system, namely the rarefaction wave, the contact discontinuity, and the
shock discontinuity.

Setup

The initial conditions of this example are given by

(ρ, p, v, YL , YR)

=

{
(1, 1, 0, 1, 0), x ≤ 0.5 (left side)
(0.125, 0.1, 0, 0, 1), x > 0.5 (right side)

with the following parameters regarding the components(
γL , γR

)
= (1.4, 1.6)

(R̃L, R̃R) = (1, 1).

On the boundary we set the initial solution using Dirichlet boundary conditions.

Solver

The goal of this example is to compare our fourth-order DGFV hybrid method
to the basic first-order FV method as well as the reference solution. To have
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(a) density ρ (b) pressure p

(c) velocity v (d) inverse specific heat ratio 1
γ−1

Figure 5.1: Comparison of the fourth-order entropy-stable DGFV hybrid solu-
tion (blue) to the first-order FV solution (grey) and digitally extracted reference
solution from Gouasmi et al. [7] (orange) at time Tend = 0.2 with DOF = 2048
degrees of freedom in space.

a fair comparison, we choose the same degrees of freedom for both methods,
namely DOF = 2048. We use the stable but also very dissipative LLF surface
flux for both methods as well as the entropy-conservative flux as volume flux
for the DG hybrid method. Since this test case consists of shocks, contact dis-
continuities, and rarefraction waves, we are obliged to use the shock-capturing
scheme for our DGSEM solution which is embedded into our DGFV hybrid
method. All calculations have been made with a time step size constrained of
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CFL = 0.3. The simulation is calculated to the endtime of Tend = 0.2.

Result

As can be seen, both methods, the FV method and the DGFV hybrid method,
work quite well. It is obvious that the FV method is more dissipative than
the DGFV hybrid method, despite using the same degrees of freedom, whereas
the DGFV hybrid method is very much on point with the reference solution
using this resolution. The overall picture clearly shows an accuracy advantage
for the DGFV hybrid method compared to the first-order FV method for the
same degrees of freedom.

5.3.2 Medium Blast Wave

The medium blast wave is a good example to test the shock capturing capabil-
ities in a domain full of shocks used by Hennemann and Gassner [8] which we
adapt to the multi-component case. It consists of a radially symmetric blast
wave expanding from the center of a domain where a high amount of density
and pressure is concentrated. The boundary line between the concentrated gas
in the center and the ambient gas with a smaller density and pressure con-
centration can be described as a shock front which is expanding towards the
outer boundary of the domain. Since the outer boundary conditions have been
chosen to be periodic, the shock front reflects back into the domain and starts
to form a complex shock pattern, which leads to several new shock interactions.
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Figure 5.2: Distribution of the quantity log(ρ) for the fourth-order entropy-
stable DGSEM at time Tend = 12.5 using DOF = 1024 degrees of freedom in
each spatial dimension resulting in overall DOF = 1048576 degrees of freedom.

Setup

For the initial condition, we choose the radius of the concentrated gas in the
center to be r =

√
x21 + x22 ≤ 0.5, using the euclidic norm. Outside of this

radius, we set the ambient gas to be at rest in both directions and set the
ambient pressure and density to a low value. Inside, we set the gas to move
towards the outside while having a slightly higher density concentration as well
as a way higher pressure in this area. We set the simulation domain in space
to Ω = [−2.0, 2.0]2. Now, we set the initial conditions to be

(ρ, p, v1, v2, Y1 , Y2)
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=

{
(1, 0.001, 0, 0, 0, 1), r > 0.5 (ambient)
(1.1691, 1.245, 0.1882 cos(ϕ), 0.1882 sin(ϕ), 1, 0), r ≤ 0.5 (center)

with ϕ = arctan(x21 + x22) and the following parameters regarding the compo-
nents (

γ1 , γ2

)
= (1.2, 1.4)

(R̃1, R̃2) = (0.2, 0.4).

Figure 5.3: Distribution of the blending coefficient α for the fourth-order
entropy-stable DGFV hybrid scheme at time Tend = 12.5 using DOF = 1024
degrees of freedom in each spatial dimension resulting in overall DOF =
1048576 degrees of freedom.
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Solver

We set the simulation domain in time to T = [0, 12.5]. Moreover, the domain
in space Ω is subdivided into Nq = 2562 quadrilateral elements each represent-
ing the solution with a polynomial of degree Np = 3 leading to a fourth-order
scheme with DOF = 1048576 degrees of freedom in space, whereas in time we
use the SSPRK54 scheme with a time step size constrained by CFL = 0.8.

As has been mentioned above, this simulation has to deal with a lot of shocks
and is therefore not usable without a proper shock capturing scheme. To
deal with this problem, we use our shock capturing scheme with a maximum
blending coefficient of αmax = 0.5 for the entropy-stable DGFV hybrid scheme.
The reason for the relatively low maximum blending coefficient of αmax = 0.5
lies in the increased robustness of the entropy-stable DGFV hybrid scheme
which in turn leads to less dissipative solutions.

Result

Figure 5.2 shows the endsolution at time T = 12.5 for the entropy-stable DGFV
hybrid scheme. In Figure 5.3 it can be seen that the entropy-stable DGFV
hybrid scheme is able to stabilize the simulation with quite a small blending
coefficient of αmax = 0.5.

5.4 Positivity-Preserving Limiter

Although the entropy-stable DGFV hybrid scheme with shock-capturing is very
robust in most applications, it can be necessary to have a positivity-preserving
limiter in cases where densities or pressure are too close to zero and might
become negative due to oscillations resulting from the high-order scheme. To
eliminate these oscillations, it may be necessary to change the blending coeffi-
cient a posteriori to a value which guarantees positive densities and pressure.
To show the benefits of this a posteriori limiter, we will simulate the Kelvin-
Helmholtz instability without shock-capturing (which means we are using α = 0
leading to a pure DGSEM method) and show that the standard DGFV hybrid
scheme as well as the entropy-stable DGFV hybrid scheme are not able to run
the simulation until the end. Afterwards, we will run the simulation again
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with the positivity-preserving limiter activated and show that this a posteriori
limiter is robust enough to keep the simulation alive until the end.

5.4.1 Kelvin-Helmholtz Instability

The following Kelvin-Helmholtz test case, taken from Rueda-Ramı́rez and
Gassner [10] and adapted to the multi-component case, is a good example
for the underlying high-order DGSEM, since it is quite challenging due to the
very low resolution as well as due to the fact that the setup in inviscid with an
effective Reynolds number of Re = ∞. Due to the fact that the initial flow is
subsonic with a Mach number of Ma ≤ 0.6, no shocks are developed whereas
compressibility is still a relevant feature in the simulation. While pressure is
uniformelly distributed across the entire domain, we set the density as well as
the velocities varying across the domain. More precisely, we distribute the den-
sity in a way that generates several layers of different densities which move in
opposite directions. For example, this phenomenon is known as a weather phe-
nomenon, where two different layers of air are mixed due to different velocities
and directions of the flow.

Setup

For the initial condition, we choose

(ρ, p, v1, v2, Y1 , Y2) = (1 + 3
2ϕ, 1,

1
2(ϕ− 1), 1

10sin(2πx, 0.5, 0.5)

with ϕ = tanh(15x2 + 7.5) − tanh(15x2 − 7.5) and the following parameters
regarding the components (

γ1 , γ2

)
= (1.2, 1.67)

(R̃1, R̃2) = (0.2, 4.0).

The spatial domain is in 2D and has the size Ω = [−1.0, 1.0]2.

Solver

We want to run this example for quite a long time period to show the differ-
ence in stability for both, the standard and entropy-stable DGSEM, namely
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Figure 5.4: Zoomed in section of the total entropy evolution of the standard
DGSEM (blue) and the entropy stable DGSEM (orange) over t=[0,5] in the
entire simulation domain calculated without positivity-preserving (solid) and
with positivity-preserving (dashed).

for T = [0, 25] with a time step constraint of CFL = 0.5 and the SSPRK54
time integration scheme. Furthermore, we divide the domain into Nq = 322

quadrilateral elements and use a fourth-order DGSEM with a polynomial de-
greeNp = 3 which leads toDOF = 16384 degrees of freedom in space. First, we
start the simulation without any positivity limiter or shock-capturing and track
the entropy development for both of our schemes. Afterwards, both schemes
are started again with the activated a posteriori positivity limiter. The surface
flux for both frameworks is the LLF flux.

Result

As can be seen in Figure 5.4, the standard DGSEM as well as the entropy-stable
DGSEM without positivity-preserving (see the continuous lines) abort before
the end time T = 25. As expected, the total entropy over the whole domain
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Figure 5.5: Total entropy evolution of the standard DGSEM (blue) and the
entropy-stable DGSEM (orange) over time in the entire simulation domain for
t=[0,25] calculated without positivity-preserving (solid) and with positivity-
preserving (dashed).

starts to increase for the standard DGSEM, which is an unphysical property
and therefore leads to an early termination of the simulation at time t ≈ 1.7.
If we compare this result with the entropy-stable DGSEM simulation, we can
clearly see the advantage of the entropy stability property. The overall total
entropy starts to decrease and is therefore able to carry the simulation about
three times further until the termination time t ≈ 4.5. Subsequently, we start
the simulation again with the now activated positivity limiter and watch the
simulations run further than before. The standard DGSEM is now able to run
the simulation until t ≈ 4.0 which is about two times further than without the
positivity limiter, but still not as far as the entropy-stable DGSEM without the
positivity limiter. When we observe the dashed line of the standard DGSEM,
we can see that the simulation could be carried on although the total entropy
has been increasing even more, which shows that the positivity limiter is able
to keep the solution alive without switching to a full first-order scheme until
t ≈ 2.2. Shortly after, the positivity limiter has to use way more amount of the
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FV method which leads to a decreasing total entropy but is not able to rescue
the solution anymore, which might be the consequence of the prior unphysical
behaviour of the scheme. On the contrary, the entropy-stable DGSEM with
positivity limiter is able to run to the end of the simulation t = 25 while
the total entropy is monotonic decreasing throughout the whole simulation as
expected.

5.5 Adaptive Mesh Refinement

Despite increasingly powerful hardware, efficiency is still a hot topic in the
world of fluid dynamics. A great tool to increase computational efficiency in
simulations with huge areas where nothing special happens, is the adaptive
mesh refinement (AMR). With AMR it is possible to refine areas where it
is needed and coarsen the other areas instead of refining the whole domain.
A good example to demonstrate these AMR capabilities is again a Kelvin-
Helmholtz instability where huge areas do not have to be refined necessarily.

5.5.1 Kelvin-Helmholtz Instability

The following Kelvin-Helmholtz test case is based on Rueda-Ramı́rez and
Gassner [10] and adapted to the multi-component case. It is a good example
to show the AMR capabilities of our code, while using three different compo-
nents. The overall dynamics of the simulation are similar to the previous one
in section 5.3.1 but with a quite different initial condition.

Setup

The initial condition for this test case looks as follows

(ρ, p, v1, v2, Y1 , Y2 , Y3)

=


(1, 2.5,−0.5, v2, 0.1, 0.1, 0.8), x2 ≥ 0.75 (top)
(2, 2.5, 0.5, v2, 0.05, 0.9, 0.05), 0.25 < x2 < 0.75 (center)
(1, 2.5,−0.5, v2, 0.8, 0.1, 0.1), x2 ≤ 0.25 (bottom)
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Figure 5.6: Kelvin-Helmholtz simulation using the entropy-stable DGSEM with
AMR at Tend = 0.8. Showing the density distribution (top-left), shock-
capturing indicator (top-right), mesh refinement levels (bottom-left), and amr
indicator (bottom-right) calculated with overall DOF = 16384 degrees of free-
dom in space in the beginning.

with v2 = w0 ·sin(4πx1)·(exp(−(x2−0.25)2/(2σ2))+exp(−(x2−0.75)2/(2σ2))),
w0 = 0.1 and σ = 0.05√

2
and the following parameters regarding the components(

γ1 , γ2 , γ3

)
= (1.2, 1.4, 1.67)

(R̃1, R̃2, R̃3) = (0.2, 0.4, 4.0).

The spatial domain has the size Ω = [0.0, 1.0]2.

Solver

We run this example with the entropy-stable DGSEM for T = [0.0, 0.8] with
a time step size condition of CFL = 0.5 and the SSPRK54 time integration
scheme. Initially, we divide the domain into Nq = 322 quadrilateral elements
and use a fourth-order DGFV hybrid method with a polynomial degree Np = 3
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Figure 5.7: Entropy-stable DGFV hybrid method without AMR (top) and with
AMR (bottom) at time Tend = 0.8 showing the density distribution (left) and
the shock-capturing indicator (right). Those simulations have been calculated
in roughly the same amount of time (≈ 1150 seconds).

which leads to DOF = 16384 degrees of freedom in space. Since we now
use AMR, our simulation will choose where to refine further and where to
coarsen the mesh with a maximal refinement level of Nq = 2562 and a minimum
refinement level of Nq = 162. The choosen surface flux is the LLF flux. Despite
that, another simulation has been started without AMR with Nq = 1282 which
takes about an equal amount of time for the whole simulation, namely ≈ 1150
seconds.

Result

As can be seen in Figure 5.6, the shock-capturing indicator as well as the AMR
indicator are fairly good at following the mixing layer of the components. Com-
paring this result to the same simulation without AMR, which takes roughly
the same amount of time, it can be seen in Figure 5.7 that the AMR simulation
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shows way more scales than the non AMR simulation.

5.6 Chemical Networks

When a chemical reaction takes place during a simulation, a component might
lose some of its total mass and another one gains some. Therefore, chemical
networks have to be seen as a kind of source term. To show that the chemical
reaction network works properly, we will run a 1D simulation with five compo-
nents and two chemical reactions and compare it to a reference solution taken
from [84].

5.6.1 1D Detonation Waves

The following 1D detonation wave test case is a great example to verify that
the chemical reaction networks work properly. It consists of five components
and two chemical reactions. Both reactions have its own ignition tempera-
ture, which means that the chemical reactions only take place above different
temperature thresholds. Not only does the first chemical reaction start earlier
because of the lower temperature threshold, it also has a higher reaction rate
leading to much faster reactions and therefore a faster component transfer.
This stiff problem is quite challenging since it is not trivial to capture the cor-
rect speeds of all waves.

Setup

It follows, that the example consists of two one-way reactions

H2 +O2 → 2OH, (I)

2OH +H2 → 2H2O, (II)

with five components as in [83] and [84]. Thereby, the fifth component N2 is
used as a dilute catalyst. We set the initial conditions to be

(ρ, p, v, YH2
, YO2

, YOH , YH2O
, YN2

) =

{
(2, 40, 10, 0, 0, 0.17, 0.63, 0.2), x ≤ 0.5
(1, 1, 0, 0.08, 0.72, 0, 0, 0.2), x > 0.5
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(a) H2 fraction yH2
(b) pressure p

Figure 5.8: Comparison of the standard DGFV solution (orange) to the digital
extracted reference solution (blue) from [84] for time Tend = 0.25 calculated
with DOF = 8192 degrees of freedom in each spatial dimension.

with the following parameters regarding the reaction model and components(
γH2

, γO2
, γOH , γH2O

, γN2

)
= (1.4, 1.4, 1.4, 1.4, 1.4) (5.4)

(qH2
, qO2

, qOH , qH2O
, qN2

) = (0, 0,−50,−100, 0) (5.5)

(R̃H2 , R̃O2 , R̃OH , R̃H2O, R̃N2) = (4.1242, 0.2598, 0.4, 0.4615, 0.2968) (5.6)

(DaI , T I
ign) = (1× 105, 1.5) (5.7)

(DaII , T II
ign) = (2× 104, 10). (5.8)

The example is solved on the interval Ω = [0.0, 5.0] in space whereat the bound-
aries are set to be a solid wall.

Solver

This example has been run with the standard DGFV hybrid method and a
time step size condition of CFL = 0.8 using the SSPRK54 time integration
scheme for T = [0.0, 0.25] in time. We divide the domain into Nq = 2048
quadrilateral elements and use a fourth-order DGFV hybrid method with a
polynomial degree Np = 3 which leads to DOF = 8192 degrees of freedom in
space. Since we have to solve a chemical network additionaly, we also activate
KROME using the chemistry callback implemented into Trixi.jl.
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Result

As we can see in Figure 5.8, our scheme is able to capture all waves at correct
speed. It looks even more sharp then the reference solution which might is
mainly due to the inaccurate extraction of the reference data. Overall, we see
that our reactive terms for the multi-component Euler equations solver work
properly.

134



6 Applications

Now that we have proven the functionality and robustness of our method in the
previous chapter, we want to simulate more applied and at the same time more
complex examples. In this chapter, we will apply the entropy-conservative
fluxes for the multi-component Euler and ideal MHD equations as well as
chemical networks in conjunction with our DGFV hybrid method in several
test examples. We will see that our high-order method can not only simulate
these examples very accurately, but also gives very good results even in difficult
situations.

We start with a typical shock-bubble interaction problem, which has already
been studied in Gouasmi et al. [7] using an entropy-stable high-order method
for the multi-component Euler equations. We will show that we can not only
obtain comparable results with our method, but we can even increase the dif-
ficulty of the test example by letting the individual densities be close to zero
without obtaining positivity-preserving issues. We then switch to a test exam-
ple involving chemical reactions and show that our method also provides good
and accurate results with these while our AMR and shock-capturing scheme
is doing a good job. As a final multi-component reactive Euler use case, we
will simulate a strong detonation with multi-step reactions and several different
components and show that our high-order method also provides very good and
accurate results here.

Subsequently, we will also apply our specially derived entropy-stable high-order
method to the multi-component ideal GLM-MHD equations. Since the litera-
ture does not have many application-ready test cases for these equations, we
will consider a specially created application example, which will also include
chemical reactions.
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6.1 Shock-Bubble Interaction

In this section, we will simulate the commonly [92, 93] used shock-bubble in-
teraction problem for multi-component compressible flows and show the capa-
bilities of our high-order entropy-stable DGFV hybrid method. This test case
deals with an interaction of a shock wave with a cylindrical gas inhomogeneity,
or in other words, a shock wave hits a helium-air bubble inside a tube with a
inflow on the left boundary and an outflow on the right boundary whereas the
top and bottom boundaries are reflective.

We will show that we are not only able to simulate this test case similar to
Gouasmi et al. [7] with our high-order entropy-stable DGFV hybrid method,
but that we are also able to simulate this test case without any modification of
the initial condition due to the positivity-preserving properties of our method.

Setup

The shock-bubble interaction test case consists of two components, namely air
and a helium-air mixture, leading to the following initial conditions

(ρ, p, v1, v2, Y1, Y2) =


(1.6861, 159060,−113.5243, 0, 1, 0), x1 > 2.75

(1.225 R̃1

R̃2
, 101325, 0, 0, 0, 1), r < 0.25

(1.225, 101325, 0, 0, 1, 0), else

(6.1)

with r = ||x⃗||2 and the parameters

(γ1, γ2) = (1.4, 1.648) (6.2)

(R̃1, R̃2) = (0.287, 1.578). (6.3)

Therefore, we can choose our equations in the elixir file as:

05 equations = CompressibleEulerMulticomponentEquations2D(

06 gammas = (1.4, 1.648),

07 gas constants = (0.287, 1.578),

08 heat of formations = (0.0, 0.0))

and also write our initial condition function:
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09 function initial condition shock bubble(x, t,

10 equations::CompressibleEulerMulticomponentEquations2D)

11 inicenter = SVector(2.25, 0.0)

12 x norm = x[1] - inicenter[1]

13 y norm = x[2] - inicenter[2]

14 r = sqrt(x norm^2 + y norm^2)

15 delta = eps() #delta = 0.03

16 if x[1] > 2.75

17 rho1 = 1.6861 - delta

18 rho2 = delta

19 v1 = -113.5243

20 v2 = 0.0

21 p = 159060

22 elseif r < 0.25

23 rho1 = delta

24 rho2 = 1.225 * gas constants[1]/gas constants[2] - delta

25 v1 = 0.0

26 v2 = 0.0

27 p = 101325

28 else

29 rho1 = 1.225 - delta

30 rho2 = delta

31 v1 = 0.0

32 v2 = 0.0

33 p = 101325

34 end

35 return prim2cons(SVector(v1, v2, p, rho1, rho2), equations)

36 end

37 initial condition = initial condition shock bubble

The domain in space is Ω = [0.0, 4.45]×[−0.445, 0.445] and T = [0.0, 0.0067691]
in time with reflective boundary conditions at the top and bottom boundary as
well as inflow and outflow boundary conditions on the left and right boundary.
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38 boundary condition = BoundaryConditionDirichlet(initial condition)

39 boundary conditions = Dict( :x neg => boundary condition,

40 :x pos => boundary condition,

41 :y neg => boundary condition slip wall,

42 :y pos => boundary condition slip wall)

Solver

Now that we know our setup, we can start to set our solver by using the
fourth-order entropy-stable DGFV hybrid scheme with the local Lax-Friedrichs
surface flux and the entropy-conservative volume flux by Gouasmi et al. [7].
We choose the shock-capturing indicator by Hennemann and Gassner with the
shock-indicator variable being density times pressure.

43 surface flux = flux lax friedrichs

44 volume flux = flux ec gouasmi

45 polydeg = 3

46 basis = LobattoLegendreBasis(polydeg)

47 indicator sc = IndicatorHennemannGassner(equations, basis,

48 alpha max = 1.0,

49 alpha min = 0.0,

50 alpha smooth = true,

51 variable = density pressure)

52 volume integral = VolumeIntegralShockCapturingHG(indicator sc;

53 volume flux dg = volume flux,

54 volume flux fv = surface flux)

55 solver = DGSEM(polydeg = polydeg, surface flux = surface flux,

56 volume integral = volume integral)

We also have to set the P4estMesh suitable to our spatial domain:
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57 coordinates min = (0.0, -0.445)

58 coordinates max = (4.45, 0.445)

59 trees per dimension = (5, 1)

60 mesh = P4estMesh(trees per dimension,

61 polydeg=1, initial refinement level=8,

62 coordinates min = coordinates min,

63 coordinates max = coordinates max,

64 periodicity = false)

Now we can insert everything needed into our semidiscretization:

65 semi = SemidiscretizationHyperbolic(mesh, equations,

66 initial condition, solver,

67 boundary conditions = boundary conditions)

Now we just need to hand over the time span to the DifferentialEquation.jl
ODE problem:

68 tspan = (0.0, 0.0067691)

69 ode = semidiscretize(semi, tspan)

Additionally, we want to analyze and save our solution every few time steps:

70 summary callback = SummaryCallback()

71 analysis interval = 1000

72 analysis callback = AnalysisCallback(semi,

73 interval = analysis interval)

74 alive callback = AliveCallback(analysis interval = analysis interval)

75 save solution = SaveSolutionCallback(interval = 1000,

76 save initial solution = true,

77 save final solution = true)

The last important callback is the stepsize callback where we set our CFL
condition to CFL = 0.8:
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78 stepsize callback = StepsizeCallback(cfl = 0.8)

Then we collect all just now defined callbacks together:

79 callbacks = CallbackSet(summary callback,

80 analysis callback,

81 alive callback,

82 save solution,

83 stepsize callback)

Finally we can start our simulation with our SSPRK54 time integration scheme:

84 sol = solve(ode, SSPRK54(), dt=1.0,

85 save everystep = false, callback = callbacks);

86 summary callback()

Result

Our goal was to test the entropy-conservative flux by Gouasmi et al. [7] by
trying to reproduce the shock-bubble interaction test results. However, let
us first compare the standard DGFV hybrid solution with the entropy-stable
DGFV hybrid solution in Figure 6.1. As we can see, the pure first-order FV
method is way more dissipative than the fourth-order DGFV hybrid method
using the same degrees of freedom. We calculated the shock-bubble interaction
problem exactly as stated in Gouasmi et al.[7] with a positivity-preserving
coefficient, namely delta = 0.03, added to the species which would otherwise
be zero and subtracted from the other species leading to the same amount of
total density. By doing this, we receive pretty good results for the fourth-order
DGFV hybrid method in Figure 6.3 similar to Gouasmi et al. [7]. This means
that our entropy-stable fourth-order DGFV hybrid method works well for this
particular test case. In contrast to the used method by Gouasmi et al., we are
able to preserve the positivity of the partial densities as well as the positivity
of pressure, so that we can also simulate this test case by setting the positivity
preserving coefficient to machine precision with delta = eps. Although, this
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Figure 6.1: Comparison of the first density component ρ1 for the first-order FV
solution (left) and fourth-order entropy-stable DGFV hybrid solution (right)
with the DGFV hybrid scheme.

simulation was not able to run stable with the chosen shock-capturing indicator
variable, namely density times pressure, we were able to run the simulation with
the much more intrusive shock-capturing indicator variable where we multiply
both individual densities together with the pressure. As we see in Figure 6.2,
we were able to run the test case with densities being near machine precision,
however, some of the features that were still there in the previous simulation
are no longer. This can be explained by the fact that the shock-capturing
procedure with our chosen indicator was able to keep the simulation alive, but
had to pay a high price for it. In short, this means that we had to do a lot
of shock-capturing which led to a lot of reliance on the first-order FV method.
One way to solve this problem is to find a suitable shock-capturing indicator
variable that manages to keep the simulation alive while not switching too
much to first-order, or in other words, being smarter about marking the cells
that need to be blended.
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Figure 6.2: Comparison of the first density component ρ1 for the entropy-stable
DGFV hybrid method using the positivity-preserving coefficient delta = eps
(left) and delta = 0.03 (right).

6.2 Detonation Diffraction Problems

In this section, we want to test our method for applications with chemical reac-
tions and show that our high-order method does not break even with different
geometries and diffraction angles. We will even use AMR, which, as we will
see, works wonderfully for use cases like these. We will now study three similar
but also slightly different detonation diffraction problems, which also have dif-
ferent complexities due to their different geometries/angles. These test cases
have been used already in [94, 95].

The following use cases have a similar configuration, namely that all use the left
edge as inflow while all other walls are set to be reflective. A shock wave now
moves from the left edge to the right edge, and hits a sharp corner which has
three different angles depending on the testcase. These sharp corners cause the
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Figure 6.3: An entropy-stable DGFV hybrid method simulation of the shock-
bubble interaction problem with positivity-preserving coefficient delta = 0.03.
Showing a schlieren plot of the overall density (left), a plot of the first density
ρ1 (top-right) as well as the shock-capturing indicator (bottom-right).

shock wave to be diffracted, which can lead to positivity problems, especially
with high-order methods. Another complexity is that the chemical reaction
caused by the shock wave starts the production of a second component which
our procedure must also master.

6.2.1 90 Degree Corner Diffraction

Let us now start with a grid containing a ninety degree corner. We start with
one species which flows into the domain from the top left, which, depending on
the temperature, starts to convert into another species. The critical points of
this simulation are the shock capturing of the shock wave at the ninety degree
corner as well as the chemical reaction mechanism. To be able to simulate such
a test case in Trixi.jl, we also have to create a fitting mesh with HOHQMesh
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which is able to run with the P4estMesh capability.

Setup

The example consists of one naive reaction

a→ b (6.4)

with two components using the Arrhenius form with K̃ = 2566.4. We set the
initial conditions to be

(ρ, ρe, v1, v2, Ya, Yb) =

{
(11, 970, 6.18, 0, 1, 0), x < 0.5

(1, 55, 0, 0, 1, 0), x ≥ 0.5
(6.5)

with the following parameters regarding the reaction model and components

(γA, γB) = (1.2, 1.2) (6.6)

(qA, qB) = (50, 0) (6.7)

and the ignition temperature T̃ = 50. The example is solved on the domain
Ω = [0.0, 5.0] × [0.0, 5.0] \ C with C = [0.0, 1.0] × [0.0, 2.0] in space and T =
[0.0, 0.6] in time. The boundary conditions are set to be reflective everywhere
except on the upper left at x = 0 with

(ρ, ρe, v1, v2, Ya, Yb) = (11, 970, 6.18, 0, 1, 0), x = 0.0. (6.8)

Therefore, we need to use our multi-component Euler equations with the in-
cluded chemistry solver which we set up as follows:

05 equations = CompressibleEulerMulticomponentEquations2D(

06 gammas = (1.2, 1.2),

07 gas constants = (0.287, 0.287),

08 heat of formations = (50.0, 0.0))

stating the multi-component specific parameters as well as the chemical reac-
tion parameters. Now we need to state the initial condition:
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09 function initial condition diffraction 90(x, t,

10 equations::CompressibleEulerMulticomponentEquations2D)

11 if x[1] < 0.5

12 rho1 = 11.0

13 rho2 = eps()

14 rho = rho1 + rho2

15 rho v1 = rho * 6.18

16 rho v2 = rho * 0.0

17 rho e = 970.0

18 else

19 rho1 = 1.0

20 rho2 = eps()

21 rho = rho1 + rho2

22 rho v1 = rho * 0.0

23 rho v2 = rho * 0.0

24 rho e = 55.0

25 end

26 return SVector(rho v1, rho v2, rho e, rho1, rho2)

27 end

28 initial condition = initial condition diffraction 90

and set this function as initial condition. Since we know the boundary condi-
tions, we have to define them following:

29 boundary condition dirichlet = BoundaryConditionDirichlet(

30 initial condition)

31 boundary conditions = Dict( :B1 => boundary condition slip wall,

32 :B2 => boundary condition slip wall,

33 :B3 => boundary condition slip wall,

34 :B4 => boundary condition slip wall,

35 :B5 => boundary condition slip wall,

36 :B6 => boundary condition dirichlet)

with B1, B2, . . . , B6 being the six walls we created with HOHQMesh (for more
details we refer to section 4.4). We have to activate our chemical network (see
section 4.3) by adding:
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37 chemistry term = chemical reaction network

into the elixir, which integrates the chemical network solver KROME into
Trixi.jl.

Solver

Now we have to state our solver, which in our case will be the standard DGFV
hybrid scheme with a LLF surface flux. We set the polynomial degree to
Np = 3, initialize the shock-capturing scheme with the indicator ρp and set our
desired maximum and minimum alpha:

38 surface flux = flux lax friedrichs

39 volume flux = flux central

40 polydeg = 3

41 basis = LobattoLegendreBasis(polydeg)

42 indicator sc = IndicatorHennemannGassner(equations, basis,

43 alpha max = 1.0,

44 alpha min = 0.0,

45 alpha smooth = true,

46 variable = density pressure)

47 volume integral = VolumeIntegralShockCapturingHG(indicator sc;

48 volume flux dg = volume flux,

49 volume flux fv = surface flux)

50 solver = DGSEM(polydeg = polydeg, surface flux = surface flux,

51 volume integral = volume integral)

We also need to load our with HOHQMesh designed mesh file:

52 mesh file =joinpath("examples/p4est 2d dgsem","diffraction 90.inp")

53 mesh = P4estMesh{2}(mesh file)

and wrap everything up by handing it over to the semidiscretization in Trixi.jl:
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54 semi = SemidiscretizationHyperbolic(mesh, equations,

55 initial condition, solver,

56 boundary conditions = boundary conditions,

57 source terms = nothing,

58 chemistry terms = chemistry term)

The last thing our ODE problem needs is the time span with the end time
Tend = 0.6:

59 tspan = (0.0, 0.6)

60 ode = semidiscretize(semi, tspan)

For analysis purposes, we set the following functions and callbacks:

61 summary callback =SummaryCallback()

62 analysis interval = 100

63 analysis callback = AnalysisCallback(semi,

64 interval = analysis interval)

65 alive callback = AliveCallback(analysis interval = analysis interval)

66 save solution = SaveSolutionCallback(interval = 100,

67 save initial solution = true,

68 save final solution = true)

and start to initialize our AMR indicator:

69 amr indicator = IndicatorHennemannGassner(semi,

70 alpha max = 1.0,

71 alpha min = 0.0,

72 alpha smooth = true,

73 variable = density pressure)

together with the AMR controller:
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74 amr controller = ControllerThreeLevel(semi, amr indicator,

75 base level = 0,

76 med level = 1, med threshold = 0.05,

77 max level = 3, max threshold = 0.1)

and AMR callback:

78 amr callback = AMRCallback(semi, amr controller,

79 interval = 5,

80 adapt initial condition = true,

81 adapt initial condition only refine = true)

For a more detailed explaination we refer to section 4.5 which explains a quite
similar example. Now we need to define the last two callbacks, namely the step
size callback with a CFL = 0.8 and the chemistry callback:

82 stepsize callback = StepsizeCallback(cfl = 0.8)

83 chemistry callback = KROMEChemistryCallback())

Afterwards, we wrap all callbacks together:

84 callbacks = CallbackSet(summary callback,

85 analysis callback,

86 alive callback,

87 save solution,

88 amr callback,

89 stepsize callback,

90 chemistry callback)

Last but not least, we set our ODE solver with our desired SSPRK54 time
integration scheme as well as a dummy time step size which will be overwritten
in the callbacks:
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91 sol = solve(ode, SSPRK54(), dt=1.0,

92 save everystep = false, callback = callbacks);

93 summary callback()

Result

In the following, we show the solution computed with the fourth-order DGFV
hybrid method as well as the first-order FV method of pressure and density.
As we will see, the choice of the shock-capturing and AMR indicator influences
the shock tracking for the DGFV hybrid simulations as we see in Figure 6.4
and Figure 6.5. Here, it can be seen that the shock indicator with the total

Figure 6.4: Ninety degrees detonation diffraction problem simulated with the
fourth-order DGFV hybrid method. The top left and top right images show the
pressure as well as the total density at the final time T = 0.6. The bottom left
and bottom right images show the activation of the shock-capturing indicator
(in this case density times pressure) as well as the active AMR level.
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Figure 6.5: Ninety degrees detonation diffraction problem simulated with the
fourth-order DGFV hybrid method. The top left and top right images show the
pressure as well as the total density at the final time T = 0.6. The bottom left
and bottom right images show the activation of the shock-capturing indicator
(in this case multiplied individual densities times pressure) as well as the active
AMR level.

density times pressure identifies the shocks more cleanly but leads to oscilla-
tions in some areas, while the somewhat more sensitive shock indicator with
the multiplied individual densities times pressure does reduce the oscillations
in this test case. Although the first indicator looks cleaner than the second
indicator, it does not lead to similar accurate solutions. Therefore, we will
continue to use the multiplied individual densities times pressure indicator for
our detonation diffraction test cases below. We want to mention, that this in-
dicator as well as the first mentioned indicator is not suitable for all test cases.
The density times pressure indicator is particularly unsuitable if, for example,
the total density is constant, but the individual densities differ greatly. An
alternative here would be, for example, to use a single density times pressure
as indicator.
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Furthermore, we see an accuracy increase for the fourth-order DGFV hybrid
method compared to the first-order FV method as can be seen in Figure 6.6.
This is even better illustrated in Figure 6.7, where the two methods are

Figure 6.6: Ninety degrees detonation diffraction problem simulated with the
first-order FV method. The top left and top right images show the pressure as
well as the total density at the final time T = 0.6. The bottom left and bottom
right images show the activation of the shock-capturing indicator (which is set
to α = 1.0 everywhere) as well as the active AMR level.

compared. The AMR levels show quite well that the rear part of the shock
front in Figure 6.6 is dissipated so much that even the more sensitive AMR
indicator does not have to be activated at this point. In general, the first
order FV method appears to be more dissipative, as expected. For the sake of
completeness, we would like to mention the mesh inprint, which is due to the
subcell implementation of the FV method in Trixi.jl.
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Figure 6.7: Comparison of the ninety degrees detonation diffraction problem
simulated with the first-order FV method (left) and fourth-order DGFV hybrid
method (right).

6.2.2 120 Degree Corner Diffraction

The one hundret and twenty degree corner diffraction is quite similar to the
ninety degree corner example except for a few parameters. First, we need to
build a new mesh which has a one hundret and twenty degree diffraction corner
and which is twenty percent wider in x1-direction as in the previous testcase.
Afterwards, we are able to apply the adapted initial conditions as well as other
parameters like the end time differing from the ninety degree testcase.

Setup

Since the domain size as well as the diffraction corner angle differ from the
ninety degree detonation diffraction test case, we have to adapt the HOHQMesh
file described in subsection 4.4.2 to look as follows:
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\begin{END POINTS LINE}
name = B1

xStart = [0.0,2.0,0.0]

xEnd = [1.15,2.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B2

xStart = [1.15,2.0,0.0]

xEnd = [0.0,0.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B3

xStart = [0.0,0.0,0.0]

xEnd = [6.0,0.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B4

xStart = [6.0,0.0,0.0]

xEnd = [6.0,5.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B5

xStart = [6.0,5.0,0.0]

xEnd = [0.0,5.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B6

xStart = [0.0,5.0,0.0]

xEnd = [0.0,2.0,0.0]

\end{END POINTS LINE}

Now, we have to adjust the initial conditions to be

(ρ, ρe, v1, v2, Y1, Y2) =

{
(11, 970, 6.18, 0, 1, 0), x1 < 0.6 and x2 ≥ 2.0

(1, 55, 0, 0, 1, 0), x1 ≥ 0.6 or x2 < 2.0
(6.9)

which leads to the following adjustment of the elixir:
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09 function initial condition diffraction 120(x, t,

10 equations::CompressibleEulerMulticomponentEquations2D)

11 if x[1] < 0.6 || x[2] >= 2.0

12 rho1 = 11.0

13 rho2 = eps()

14 rho = rho1 + rho2

15 rho v1 = rho * 6.18

16 rho v2 = rho * 0.0

17 rho e = 970.0

18 else

19 rho1 = 1.0

20 rho2 = eps()

21 rho = rho1 + rho2

22 rho v1 = rho * 0.0

23 rho v2 = rho * 0.0

24 rho e = 55.0

25 end

26 return SVector(rho v1, rho v2, rho e, rho1, rho2)

27 end

28 initial condition = initial condition diffraction 120

The simulation will run a bit longer since the end time will be Tend = 0.68:

59 tspan = (0.0, 0.68)

60 ode = semidiscretize(semi, tspan)

Solver

Due to the robustness of the DGFV hybrid scheme, we do not have to adjust
the solver compared to the ninety degree example for this particular testcase.
The only thing we need to change is the used mesh file:

52 mesh file = joinpath("examples/p4est 2d dgsem","diffraction 120.inp")

53 mesh = P4estMesh{2}(mesh file)
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Result

As we can see in Figure 6.8, the fourth-order DGFV hybrid method delivers
a very sharp and accurate solution. Compared to the first order FV method

Figure 6.8: One hundret and twenty degrees detonation diffraction problem
simulated with the fourth-order DGFV hybrid method. The top left and top
right images show the pressure as well as the total density at the final time T
= 0.68. The bottom left and bottom right images show the activation of the
shock-capturing indicator (in this case multiplied individual densities times
pressure) as well as the active AMR level.

in Figure 6.9, we obtain much more accurate solutions with the fourth-order
DGFV hybrid method which are on par with the solutions in the literature [94,
95].

6.2.3 135 Degree Corner Diffraction

Another quite similar diffraction test case is the one hundret and thirty five
degree corner diffraction. Again, we have to build a new mesh, which is forty
percent wider than the mesh in the ninety degree example but with an even
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Figure 6.9: Comparison of the one hundret and twenty degrees detonation
diffraction problem simulated with the first-order FV method (left) and fourth-
order DGFV hybrid method (right).

more difficult diffraction corner of one hundret and thirty five degrees. Fur-
thermore, the initial condition has to be adapted slightly due to the changes
of the mesh geometry.

Setup

Again, the domain size as well as the diffraction corner angle differ from the
ninety degree and the one hundret and twenty degree detonation diffraction
test case, which means that we have to adjust the HOHQMesh file as follows:
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\begin{END POINTS LINE}
name = B1

xStart = [0.0,2.0,0.0]

xEnd = [2.0,2.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B2

xStart = [2.0,2.0,0.0]

xEnd = [0.0,0.0,0.0]

\end{END POINTS LINE}
name = B3

xStart = [0.0,0.0,0.0]

xEnd = [7.0,0.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B4

xStart = [7.0,0.0,0.0]

xEnd = [7.0,5.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B5

xStart = [7.0,5.0,0.0]

xEnd = [0.0,5.0,0.0]

\end{END POINTS LINE}
\begin{END POINTS LINE}

name = B6

xStart = [0.0,5.0,0.0]

xEnd = [0.0,2.0,0.0]

\end{END POINTS LINE}

Furthermore, we have to adjust the initial condition

(ρ, ρe, v1, v2, Y1, Y2) =

{
(11, 970, 6.18, 0, 1, 0), x1 < 1.5 and x2 ≥ 2.0

(1, 55, 0, 0, 1, 0), x1 ≥ 1.5 or x2 < 2.0
(6.10)

which has to be adjusted in the elixir:
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09 function initial condition diffraction 135(x, t,

10 equations::CompressibleEulerMulticomponentEquations2D)

11 if x[1] < 1.5 || x[2] >= 2.0

12 rho1 = 11.0

13 rho2 = eps()

14 rho = rho1 + rho2

15 rho v1 = rho * 6.18

16 rho v2 = rho * 0.0

17 rho e = 970.0

18 else

19 rho1 = 1.0

20 rho2 = eps()

21 rho = rho1 + rho2

22 rho v1 = rho * 0.0

23 rho v2 = rho * 0.0

24 rho e = 55.0

25 end

26 return SVector(rho v1, rho v2, rho e, rho1, rho2)

27 end

28 initial condition = initial condition diffraction 135

The simulation time is identical to the one hundret and twenty degree example.

Solver

Again, the DGFV hybrid method is robust enough to run this third example
without the need to change any parameter of the solver. We just have to
exchange the existing mesh file with the new mesh:

52 mesh file = joinpath("examples/p4est 2d dgsem","diffraction 135.inp")

53 mesh = P4estMesh{2}(mesh file)

Result

Similar to the two other test cases, Figure 6.10 shows that we are able to
produce at least similar solutions to the literature [94, 95]. Furthermore, the
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Figure 6.10: One hundret and thirty five degrees detonation diffraction problem
simulated with the fourth-order DGFV hybrid method. The top left and top
right images show the pressure as well as the total density at the final time T
= 0.68. The bottom left and bottom right images show the activation of the
shock-capturing indicator (in this case multiplied individual densities times
pressure) as well as the active AMR level.

fourth-order DGFV hybrid method delivers again a way more accurate and less
dissipative solution than the first-order FV method. The high-order method
appears to have no oscillations or other disturbances and shines with sharp
contours compared to the first order FV solution 6.10.
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Figure 6.11: Comparison of the one hundret and thirty five degrees detonation
diffraction problem simulated with the first-order FV method (left) and fourth-
order DGFV hybrid method (right).

6.3 Strong Detonation with Multi-Step Reaction

In this example, we consider a two-dimensional asymmetric detonation problem
with a multi-step reaction mechanism taken from [83, 84]. The domain is split
into three parts (zone A, zone B and zone C) where, zone A and zone B
consist of burnt gas (in this case OH and H2O) and zone C consists of unburnt
gas (H2 and O2). A fifth gas component, namely N2, is used in all zones
as a catalyst. During the simulation, a shock wave moves from left to right
through the channel of width 6 and height 2. This shock wave sweeps through
the contact surfaces AC between zone C and zone A as well as BC between
zone C and zone B and initiates a chemical reaction chain. This means, that
higher temperatures are caused by the shock wave, which leads to the start
of a reaction of the two unburnt gas components in zone C resulting in the
gas component OH which then leads to another reaction with H2 and the
production of gas component H2O. Furthermore, the first reaction is not only
way easier to activate due to the smaller ignition temperature, but also a much
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Figure 6.12: Computational domain split into three parts, zone A, zone B, and
zone C with the contact surfaces AC and BC for the strong detonation with
multi-step reaction test case adapted from [84].

faster reaction due to the higher activation energy than the second reaction.

Setup

It follows that the example consists of two one-way reactions

H2 +O2 → 2OH, (I)

2OH +H2 → 2H2O, (II)

with 5 components as in [83] or [84]. Thereby the fifth component N2 is used
as a dilute catalyst. We set the initial conditions to be

(ρ, p, v1 , v2 , YH2
, YO2

, YOH , YH2O
, YN2

)

=


(2, 40, 10, 0, 0, 0.17, 0.63, 0.2), x1 ≤ 0.5 (zone-A)
(1, 1, 0, 0, 0, 0, 0.17, 0.63, 0.2), x1 > 0.5, x2 ≥ 1.2 (zone-B)
(1, 1, 0, 0, 0.08, 0.72, 0, 0, 0.2), x1 > 0.5, x2 < 1.2 (zone-C)
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with the following parameters regarding the reaction model and components(
γH2

, γO2
, γOH , γH2O

, γN2

)
= (1.4, 1.4, 1.4, 1.4, 1.4) (6.11)

(qH2
, qO2

, qOH , qH2O
, qN2

) = (0, 0,−50,−100, 0) (6.12)

(WH2
,WO2

,WOH ,WH2O
,WN2

) = (2, 32, 17, 18, 28) (6.13)

(DaI , T I
ign) = (1× 105, 2) (6.14)

(DaII , T II
ign) = (2× 104, 10). (6.15)

The example is solved on the interval Ω = [0.0, 6.0] × [0.0, 2.0] in space and
T = [0.0, 0.1] in time whereat the upper and lower boundaries are set to be a
solid wall.

As we have seen in the overview, the example consists of five components,
which means that we have to use one of the multi-component equations as
stated in chapter 2. Since we are not dealing with magnetic fields but have
to solve a chemical network, we can calmly fall back on the multi-component
Euler equations with the included chemistry solver:

05 equations = CompressibleEulerMulticomponentEquations2D(

06 gammas = (1.4, 1.4, 1.4, 1.4, 1.4),

07 gas constants = (4.1242, 0.2598, 0.4891, 0.4615, 0.2968),

08 heat of formations = (0.0, 0.0, -50.0, -100.0, 0.0))

Now that we know all three zones of the domain with their associated values
density, pressure, velocity, and mass fraction, we can start to build up the
initial condition.
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09 function initial condition strong detonation(x, t,

10 equations::CompressibleEulerMulticomponentEquations2D)

11 if x[1] <= 0.5

12 v1 = 10.0

13 v2 = 0.0

14 p = 40.0

15 H2 = eps()

16 O2 = eps()

17 OH = 0.17 * 2.0

18 H2O = 0.63 * 2.0

19 N2 = 0.2 * 2.0

20 elseif x[1] > 0.5 && x[2] >= 1.2

21 v1 = 0.0

22 v2 = 0.0

23 p = 1.0

24 H2 = eps()

25 O2 = eps()

26 OH = 0.17

27 H2O = 0.63

28 N2 = 0.2

29 elseif x[1] > 0.5 && x[2] < 1.2

30 v1 = 0.0

31 v2 = 0.0

32 p = 1.0

33 H2 = 0.08

34 O2 = 0.72

35 OH = eps()

36 H2O = eps()

37 N2 = 0.2

38 end

39 prim rho = SVector{5, real(equations)}(H2, O2, OH, H2O, N2)

40 prim velocity pressure = SVector{3, real(equations)}(v1, v2, p)

41 return prim2cons(vcat(prim velocity pressure,

prim rho), equations)

42 end

43 initial condition = initial condition strong detonation
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Now we set Dirichlet boundary conditions for the left and right boundary by
using the predefined function BoundaryConditionDirichlet, which takes the ini-
tial condition as an input as well as wall boundary conditions for the top and
bottom boundary by using the boundary function boundary condition slip wall
which already exists in Trixi.jl:

44 boundary condition dirichlet = BoundaryConditionDirichlet(

45 initial condition)

46 boundary conditions= Dict( :x neg => boundary condition dirichlet,

47 :x pos => boundary condition dirichlet,

48 :y neg => boundary condition slip wall,

49 :y pos => boundary condition slip wall)

Additionally, we have to activate our chemical network:

50 chemistry term = chemical reaction network

Solver

For this example, both the FV method as well as the DGFV hybrid method
have been used. In the following, we will focus on how to setup the DGFV
hybrid method for this example. First of all, we have to choose appropriate
flux functions. In this case, we use the standard DGFV hybrid method with a
central volume flux and a dissipative LLF surface flux. Due to the nature of
DG methods, we can easily choose the order of the method which depends on
the polynomial degree. In this instance, we use the polynomial degree of three
which results in a fourth-order method. Given the fact that high-order methods
lead to spurious oscillations near shocks, it is necessary to use a shock-capturing
method. As described in chapter 3, we use a DGFV hybrid method which
blends a stable first-order FV solution with the fourth-order DG solution. To do
so, we first need to set a shock indicator which we choose to be the indicator of
Hennemann and Gassner. Since this test case is highly unstable, we choose the
parameter to be as stabilizing as possible by allowing the maximum blending of
one hundret percent Finite Volume as well as propagating the blending factor to
the neighboring elements. Experiments have shown, that the indicator variable

164



6 Applications

density times pressure works just fine for this test case. In the end, we have
to choose the correct volume integral, which in this case will be the shock
capturing volume integral by Hennemann and Gassner. Finally, we can set
our solver to be the DGFV hybrid solver with our chosen polynomial degree,
surface flux, and volume integral:

51 surface flux = flux lax friedrichs

52 volume flux = flux central

53 polydeg = 3

54 basis = LobattoLegendreBasis(polydeg)

55 indicator sc = IndicatorHennemannGassner(equations, basis,

56 alpha max = 1.0,

57 alpha min = 0.0,

58 alpha smooth = true,

59 variable = density pressure)

60 volume integral = VolumeIntegralShockCapturingHG(indicator sc;

61 volume flux dg = volume flux,

62 volume flux fv = surface flux)

63 solver = DGSEM(polydeg = polydeg, surface flux = surface flux,

64 volume integral = volume integral)

To build the mesh, we first have to state the domain size:

65 coordinates min = (0.0, 0.0)

66 coordinates max = (6.0, 2.0)

Since we use P4estMesh in this example, which is based on a tree datastructure,
we also have to state the number of trees in each dimension. To get nice
quadrilateral elements, we can choose the following:

67 trees per dimension = (3, 1)

Now we can construct the P4estMesh, where we are allowed to choose the
refinement level as well as the polynomial degree of the mesh. Since we use
non periodic boundary conditions, we have to set this parameter to false:
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68 mesh = P4estMesh(trees per dimension,

69 polydeg = 1,

70 initial refinement level = 9,

71 coordinates min = coordinates min,

72 coordinates max = coordinates max,

73 periodicity = false)

Now with all these modules, we can set the space discretization:

74 semi = SemidiscretizationHyperbolic(mesh,

75 equations,

76 initial condition,

77 solver,

78 boundary conditions,

79 source terms=nothing,

80 chemistry terms=chemistry term)

For the time discretization, we still have to choose appropriate parameters like
the time span and the CFL condition of the simulation:

81 tspan = (0.0, 0.1)

82 ode = semidiscretize(semi, tspan)

83 stepsize callback = StepsizeCallback(cfl=0.8)

Since we have to solve the chemical network as an additional ODE, we have to
call KROME with a specific callback:

84 chemistry callback = KROMEChemistryCallback()

We then collect all callbacks we want to use:
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85 callbacks = CallbackSet(summary callback,

86 analysis callback,

87 alive callback,

88 save solution,

89 stepsize callback,

90 chemistry callback)

Now we can choose an appropriate ODE solver to be the fourth-order SSP
Runge-Kutta method:

91 sol = solve(ode, SSPRK54(),

92 dt=1.0,

93 save everystep=false,

94 callback=callbacks,

95 maxiters=1e7);

For this example, both the FV method as well as the DGFV hybrid method
have been used with the same degrees of freedom (DOF = 6144 × 2048 =
12582912) resulting in a mesh of the size of NQ = 6144 × 2048 = 12582912
quadrilateral elements on a uniform P4estMesh for the first-order FV method
as well as NQ = 1536 × 512 = 786432 quadrilateral elements for the fourth-
order DGFV hybrid method and a CFL number of CFL = 0.8. For time
integration, the SSPRK54 method of the DifferentialEquations.jl package has
been used. Although this example of a strong detonation can be classified to
be pretty stiff, no positivity limiter was needed. Furthermore, a LLF surface
flux as well as a standard central volume flux was used.

Result

In the following, we show a comparison of the solution computed with the
first-order FV method as well as the fourth-order DGFV hybrid method for
the quantities temperature and OH-fraction.
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Figure 6.13: Zoom for temperature calculated with the fourth-order DGFV
hybrid method (top) and first-order FV method (bottom).

As can be seen in Figure 6.13, both simulations look pretty similar due to the
identical degrees of freedom whereby the DGFV hybrid method looks much
sharper and produces Kelvin-Helmholtz like instabilities at the mixing layer.
The same phenomenon can be observed in more detail for the OH-fraction in
Figure 6.14. Moreover, the first-order FV method looks way more dissipative
than the fourth-order DGFV hybrid scheme which does not seem to produce
any kind of instabilities.
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Figure 6.14: Zoom for OH-fraction calculated with the fourth-order DGFV
hybrid method (top) and first-order FV method (bottom).
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6.4 Reactive Multi-Component MHD Rotor Problem

As we have seen, our DGFV hybrid method already works quite well for ap-
plications based on the multi-component Euler equations. Now, we want to
go one step further and apply our method to applications based on the multi-
component magnetohydrodynamic equations. Since there are hardly any use-
ful test cases in the literature to simulate ideal MHD equations with multi-
components, we have taken a problem from [31], which was introduced by [96],
and adapted it to a multi-component example. We want to show that our
method also works well for ideal MHD equations with multi-components and
with the addition of chemical reactions.

The test case consists of a dense disc embedded in a static magnetized homoge-
neous medium. Due to the rapid spinning of the disc, the magnetic field winds
up which then leads to strong toroidal Alfvén waves which spread into the am-
bient fluid. We adapt this test case in a way, that the disc in the middle of the
domain consists of one species with the actual gas properties as supposed in the
single-component test case, whereby the ambient fluid is another species which
consists of a helium-air mixture similar to the shock-bubble interaction prob-
lem. Finally, we add a chemical reaction that causes one component to slowly
transform into the other component when a certain temperature is reached.

Setup

The multi-component ideal MHD rotor test case is pretty similar to the single-
component case, except that we take one component for the disc and one
component for the outer medium. We can write this down as the following
initial condition

(ρ, p, v1, v2, v3, B1, B2, B3, ψ, Y1, Y2)

=


(10, 1,−20∆y, 20∆x, 0, 5√

4
, 0, 0, 0, 1, 0), r ≤ r0

(1 + 9f(r), 1,−20∆yf(r), 20∆xf(r), 0, 5√
4
, 0, 0, 0, 0.5, 0.5), r ∈ (r0, r1)

(1, 1, 0, 0, 0, 5√
4
, 0, 0, 0, 0, 1), r ≥ r1

with f(r) = r1−r
r1−r0

, the radius r =
√
(x1 − 0.5)2 + (x2 − 0.5)2, the distances to

the center∆x1 = x1 − 0.5, ∆x2 = x2 − 0.5, the inner radius r0 = 0.1, the outer
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radius r1 = 0.115 as well as the following parameters regarding the components(
γa, γb

)
= (1.4, 1.648) (6.16)

(R̃a, R̃b) = (0.287, 1.578) (6.17)

(qa, qb) = (0, 0) (6.18)

(Da, Tign) = (1.0, 1.0). (6.19)

The test case is solved on the two-dimensional domain Ω = [0.0, 1.0]× [0.0, 1.0]
in space and T = [0.0, 0.15] in time. The boundaries are set to be outflow ev-
erywhere. Additionally, the example consists of a one-way reaction mechanism

a→ b, (6.20)

where the species inside the disc transforms to the species outside the disc when
the ignition temperature is reached.

We start to create our elixir similar to the shock-bubble interaction test case
but for the multi-component ideal GLM-MHD equations:

05 equations = IdealGlmMhdMulticomponentEquations2D(

06 gammas = (1.4, 1.648),

07 gas constants = (0.287, 1.578),

08 heat of formations = (0.0, 0.0))

We write an initial condition function based on the information above:
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09 function initial condition rotor(x, t,

10 equations::IdealGlmMhdMulticomponentEquations2D)

11 delta = 0.1

12 dx = x[1] - 0.5

13 dy = x[2] - 0.5

14 r = sqrt(dx^2 + dy^2)

15 f = (0.115 - r)/0.015

16 if r <= 0.1

17 rho1 = 10.0 - delta

18 rho2 = delta

19 v1 = -20.0*dy

20 v2 = 20.0*dx

21 elseif r >= 0.115

22 rho1 = delta

23 rho2 = 1.0 - delta

24 v1 = 0.0

25 v2 = 0.0

26 else

27 rho1 = 0.5 + 0.5*9.0*f

28 rho2 = 0.5 + 0.5*9.0*f

29 v1 = -20.0*f*dy

30 v2 = 20.0*f*dx

31 end

32 v3 = 0.0

33 p = 1.0

34 B1 = 5.0/sqrt(4.0*pi)

35 B2 = 0.0

36 B3 = 0.0

37 psi = 0.0

38 return prim2cons(SVector(v1, v2, v3, p, B1, B2, B3, psi,

rho1, rho2), equations)

39 end

40 initial condition = initial condition rotor

41 chemistry term = chemical reaction network

and initialize our initial condition as well as our chemistry term.
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Solver

In this example, the DGFV hybrid method has been used with an LLF flux for
the surface flux as well as our entropy-conservative flux for the volume flux. We
chose a polynomial degree of three Np = 3 leading to a fourth-order method.
Again, we chose the Hennemann-Gassner shock-indicator with the multiplied
partial densities times pressure indicator variable:

42 surface flux = (flux lax friedrichs, flux nonconservative powell)

43 volume flux = (flux ec, flux nonconservative powell)

44 polydeg = 3

45 basis = LobattoLegendreBasis(polydeg)

46 indicator sc = IndicatorHennemannGassner(equations, basis,

47 alpha max = 1.0,

48 alpha min = 0.0,

49 alpha smooth = true,

50 variable = densities pressure)

51 volume integral = VolumeIntegralShockCapturingHG(indicator sc;

52 volume flux dg = volume flux,

53 volume flux fv = surface flux)

54 solver = DGSEM(polydeg = polydeg, surface flux = surface flux,

55 volume integral = volume integral)

For the mesh, we need to state the domain size as well as the right mesh type:

56 coordinates min = (0.0, 0.0)

57 coordinates max = (1.0, 1.0)

58 mesh = TreeMesh(coordinates min, coordinates max,

59 initial refinement level=6,

60 n cells max=1 000 000)

So that we can take all these modules and set the space discretization:
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61 semi = SemidiscretizationHyperbolic(mesh,

62 equations,

63 initial condition,

64 solver,

65 source terms=nothing,

66 chemistry terms=chemistry term)

After the space discretization, we also need to state the time discretization:

67 tspan = (0.0, 0.15)

68 ode = semidiscretize(semi, tspan)

For analysis purposes, we also initialize a few analysis callbacks:

69 summary callback = SummaryCallback()

70 analysis interval = 100

71 analysis callback = AnalysisCallback(semi,

72 interval = analysis interval)

73 alive callback = AliveCallback(analysis interval = analysis interval)

74 save solution = SaveSolutionCallback(interval = 100,

75 save initial solution = true,

76 save final solution = true)

We also want to use AMR and therefore have to initialize our AMR indicator
similar to our shock-capturing scheme:

77 amr indicator = IndicatorHennemannGassner(semi,

78 alpha max = 1.0,

79 alpha min = 0.0,

80 alpha smooth = true,

81 variable =

densities pressure)
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together with the AMR controller, where we choose refinement level 5 as the
base level and refinement level 9 as the maximum refinement level:

82 amr controller = ControllerThreeLevel(semi, amr indicator,

83 base level = 5,

84 max level = 9, max threshold = 0.1)

and the AMR callback:

85 amr callback = AMRCallback(semi, amr controller,

86 interval = 5,

87 adapt initial condition = true,

88 adapt initial condition only refine = true)

The last callbacks are the stepsize callback, the GLM speed callback as well as
the chemistry callback:

89 stepsize callback = StepsizeCallback(cfl = 0.5)

90 glm speed callback = GlmSpeedCallback(glm scale=0.5, cfl=cfl)

91 chemistry callback = KROMEChemistryCallback())

Afterwards we wrap all callbacks together:

92 callbacks = CallbackSet(summary callback,

93 analysis callback,

94 alive callback,

95 save solution,

96 chemistry callback,

97 amr callback,

98 stepsize callback,

99 glm speed callback)
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Last but not least, we set our ODE solver with our desired SSPRK54 time
integration scheme as well as a dummy time step size which will be overwritten
in the callbacks:

100 sol = solve(ode, SSPRK54(), dt=1.0,

101 save everystep = false, callback = callbacks);

102 summary callback()

Result

In the following, we will compare results of the adapted multi-component GLM-
MHD rotor test case with the reactive adapted multi-component GLM-MHD
rotor test case. First of all, let us take a look at Figure 6.15 and compare how

Figure 6.15: Comparison of the log scaled density for the adapted multi-
component GLM-MHD rotor test case with a standard DGFV hybrid method
(left) and the entropy-stable DGFV hybrid method (right).

the MHD rotor solution looks like for the multi-component test case with a
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standard DGFV hybrid method compared to the entropy-stable DGFV hybrid
method with our just derived entropy-conservative volume flux for the ideal
GLM-MHD equations. Even though the solutions look similar, one can see
slight advantages for the entropy-stable method, since it provides sharper edges
as well as fewer artifacts. Second, we want to see if our scheme is able to run

Figure 6.16: Comparison of the density for the adapted multi-component GLM-
MHD rotor test case (left) calculated with the entropy-stable DGFV hybrid
method and the adapted reactive multi-component GLM-MHD rotor test case
(right) calculated with the standard DGFV hybrid method and reaction rate
Da = 1.0.

a simulation together with a relatively weak chemical reaction. Therefore,
we take a look at Figure 6.17 to compare the non-reactive multi-component
solution to the reactive multi-component solution. Although slight differences
are visible, the solution does not differ that much. This follows from the fact
that the chemical reaction only starts at a temperature of 1 and the reaction
rate is relatively low with K=1. Nevertheless, in this case our method is good
enough to stabilize the simulation sufficiently and to provide an oscillation-free
solution. Last, we want to compare the standard DGFV hybrid method with
the entropy-stable hybrid method for this test case with activated reaction
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Figure 6.17: Comparison of the log-scaled density for the adapted multi-
component GLM-MHD rotor test case (left) calculated with the standard
DGFV hybrid method and reaction rate Da = 1.0, and the adapted reac-
tive multi-component GLM-MHD rotor test case (right) calculated with the
entropy-stable DGFV hybrid method and reaction rate Da = 1.0.

terms and reaction rate Da = 1.0. We can see that the entropy-stable results
look more favorable, since it is better in resolving structures and contains fewer
artifacts.
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With this work, we have pursued the goal of developing an entropy-stable high-
order discontinuous Galerkin spectral element method for multi-component
equations such as the multi-component Euler as well as the multi-component
ideal GLM-MHD equations. It was essential that it can handle hard shocks,
is able to maintain the positivity of the individual densities as well as the
pressure, even when these partial densities are close to machine precision or
even chemical reactions are taking place. For this purpose, we first discussed
the special properties of the equations in chapter 2 and then, based on these
findings, developed our method in chapter 3. We have incorporated several
features into our numerical method to solve the special problems of our under-
lying equations, such as the shock-capturing blending scheme or the positivity
preserving limiter, to name a few.

Since we also want to show how research can be made accessible to others,
one of the difficulties was to commit to a specific simulation framework and to
make the existing resources and data structures usable for our purposes. Often,
there is no way around the fact that certain features have to be integrated into
the simulation framework that are essential for our own work. This can lead
to some additional work, but the extra features can be useful for other users
and developers of the simulation framework. Therefore, in chapter 4 we have
focused our attention on the simulation framework and briefly explained the
individual packages used. Here, one will notice that it can also be an advantage
to make ones work available to others, since we were also using other peoples
packages as we could see for example with the package DifferentialEquations.jl.
or KROME.jl

Now, that the main ideas have been settled, we could begin with the validation
of our method in chapter 5. The scheme we developed was put through its
paces, with each integrated feature having to pass a functional test. After this
necessary and important chapter was successfully completed, we could finally
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get down to business. We were able to put the capabilities of our method to
the test by calculating complex use cases in chapter 6.

7.1 Accomplishments

In order to reflect the success of this work, we will now revisit the research
questions posed at the beginning and explain whether we were able to solve
them.

(1) How well does the high-order DGFV hybrid method perform for
multi-component equations applications?

As expected, and seen in chapter 6, we were able to achieve very good and
accurate results with our high-order DGFV method that could not be achieved
at the same resolution or with the same number of degrees of freedom with the
first-order FV method. In addition, with the blending method used, in most
cases there is no need to worry about the robustness of the method, which is a
major advantage for the high-order DGFV hybrid method.

(2) Is it possible to construct an entropy-stable high-order DG method
for the multi-component ideal MHD equations?

As we have seen in the publication of Gouasmi et al. [7], it is possible to deter-
mine an appropriate entropy-conservative flux for the multi-component Euler
equations using a suitable entropy choice. Based on this entropy choice, we
were able to determine an entropy-conservative flux for the multi-component
ideal GLM-MHD equations and verified this flux in chapter 5.
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(3) How well does the high-order DG method perform when you
allow chemical networks in addition to the multi-component equa-
tions?

Although chemical networks bring an additional complexity to the simulation
that can lead to problems especially with high-order methods, we could show in
chapter 5 and chapter 6 that our high-order method is robust enough to perform
these simulations. Due to the lower dissipation and thus sharper resolution of
the high-order DG method, it is also easy to keep the correct propagation of
detonation waves.

(4) What do we need to add to the simulation framework Trixi.jl so
that we can use it for our thesis?

Although the simulation framework Trixi.jl already contained some useful fea-
tures and procedures that have been useful for our work, it was still necessary
to integrate some additional features into the framework. On the one hand,
the Euler equations or ideal MHD equations already existed in Trixi.jl, on the
other hand, the multi-component variants of these did not yet exist. Addition-
ally, there was already a shock-capturing method for cartesian grids, but had
to be extended also for curvilinear grids. Furthermore, a positivity-preserving
limiter by Zhang and Shu already existed, but we additionally integrated the
positivity-preserving limiter by Rueda-Ramı́rez and Gassner and adapted it to
multi-component equations. As a last innovation, we have also integrated an
external ODE solver for chemical networks called KROME, which could then
simply be added to the elixirs.

7.2 Conclusion and Outlook

We conclude that the DGFV hybrid method copes very well with the multi-
component equations and chemical networks. It is very robust and achieves
superior results compared to low-order methods. Moreover, it is possible to de-
rive entropy-conservative fluxes for the multi-component equations, with which
it is possible to obtain an entropy-stable DGFV hybrid method and thus even
more robust simulations and better.
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Even though this work shows what the DGFV hybrid scheme is already capable
of, there are still some areas that could be worked on. For example, one could
look for a better variable for the shock-capturing indicator. A desired variable
might allow us to run simulations more robustly while activating the blending
only when it is indispensable. This way it would be possible to use less of the
first-order scheme and further improve the accuracy of the scheme.

Based on this, it would also be possible to exchange the first-order FV scheme
for a second-order FV scheme. Since blending the first-order solution some-
times seems too dissipative, this idea would lead to a drastic increase in accu-
racy without losing much in terms of robustness.

Currently KROME.jl is only a wrapper of the actual code written in Fortran.
Therefore, the workflow is a bit more cumbersome than it should be. An idea
would be to include the chemical reaction solver by another package or Julia
intern library, which might improve the workflow of Trixi.jl.
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