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Pauline. Les grelous : Arthur, Mathieu, Pierre, Salomé, Marion, Grégoire, Maud, Max,
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Abstract

With the growing integration of variable renewable energy (VRE) sources into the con-
ventional power grid, the concept of distributed energy systems (DES) has emerged: the
energy is produced close to the end-user, and flexibility means are included in the system
to supply energy demands at any time. Among the considered options, storage systems
along with multi-energy strategies tend to be promising directions to mitigate the pro-
duction variability by coupling the energy carriers with each other.

Planning the design of such systems is a challenging task because the problem displays
multiple facets that are difficult for policy- and decision-makers to address in a systemic
manner. Also, decisions are made while many parameters remain uncertain (e.g., future
investment costs, energy prices, demands and production) as their values progressively
unfold over time. Therefore, mathematical tools are often needed to provide decision
support regarding several techno-economic requirements: the problem is usually expressed
in the form of an optimization problem where decision variables are the sizes of the
equipment.

This work addresses this issue by developing a generic framework to assess and compare
different design and operation strategies for multi-energy systems. Then, three critical
questions are tackled using this framework. In the first part of the thesis, the deterministic
design model is built. Solving such a model is fast and allows running parametric analysis
to assess the value of multi-energy systems and seasonal storage to supply residential
customers with a high share of solar production.

Then, the second part of this work addresses the design of DES under uncertainty. To
this end, two design methods based on stochastic programming are developed: one relies
on mathematical programming and the other uses a metaheuristic algorithm. To solve
the problem in a reasonable time, these methods are usually based on simplified versions
of the problem. In particular, sizing values are computed assuming perfect foresight of
the operation strategy for a given scenario. The main objective of this part is to challenge
this hypothesis by jointly evaluating the design solutions with realistic operation policies
which only have access to past and current information. In addition, this work aims at
further investigating the close relationship between operation and design. Should the
operation strategy used to design the system and the one used in real-time be strictly
identical? This part attempts to clarify this point.
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Finally, the last part of this work deals with the dynamic design of DES. In this case,
the model takes technology replacement due to aging into account, so multiple design
decisions must be made over the horizon. Unlike the majority of studies, the optimization
model includes the impact of the operation over system lifetimes: the latter are not fixed a
priori, but they depend on the way technologies are operated over time. The aware aging
method (which comes from the literature) is then compared with two heuristic design
strategies based on single representative years.

All the previous methodological developments are applied to a DES which may include
a set of hydrogen units (i.e., fuel cell, electrolyzer and storage tank) where the cogenerated
heat can be recovered to supply thermal energy demands.
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Résumé

Ces dernières années, le développement accéléré des énergies renouvelables a permis
d’envisager de nouveaux modèles énergétiques basés sur des modes de production décen-
tralisés : l’énergie est produite proche du consommateur et des moyens de flexibilité
sont installés pour garantir, à tout instant, l’équilibre entre la consommation et la pro-
duction. Parmi l’ensemble des solutions envisagées, le stockage est un moyen privilégié
pour pallier l’intermittence de la production. Ce dernier peut s’accompagner de stratégie
”multi-énergies” qui permettent d’améliorer la performance globale du système en cou-
plant plusieurs vecteurs énergétiques entre eux.

La conception de tels systèmes est un problème complexe car il nécessite l’appréhension
d’un grand nombre de paramètres, et ce de manière systémique. Qui plus est, les décisions
de dimensionnement doivent être prises alors que de nombreux paramètres sont incer-
tains (e.g., coûts d’investissement, prix de l’énergie, consommation et production futures).
Par conséquent, le problème de conception est généralement formulé sous la forme d’un
problème d’optimisation où les dimensions des équipements sont les variables de décision
du problème à résoudre.

La thèse s’inscrit dans ce contexte en développant des stratégies de conception et de pi-
lotage pour des systèmes multi-énergies. En particulier, le travail s’articule autour de trois
axes de recherche principaux. La première partie de la thèse a pour objectif de développer
un modèle d’optimisation du dimensionnement dans un cadre déterministe. La résolution
d’un tel problème est rapide, ce qui permet d’effectuer des analyses paramétriques. De
cette façon, cette partie interroge la pertinence technico-économique de tels systèmes pour
alimenter des consommateurs résidentiels avec une part d’énergie renouvelable croissante.

Ensuite, la deuxième partie de ce travail (qui constitue le cœur de la thèse) s’intéresse
au problème de conception sous incertitudes. Pour ce faire, deux méthodes de dimen-
sionnement basées sur la programmation stochastique sont introduites : l’une est basée
sur la programmation linéaire et l’autre utilise une métaheuristique. De façon à résoudre
le problème d’optimisation en un temps imparti, ces méthodes sont généralement basées
sur des versions simplifiées du problème. En particulier, les dimensions des systèmes
sont calculées en considérant que la stratégie de pilotage a une connaissance parfaite du
futur. L’objectif de cette partie est donc de questionner cette hypothèse en évaluant con-
jointement les résultats de dimensionnement avec des méthodes de pilotage réalistes qui
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n’anticipent pas le futur. Ce travail permet également d’étudier plus précisément le lien
étroit entre la performance de la loi de gestion et le dimensionnement. Faut-il obligatoire-
ment utiliser la loi de gestion réelle en phase de dimensionnement ? Cette partie tente
d’apporter quelques réponses à cette question.

Enfin, la dernière partie de ce travail s’intéresse au problème de dimensionnement
dynamique : les systèmes vieillissent et plusieurs décisions de dimensionnement doivent
être prises sur l’horizon de l’étude. Contrairement à la plupart des études de la littérature,
ce travail introduit l’impact de la loi de gestion sur la durée de vie des systèmes : cette
dernière n’est pas fixée a priori, mais dépend de la façon dont le système est piloté au
cours du temps. Cette méthode de dimensionnement originale intégrant le vieillissement
(qui provient de la littérature) est ensuite comparée à deux heuristiques de conception
basées sur une année équivalente.

Pour illustrer l’ensemble de ces travaux, les méthodes sont appliquées à un système
décentralisé qui peut inclure des technologies hydrogène (i.e., pile à combustible, électro-
lyseur et stockage) où la chaleur produite par cogénération est valorisée pour alimenter
des besoins en chaud.
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Notations

Acronyms

Notation Description
CVaR Conditional Value At Risk
DES Distributed Energy System
DMES Distributed Multi-Energy System
EAC Equivalent Annual Cost
GA Genetic Algorithm
LP Linear Programming
MILP Mixed Integer Linear Programming
MPC Model Predictive Control
NPV Net Present Value
OLFC Open-Loop Feedback Control
PEME Proton-Exchange Membrane Electrolyzer
PEMFC Proton-Exchange Membrane Fuel Cell
PSO Particle Swarm Optimization
PV Photovoltaic
RB Rule-Based
SoC State-Of-Charge
SoH State-Of-Health
TES Thermal Energy Storage
VRE Variable Renewable Energy

Table 1: Acronyms
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Sets

Notation Description
h ∈ {1, . . . , H} Set of hours
y ∈ {1, . . . , Y } Set of years
s ∈ {1, . . . , S} Set of scenarios

Table 2: Model sets

Design variables

Notation Description Unit
Eb,d
y Li-ion maximum capacity in year y [kWh]

Etes,d
y TES maximum capacity in year y [kWh]

Etk,d
y H2 tank maximum capacity in year y [kWh]

pfc,dy PEMFC maximum power in year y [kW]
pel,dy PEME maximum power in year y [kW]
ppv,dy PV peak power in year y [kWp]
Eb,state
y Li-ion state design variable in year y [kWh]

ppv,statey PV state design variable in year y [kWp]

Table 3: Model design variables

Operation variables

Notation Description Unit
pb,+h,y , pb,−h,y Li-ion charge/discharge power in hour h and year y [kW]
ptes,+h,y , ptes,−h,y TES charge/discharge power in hour h and year y [kW]
ptk,+h,y , ptk,−h,y H2 tank charge/discharge power in hour h and year y [kW]
pfc,eh,y , pfc,h,yh,y , pfc,h2

h,y PEMFC elec., heating and H2 power in hour h and year y [kW]
pel,eh,y , pel,hh,y , pel,h2

h,y PEME elec., heating and H2 power in hour h and year y [kW]
pht,eh,y , pht,hh,y Heater electrical and heating power in hour h and year y [kW]
pg,+h,y , pg,−h,y Power from/to the grid in hour h and year y [kW]
Eb
h,y Li-ion state of charge in hour h and year y [kWh]

Etes
h,y TES state of charge in hour h and year y [kWh]

Etk
h,y H2 tank state of charge in hour h and year y [kWh]

Abh,y Li-ion state of health in hour h and year y [kWh]

Table 4: Model operation variables
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Parameters

Notation Description Unit
r Discount rate [0,1]
γ Annuity factor for each technology [0,1]
∆h Hourly time step [h]
∆y Yearly time step [y]
η−, η+ Storage charge/discharge efficiencies [0,1]
ηloss Storage self-discharge coefficient [h−1]
e, e Storage lower/upper state bound factors [0,1]
p, p Storage lower/upper power bound factors [h−1]
ηht,e→h Heater conversion efficiency [0,1]
ηfc,h2→e, ηfc,h2→h PEMFC conversion efficiencies [0,1]
ηel,e→h2, ηel,e→h PEME conversion efficiencies [0,1]
g Maximum grid power [kW]
pld,eh,y , pld,hh,y Elec. and thermal demand in hour h and year y [kW]
ppvh,y PV capacity factor in hour h and year y [0,1]
τ sh Share of solar production [0,1]
cby Li-ion investment cost in year y [e/kWh]
ctesy TES investment cost in year y [e/kWh]
ctky H2 tank investment cost in year y [e/kWh]
cfcy PEMFC investment cost in year y [e/kW]
cely PEME investment cost in year y [e/kW]
cpvy PV investment cost in year y [e/kWp]
cg,+h,y , cg,−h,y Electricity rate and feed-in tariff in hour h and year y [e/kWh]
πs Probability of scenario s [0,1]

Table 5: Model parameters
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Chapter 1

Introduction

Highlights

• This thesis revolves around four key points:

1. What is the additional value brought by multi-energy systems and sea-
sonal storage to supply customers with a high share of solar production?
In particular, what is the contribution of the hydrogen cogenerated heat?

2. How can uncertainties be included in energy planning studies? What
kind of information is available (at each time step) to make both opera-
tion and design decisions? How does it impact the results?

3. What about the interaction between the design and operation strategies?
Should the operation strategy used to design the system and the one used
in real-time be identical?

4. How can the impact of the operation on equipment aging be included in
dynamic planning models? Does it bring more value compared to design
strategies based on ”snapshot” investment?

• These multifaceted issues are complex to address in their entirety in only 3
years. Thus, this work mainly focuses on methodological aspects attached to
design strategies.

• Technological details are kept deliberately simple as the objective is to illus-
trate design and operation issues rather than giving extensive quantitative
results.
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1.1 Context

1.1.1 Time for ”deep decarbonization”

The conclusion of the working group I contribution to the sixth assessment report from the
International Panel on Climate Change (IPCC) is crystal clear: ”limiting human-induced
global warming to a specific level requires limiting cumulative CO2 emissions, reaching
at least net zero CO2 emissions, along with strong reductions in other greenhouse
gas (GHG) emissions” [1]. The message is far from new but it becomes more than urgent
today to avoid the worst impacts of climate change. As a result, a growing number of
national governments have announced net-zero emission pledges by 2050 but a few have
made this a legal obligation [2]. Among the different levers for reducing anthropogenic
GHG emission, there is a widespread agreement that electricity will play a major role along
with the massive development of variable renewable energies (VRE) [3, 4]. However, the
variable and distributed nature of supply (i.e., unlike centralized generators, VRE units
are usually distributed throughout the country) poses new challenges to the power system.
On one hand, new flexibility sources are needed to synchronize production and demand.
On the other hand, the power grid has not been designed to cope with the high fluctuation
and increasing complexity of flows due to the emergence of many new producers.

1.1.2 The role of distributed energy systems

Within this context, the concept of distributed energy systems 1 (DES) has emerged: the
energy is produced close to the end-user and the system includes several technologies that
convert, store and deliver energy to supply the demands at any time [5]. To increase its

1Microgrids are part of the DES category. Their specificity is that they can be disconnected from the
main power grid based on techno-economic requirements.
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flexibility, a DES may have the ability to manage its consumption [6]. It can also include
multiple energy carriers with the technologies needed to exchange energy between nodes
[7]. Coupling the energy carriers with each other seems to be a promising direction to
increase the system performance and mitigate production variability [8].

As a result, DES can be valuable assets for grid operators as they can provide the
flexibility required by the traditional system. However, DES are mostly operated by
private entities and cannot be directly controlled by grid operators. Thus, new market
designs are emerging to encourage DES owners to participate in the grid regulation effort.
In this way, the interests of both grid operators and DES owners are satisfied: the former
ensure a smooth operation of the grid while the latter are rewarded for the value they
brought [9].

1.1.3 The Hymazonie project

This work is part of the Hymazonie project supported by the French Agency for Ecolog-
ical Transition (ADEME). The partners include industrial and academic players such as
CNES (French National Centre for Space Studies), CEA (French Alternative Energies and
Atomic Energy Commission), LAPLACE (Laboratoire Plasma et Conversion d’Energie),
GDI (Guyane Developpement Innovation), and the University of French Guiana. The
project aims at studying the feasibility of a multi-energy system (MES) including hydro-
gen units that co-generate both electricity and heat to supply energy demands. To this
end, a prototype will be installed on the university’s Troubiran campus in Cayenne where
various applications will be tested. At the same time, another objective of the project has
been to develop a modeling framework to design and assess the techno-economic
performance of such a system. This was the goal of the LAPLACE laboratory and
the reason of this work.

Initially, these two facets should have been run simultaneously, allowing back and forth
between the simulation and real-life experiments. Unfortunately, the project did not start
as expected and this thesis has been done without any connection to the Hymazonie case
study. Therefore, it was decided to broaden the subject to the general case of distributed
multi-energy systems (DMES) (the Hymazonie prototype is in a way a DMES) that can
be connected to external networks (see figure 1.1 for a schematic representation). In the
following, the DMES is assumed to be operated in a centralized manner and distributed
control strategies will not be addressed in this work.
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Figure 1.1: Schematic view of a DMES. The system is assumed to be operated in a centralized manner.

1.1.4 The Ausgrid dataset

As no data were available, case studies were tailored from the literature to illustrate the
methodological points developed in this work. The methods are generic in the sense that
the same approaches can easily be used once the Hymazonie parameters become available.

Therefore, the following case studies are based on the Ausgrid (Australian distributor
of electricity) dataset [10] where 3 years of measured energy demands and production
time series (at a 30 min time step) are openly available for 300 residential customers.
The authors in [11] extracted a ”clean dataset” from which 20 customers are identified
with clean solar production profiles along with both electrical and thermal demand. Note
that the thermal energy consumption corresponds to water heating without any infor-
mation about the final usage (domestic hot water? space heating? both?). From this
reduced dataset, 60 synchronized hourly profiles over 1 year (20 customers over 3 years
where measurements are resampled at an hourly time step) are then used to illustrate
the methodological points developed in this work 2. Figure 1.2 shows one week of energy
demands and production for the 39th customer as an example. Each part of this work
is associated with a case study derived from this dataset but tailored according to the
methodological aspect that has to be highlighted.

2In the rest of the study, the 60 profiles only represent residential customers regardless of where they
come from. In general in this work, customers profiles are used along with the french tariff of electricity.
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Figure 1.2: Example of one week of energy demands and production for the 39th customer of the Ausgrid
dataset.

1.2 Motivations
Planning the design of such distributed energy systems is a challenging task because the
problem displays multiple facets that are difficult for policy- and decision-makers to ad-
dress in a systemic manner. In particular, given long-term horizons, decisions have to be
made while many parameters remain uncertain as their values progressively unfold over
time. Therefore, decision-making tools are often needed to provide decision support re-
garding several techno-economic requirements. The problem is most of the time expressed
in the form of an optimization problem where decision variables are the equipment sizes
and the power flows controlled in the DES. A large number of energy modeling tools are
already available and many efforts have been made in the literature to review the different
technical and methodological aspects of each approach [12, 13, 14, 15]. The objective of
this section is not to repeat what can be found in the aforementioned references, but
rather give a general overview of the issue to help the reader understand the scope of this
work. More detailed states of the arts are given at the beginning of each chapter for each
research question addressed in this thesis.

1.2.1 Main ingredients

The objective of this section is to introduce the main ingredients of an energy modeling
problem as they will form the basis of this work.

Traditionally, the literature starts by introducing the differences between optimization
models used to compute the size of the assets and their simulation counterparts [13, 14,
16, 17]. This classification gives the impression that they are two distinct worlds with
little overlap. This section attempts to present the problem differently as it seems to the
author more appropriate to understand the rest of this work. The objective is to get a
broader perspective on the energy modeling issue by reconnecting, in a certain way, the
two worlds (i.e., optimization and simulation). Therefore, following this logic, the main
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ingredients of an energy modeling problem are:

• A design strategy to select and properly size the assets at each design time step.

• An operation strategy to compute the power flows at each operation time step.

• A simulator to evaluate both the design and operation strategies and compute the
techno-economic indicators.

For the sake of generality, a clear difference is made between the model used to design the
system and the one used in the simulator to compute the techno-economic indicators of a
design solution. The reason for this is to allow for different granularity between the sim-
ulation and design models. As further argued in the next paragraphs, both the operation
and design strategies might be based on mathematical optimization as their objective is
to find ”good” decisions, according to a set of constraints and objectives 3. However, the
resolution of such optimization problems often requires inevitable simplifications. Divid-
ing the problem in this way allows for a strict distinction between the simulator, which is
a good representation of the real problem, and the design and operation strategies that
might be built on simplified versions of the problem. The techno-economic indicators are
computed afterward by evaluating the design and operation strategies on the simulator 4.
This way, simulating both the design and operation strategies allows validating that the
simplifications - made for the purpose of optimization - give consistent decisions with the
requirements of a given project. In other words, simulation models are used to evaluate
solutions, while optimization models are used to find them. Both models are included
in the modeling framework of this thesis to avoid any loss of generality. The latter is
depicted in figure 1.3.

Figure 1.3: The techno-economic indicators of a project are computed by simulating both the operation
and design strategies over a given time horizon. As depicted in the figure, the operation strategy used to
design the system (Φd) can be different from the one used in real life (Φa).

3This is not always the case as decisions can be computed using heuristic rules.
4Optimization models are also based on techno-economic indicators. However, the indicators computed

in the design phase are those of simplified problems. The ”real” metrics of the project are those computed
by the simulator.
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The design process has a slow dynamic compared to the operation. Indeed, the ade-
quacy between supply and demand must be guaranteed at all times while the decision to
install or replace equipment is typically made on a slower time scale (e.g., years). There-
fore, a distinction between the design and operation time steps is introduced to account
for the different dynamics. The next paragraphs aim at describing more precisely both
the operation and design strategies as they constitute critical aspects of this work.

Operation strategy

The objective of the operation strategy (also called policy or energy management strategy)
is to determine the power flow decisions at each operation time step as a function
of the available information (e.g., energy production and demand, the tariff of electricity)
and state of the system (e.g., state-of-charge of the storage equipment). In this case, the
size of the assets is fixed. Operation decisions are made to control the energy exchanged
between the different equipment. The operating indicators are computed by simulating
the operation of the system over a given time horizon.

Figure 1.4: The operation strategy gives, at each operation time step, the power flows as a function of
the available information and state of the system.

Realistic strategies only have access to past and current information, meaning that
they cannot anticipate the future. Decisions can be based on forecasts but these are
computed from historical data. In a deterministic framework (i.e., all the information
is perfectly known over the horizon), the ”perfect foresight” assumption means that the
strategy has a perfect view of the future when making decisions. For example, the decision
to charge the battery is made today because the policy knows, with perfect accuracy, that
the production will be low tomorrow. This assumption is of course unrealistic but can be
convenient to solve the design problem as explained in the next section. The operation
strategy is named anticipative when it relies on this hypothesis in the following work.

The operation strategy can whether be based on a set of predefined rules or on opti-
mization routines. Indeed, the problem is well-suited for optimization as it can be difficult
to define a ”good” set of rules when the system complexity increases. Realistic optimized
methods often rely on historical data, either to calibrate the algorithm (e.g., stochastic
dynamic programming) or to make forecasts of uncertain parameters (e.g., model predic-
tive control). The authors in [18] and, more recently, in [19] propose a classification of the
different approaches to help the reader identify the specificities of each strategy. Finally,
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the optimized anticipative strategy gives the best (but unrealistic) solution over a given
horizon. This information can be useful to evaluate the topology of the problem or to
compare different operation strategies with each other. Further details are given in the
next chapters.

Design strategy

The objective of the design strategy (also called planning strategy or sizing strategy) is to
select and properly size the different assets at each design time step as a function of
the available information (e.g., investment costs) and state of the system (e.g., remaining
asset lifetimes). Note that the same previous remarks hold regarding the nature of the
design strategies as the decision process is the same.

Since the design of the assets strongly depends on the system operation, planning
models usually include the operation of the system over a given time horizon [14]. Hence,
integrated design strategies refer to strategies where the operation of the system is in-
tegrated into the design formulation. In this case, the size of the assets is computed
by ”simulating” the operation strategy over a given time horizon (this is actually more
complicated than it sounds because it depends on the approach used to solve the design
problem. Chapter 2 provides additional details about this point).

Figure 1.5: The design strategy gives, at each design time step, the size of the assets as a function of
the available information and state of the system. Since the design of the assets strongly depends on the
system operation, planning models usually embed the operation of the system over a given time horizon.

In the majority of design studies, the horizon is a single year [20, 21, 22, 23, 24].
Indeed, the design is computed based on the equivalent annual cost where the single year
is considered as a representative period of the system lifetime. The result of the design
strategy is a single sizing value which is computed at the beginning of the year. For
this reason, the design problem is viewed as static (as opposed to dynamic) because a
single decision needs to be made. In this case, the solution only gives a ”snapshot” of
the design at a given period, but the result does not provide any information about the
long-term evolution of the system. On the other hand, the design can also be considered
as a dynamic problem when the time horizon of the study is long enough to allow for
multiple design decisions (equipment replacements due to aging for instance). In this
case, simulating the design strategy provides, at the same time, the size of the assets and
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the investment pathway along the horizon (i.e., timing to install a technology).
In both cases, the integrated design problem is also suited for optimization as its

resolution might be too complicated for a human brain 5. The design problem is thus
made of two nested optimization problems (i.e., design and operation) which must be
solved jointly to theoretically guarantee optimality [25].

As further argued in the next section, the problem is often simplified for computational
reasons. In the very specific case where the models used to simulate and design the
DES are similar (e.g., same technological details, same operation strategy), the techno-
economic indicators are the same in both phases. In this case, and only in this case,
the simulator corresponds to the design model where the sizes have been fixed (only
the operation is thus optimized). As explained in the next section, whether this choice is
deliberate to emphasize a particular research point or it is unlikely to happen as simulation
models are not suitable for optimization (because of computational tractability issues).

Because this work mainly deals with integrated design strategies, the following section
aims at describing the different complexities attached to the problem and the typical
simplifications made for optimization purposes.

1.2.2 A multifaceted problem

As previously mentioned, the integrated design of energy systems is a challenging task
as many complexities are attached to the problem. Based on [14] and [17], figure 1.6
is a non-exhaustive and simplified view of the main complexities associated with the
design problem. The figure is limited to the distributed energy system scope, and broader
systems may include other ”macro-scale” aspects. For each category, the different ”levels”
are given in increasing order of implementation complexity, according to the author’s point
of view. They are described in the following.

5Methods based on extrapolation can be considered as heuristic strategies to solve simple design
problems, and they have been used for years!
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Figure 1.6: A non-exhaustive and simplified view of the different complexities associated with the inte-
grated design problem. This graph is based on [14] and [17].

Temporal model

In a design problem, the temporal representation is a critical aspect as the number of
variables (directly related to computational tractability) mainly results from the resolution
and the horizon of the study. They are both crucial parameters as the former must be
small enough to account for short time-scale variability, while the horizon should be long
enough to fairly represent the long-term evolution of the system (e.g., system degradation,
replacement due to aging). In the majority of the planning studies that include VRE,
a one-hour time step is set to capture the variability of the production, while keeping
reasonable computational times [14, 26]. Based on this operational constraint, several
methods have been developed to reduce the time horizon in order to solve the design
problem. A common approach is to select representative periods (e.g., representative
days along the year) from the initial dataset. The impacts of such methods on the
sizing results have been studied several times in the literature [15, 27, 28, 29, 30]. When
the DES includes seasonal storage, yearly horizons are needed to cope with seasonal
fluctuations. In this case, the authors in [23] and [31] found ingenious strategies to keep
the problem tractable when modeling the full horizon is impossible. The highest accuracy
level is reached when the full horizon is modeled over multiple decades with an hourly
resolution, to account for long-term fluctuations. To the best of the author’s knowledge,
this problem is rarely addressed in the literature. Most of the studies dealing with the
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long-term evolution of energy systems whether use representative periods or coarser time
resolution as mentioned in [32].

Spatial model

In our case study, ”spatial model” refers to the modeling complexity attached to the
energy transmission networks between the equipment. It can whether be electrical power
lines or/and any others transmission systems depending on the energy carriers. While
transmissions are usually omitted in most of the DES planning studies (i.e., assuming
system aggregation), this latter remark is not true for large-scale power systems [33, 34]
where network related issues play an important role. The transmission complexities range
from linear models to representations where non-linear phenomena are taken into account.

Uncertainties

Uncertainty is an important aspect of the problem as many parameters are unknown
when sizing the system. They are usually classified into two categories: aleatory and
epistemic. The former corresponds to the inherent stochastic nature of some phenomenon
(e.g., the future solar production cannot be predicted with perfect accuracy even with a
large number of measurements), and the latter is related to the knowledge that we have
about the process (e.g., the model that we use might not be appropriate to represent the
real problem). In-depth discussion about this classification can be found in [5, 35]. In this
work, particular attention is paid to the information available when making decisions. For
example, suppose that you have to decide today whether to invest in a battery. If you know
with perfect accuracy that the cost will be halved tomorrow, you will probably wait for an
extra day before buying the asset. On the other hand, if you have no information about
how the cost will change, you might buy it today as it wouldn’t make any difference to wait
another day. Therefore, this simple example shows that decisions might be completely
different whether or not the decision-maker has perfect foresight of the future. The role of
information in the decision process has been broadly discussed in [19] for readers seeking
more details about this important concern. In the following work, the problem is called
deterministic when all the information is available over the horizon (i.e., uncertainties
are not taken into account). Then, a difference is made between short- and long-term
uncertainties. The former corresponds to the uncertainties attached to the operation
parameters (e.g., the future energy demand and production are not perfectly known when
making power flows decisions), while the latter concerns uncertainties related to the design
parameters (e.g., future investment costs). Note that short-term uncertainties also affect
the sizing results as the design depends on the system operation.
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Asset model

Planning the design of energy systems involves choosing the right level of technical details
to describe the equipment behavior. The modeling choice is always a trade-off between the
physical model accuracy and the computational burden owning to the other facets of the
problem. Does the technological aspect prevail over the other facets? The answer is not
obvious a priori and there is no reason why a model which includes high technological
details but completely omits the other facets such as uncertainty, for example, should
give better design solutions. A common practice for the design of multi-energy systems
is to use the energy hub concept first introduced by [36]. This modeling framework has
been applied several times in the literature [16, 37] where energy conversion and storage
systems are characterized through efficiencies [7]. A step further in the modeling accuracy
is to use binary variables to linearize complex models when mathematical programming
techniques are applied (e.g., see [38] and [39] for instance). This comes at a price as
the combinatorial complexity increases, leading to longer computational times. A great
review of the different modeling approaches is given by Allegrini et al [40] for readers
seeking more details about the various options.

Energy system integration

In recent years, multi-energy strategies have gained popularity as they can provide flexi-
bility to the system and facilitate the integration of VRE [8]. As a result, cross-sectoral
studies are increasingly addressed in the literature, although power systems remain the
most investigated [13]. Another important aspect is the integration of customer behav-
iors into the modeling frameworks. Examples include demand-side management issues or
the response to incentives from multiple local emerging flexibility markets that may alter
consumer energy demands (e.g., electric mobility). Most of the time, the energy demand
is seen as exogenous information which is used as input of the planning model. However,
the interaction with the customer can be integrated into the model by considering the
energy demand as an elastic and endogenous parameter.

Market issues

In the majority of studies, the decision-maker seeks the least cost option while ensuring
a given set of constraints. The total cost of the system is usually expressed as the sum of
both the investment and operating costs. The simplest case (from a market perspective)
is probably when the system is isolated, meaning that the total cost is limited to the in-
vestment and maintenance expenditures. On the other hand, when the DES can exchange
energy with external networks, the project profitability directly depends on market rules,
in addition to different economic incentive schemes [41, 42]. While fixed energy rates are
easily addressed, the integration of new market designs is challenging as the DES owner
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can participate in multiple energy markets with various revenue streams.

Operation strategy

The different operation strategies have been described in the previous section. Most of
the planning studies are based whether on anticipative or rule-based strategies because of
computational issues [12, 14]. The reason for this is related to the nature of the methods
used to solve the design problem. Further explanations are given in chapter 2 where
different resolution approaches are also introduced. On the other hand, while optimized
realistic operation strategies are widely studied in the literature [43], they are mainly
approached without considering their relation with the design of the system: the authors
usually start from a given DES where the equipment sizes are fixed, and the objective is
to determine the operation strategy that gives the best performance.

Design strategy

Although the same classification on the nature of the design strategies would have been
possible, the focus is set on whether the design is dynamic or not. As previously said, the
problem is considered ”static” in most planning studies. Nevertheless, a growing body of
literature is now emerging concerning the dynamic design of DES while accounting for
detailed operation (see [44], [45] and [46] for instance). In this case, most of the studies
assume that the assets have fixed lifetimes as it facilitates mathematical implementation.
Indeed, because the asset lifetime is a priori known and does not depend on the operation,
the decommissioning time is also known in advance. However, the interaction between
the design and the operation is not fully captured as the way systems are operated has
no consequences on their aging. For example, this latter point can be particularly critical
for a battery because the number of charge/discharge cycles has great consequences on
the equipment’s lifetime. Including the impact of the operation on the design in planning
models is challenging, and thus rarely addressed in the literature. This issue is addressed
in chapter 5 of this thesis.

Since the main complexities of the design problem have been described, the objective
of the following section is to identify some directions for further research in order to define
the scope and objectives of this thesis.

1.2.3 The need for further research

Before going into details, a first remark must be made: no energy planning model includes
all features with the highest level of accuracy in the literature! This is due to obvious
computational reasons. Any planning model is an approximation of the real problem and
simplifications are made according to the objectives of the study it serves. The modeling
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art is to carefully determine which simplification is consistent with the purpose of the
study 6. This point is actually good news for us because it leaves room for research!

Having said that, some directions are more investigated than others when dealing with
the design of DES. However, it might be difficult to draw a ”well-known” region on the
radar plot above (figure 1.6) because it is more about combinations of the different levels
than a level in itself. For example, it does not mean anything to say that ”sector coupling
has been addressed several times in the literature” because if this feature is associated with
non-linear asset and transmission models along with long-term investment uncertainties,
then the problem remains unsolved. Therefore, the number of unexplored combinations
must be considerable and it would make no sense to try to list them all. Instead, critical
ongoing research challenges are identified from recent journal reviews and thesis (at least
published in 2019). Examples include Chang et al [13] (which can be seen as an updated
version of Pfenninger et al [48]), Cuisinier et al [14], Mavromatidis et al [16], Helisto et
al [17] and Sepulveda [44].

The first set of challenges concerns the mathematical methods to solve the optimiza-
tion models. Endless efforts are needed to reduce computation time as it makes it pos-
sible to include more details in the models, leading to a better representation of reality.
For instance, these involve improving decomposition techniques (or mixing them with
each other), introducing high-performance computing that usually requires rethinking the
model architecture, and assessing the potential of machine learning approaches to speed-
up computations. Meeting these challenges requires a strong mathematical background
and mathematicians are the natural target for these tasks.

Another direction pertains to the integration of uncertainties at both time scales while
keeping a high resolution for the operation. Indeed, uncertainties are usually omitted in
the majority of studies because the complexity rapidly increases, leading to intractable
problems. However, there is a general agreement that planning models must contend
with uncertainties as they can strongly affect the results. This point is directly related to
another aspect that concerns the ”perfect foresight” hypothesis. Indeed, realistic design
and operation strategies do not have access to future values of the uncertain parameters
(e.g., energy demands and production, the future tariff of electricity and investment costs).
They can use forecasts to make decisions, but the exact future values are unknown.
However, most of the planning tools rely on this assumption without assessing the true
performance of the resulting design. For example, there is no reason a priori that the
requirements will be met with a realistic operation strategy if the one used to design the
system relies on the perfect foresight hypothesis. This latter assumption is a modeling
approximation to facilitate the resolution of the design optimization problem, but its true
relevance must be (at least!) discussed regarding real-life operation. This problem will

6See for example [47] for a thorough discussion about common simplifications made for optimization
purposes

14



be tackled in chapter 4 of this thesis.
This challenge raises a more general question about the simplifications made to solve

the design issue. Indeed, modeling for energy systems is always a trade-off between com-
putation time and model accuracy. However, it is not clear what should be simplified
without compromising the results and how critical one simplification is compared to an-
other. The answer is not obvious a priori and might depend on the objective of the case
study. For example, several studies have already investigated the impact of technologi-
cal details [39, 49] or temporal representation [27, 29] on design outcomes, but the same
evaluation should also be done jointly for the other facets of the problem. Is the ”perfect
foresight” simplification more critical than using constant efficiencies to describe the asset
behavior? Such comparative studies can provide valuable insight into these issues.

Another important direction for long-term studies is to consider multi-year dynamic
designs with great operational details while accounting for design and operation uncer-
tainties. Unlike ”snapshot” investment, these models also provide the investment pathway
which can be valuable information for policy and decision-makers. The integration of this
feature into planning models significantly increases the complexity of their resolution, es-
pecially if the precision of the other facets is kept. As mentioned earlier, the interaction
of the operation on the design dynamic seems to be partially addressed in the literature
while it may be a relevant issue for storage systems. This latter issue will be the focus of
chapter 5.

In addition to the previous challenges, another aspect that is frequently mentioned is
the need to address cross-sectoral analysis with endogenous demands to include customer
behavior in the modeling framework. This latter point is less studied in the literature
but seems to be a critical aspect to account for uncertain changes in demand and its
interaction with the system operation.

Finally, the last challenging issue described in this section concerns the connection of
these tools to the real world. This point is obviously out of the scope of this thesis, but
it represents a critical issue for the relevance and reliability of these planning approaches.
Indeed, the objective of these methods is to support stakeholder and policy-maker deci-
sions, so energy models must be accessible and understandable. Many efforts are probably
needed to improve their transparency and to encourage collaboration between modelers
and other actors to ensure that the modeling tendencies are in-line with end-user needs.

The previous challenges represent a tiny fraction of the potential unexplored directions,
but they are more than sufficient to determine some research orientations for this thesis.
Based on these limitations, the next section introduces the scope and objective of this
work.
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1.3 Scope and objectives
Based on these challenging issues, the possible directions of this work are unlimited. But
the PhD has a finite and short horizon, especially for someone who is barely familiar with
the energy planning realm.

Therefore, this thesis revolves around four research items presented in section 1.3.1.
They constitute the line of sight of this work (it does not mean that these questions will
be resolved in the end, but they motivate the following developments). Section 1.3.2
describes and justifies the modeling choices made to address these challenges.

1.3.1 Questions addressed in this work

This work basically revolves around four key points given as follows:

1. What is the additional value brought by multi-energy systems and seasonal
storage to supply customers with a high share of solar production? In particular,
what is the contribution of the hydrogen cogenerated heat? These aspects will
be discussed in chapter 2.

2. How can uncertainties be included in energy planning studies? What kind of
information is available (at each time step) to make both operation and design
decisions? How does it impact the results? These points will be addressed in
chapter 4.

3. What about the interaction between the design and operation strategies?
Should the operation strategy used to design the system and the one used in real-
time be identical? These questions are also discussed in chapter 4.

4. How can the impact of the operation on equipment aging be included in
dynamic planning models? Does it bring more value compared to design strategies
based on ”snapshot” investment? Chapter 5 will be dedicated to these questions.

An additional practical issue arises from the previous points as different combinations
of design and operation methods will be compared in the following work. However, to
the best of the author’s knowledge, there is no existing tool that can easily accommodate
multiple sizing and operation strategies without changing the overall code. This point is
further discussed in chapter 6. Therefore, the practical coding issue is:

5. How can a generic tool be implemented to compare and evaluate multiple
combinations of design and operation strategies?
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1.3.2 Modeling choices

A model is a mathematical representation of real processes. By nature, it is a simplified
and truncated view of reality to facilitate its apprehension by humans. Thus, a model
inevitably comes with a large set of assumptions that must be clearly stated before using
it. In this way, a model does not tell the ground truth, but it can be a useful tool
for decision support as long as the main features of the problem are correctly described.
Therefore, the model granularity must be chosen according to the research purpose. While
quantum mechanics is not appropriate to deal with electrotechnical issues (even if they
both deal with electron phenomena), the level of detail attached to planning models must
be questioned in the same consistent manner. In addition to the research objectives,
another aspect that should motivate the modeling choice is its adequacy with the models
mainly used in the research community. Indeed, this work is part of a more global energy
modeling environment that already has its own modeling practices. Hence, the model
granularity should also be consistent with the literature to allow comparison of the results
and fast integration with other modeling activities.

Before going into more details, an important remark concerns the validation of such
planning models based on optimization. While it is relatively easy to validate simulation
models, it has been argued several times that the validation of design models is a more
complicated task [48, 50]. Indeed, the objective of design models is to find out the optimal
system configuration according to long-term techno-economic objectives and constraints.
As stated by Mavromatidis et al in [16]: ”it would be very hard or even impossible to check
whether the optimal configuration for a DMES predicted by a design optimization model
is indeed optimal with real-life experiments, as such an investigation would require in-
stalling multiple energy systems and comparing their long-term performance.”. Therefore,
this latter point does not mean that planning models are useless (it might be better than
nothing), but it reinforces that they should be carefully used, and results strongly crit-
icized. Design optimization models should be considered as additional pieces
to support decisions, but they cannot constitute the only basis.

Before presenting the assumptions made in this work, note that each of the ingredi-
ents previously introduced (i.e., design strategy, operation strategy and the simulator)
is a research issue in itself. To rigorously address the overall problem and yield reliable
quantitative answers, the three directions must be thoroughly conducted in parallel. This
would obviously require more than 3 years (at least for me!). Therefore, this thesis
mainly focuses on methodological aspects attached to design strategies. How-
ever, as explained above, the design issue cannot be treated without any connection to the
operation and simulation of the system. In the following, the only differences between the
models used to simulate and design the DES are introduced to emphasize some specific
research aspects, thoroughly described below. In addition, case studies and technological
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details are kept deliberately simple as the objective is to illustrate design and operation
issues rather than giving extensive quantitative results. As shown in the following chap-
ters, even with simple models, the problem remains difficult and many questions are still
unsolved.

Having said that, the following paragraphs give an overview of the modeling choices
made in this work. For each research question, the modeling assumptions are depicted on
the radar chart from section 1.2.2 to get a clear picture of what lies behind the models
that are implemented.

Therefore, to address the first research question in the next chapter, the multi-energy
assets and the seasonal storage have low technological details. The model is derived in a
deterministic framework over a single equivalent year because the objective is to obtain a
problem that can be solved quickly. This allows running multiple parametric analyses to
show global trends and foster a systemic understanding of how technologies interact. In
this case, there is no difference between the simulator and design models. The modeling
assumptions are depicted in figure 1.7.

Figure 1.7: Modeling assumptions made to tackle the first part of this work (see chapter 2).

The second and third questions (addressed in chapter 4) deal with stochastic issues
and the interactions between both the design and operation strategies. Therefore, the
stochastic model is built from the deterministic model previously introduced. Realistic
optimized policies and operation uncertainties are added to the framework as shown in
figure 1.8. Special attention is paid to the information available to make both operation
and design decisions. To this end, the only difference between the optimization and
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simulation phases is the way information is revealed over time: the design strategy may
rely on the ”perfect foresight” assumption, while the simulation is run with realistic
operation strategies that only have access to past and current information.

Figure 1.8: Modeling assumptions made to tackle the second part of this work (see chapter 4).

The last question (addressed in chapter 5) concerns the dynamic design of DES which
includes the impact of the operation over system lifetimes. As it significantly complicates
the problem resolution, the DES only includes solar panels and a battery storage in a
deterministic framework. As this question is rarely addressed in the literature, the objec-
tive is to focus on the design methodologies rather than the system complexity. Another
goal is also to compare the aware aging method to more common design approaches. To
this end, the simulator includes the dynamic of the design properly modeled, while design
strategies might be based on different modeling choices. The modeling assumptions are
depicted in figure 1.9.
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Figure 1.9: Modeling assumptions made to tackle the third part of this work (see chapter 5).

1.4 Thesis overview
This work is structured into seven chapters where the research questions that were pre-
sented above are chronologically addressed. In addition to the multi-energy system bench-
mark, a toy-example is also introduced in the following. The toy-example remains simple
as it only includes solar panels and a battery storage. The objective is to help newcomers
understand the planning problem by providing the entire formulation on a simple case
study without the complexity brought by the multi-energy aspects. In each chapter, the
overall formulation of the toy-example is given in a colored box and anyone only interested
in the equations can directly refer to this box without scanning the whole document (see
figure 1.10)
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Figure 1.10: The overall formulation of the toy-example design problem is given in a colored box and
anyone only interested in the equations can directly refer to this box without scanning the whole docu-
ment.

Chapter 2 deals with the deterministic design of a multi-energy system with seasonal
storage to supply residential customers with a high share of solar production. The objec-
tive of this part is two-fold: 1) introduce the deterministic model that will later form the
basis of the stochastic approaches; 2) identify a case study where a multi-energy system
with seasonal storage is valuable. The contribution of this chapter to the state of the art
is limited but this part is an essential prerequisite to properly understand the next steps.

Chapter 3 presents a method based on Markov Chains to generate a large number
of energy demands and production scenarios. These are necessary ingredients for the
stochastic approaches developed in the next chapter.

Chapter 4 addresses the design of DES under uncertainties and discusses the impact
of the operation strategy in the design procedure. To this end, two design methods based
on stochastic programming are developed (i.e., one is based on mathematical program-
ming and the other uses a metaheuristic algorithm). These approaches are based on the
formulation of chapter 2. The sizing solutions are then compared using several realistic
operation policies (i.e., rule-based and look-ahead methods) which only have access to
past and current information. This chapter discusses the interplay between the design
and the operation by jointly evaluating and comparing the different approaches.

Chapter 5 deals with the dynamic design of DES with the specificity previously in-
troduced. In this case, the model takes technology replacement due to aging into account,
so multiple design decisions have to be made over the horizon. The dynamic aware ag-
ing design method (which comes from the literature) is then compared to two heuristic
design strategies based on single representative years. Note that this study was carried
out before chapters 3 and 4, but it feels to the author that the thesis is more coherent
structured in this way.
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Chapter 6 presents the architecture of the Genesys.jl toolbox that has been developed
throughout this thesis. This toolbox enables to easily assess and compare different design
and operation strategies without changing the overall code. This part also shows how
custom approaches can be easily added to the framework.

Finally, Chapter 7 summarises the main conclusions of this thesis and gives future
research directions for this work.
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Part I

A deterministic framework for the
design of multi-energy systems
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Chapter 2

The value of multi-energy systems
and seasonal storage to supply
residential customers with a high
share of solar production

Highlights

• Introduction of the deterministic model that will form the basis of the stochas-
tic formulation.

• Parametric analysis of the renewable share and electricity tariff over the design
of the DES.

• The total annual cost increases exponentially with the renewable share and
the integration of a low-cost dispatchable source may significantly alleviate
the overall system cost.

• To reach autonomy, the multi-energy system with seasonal storage shows bet-
ter techno-economic performance than the battery-only solution. Cogenerated
heat from hydrogen helps reduce the cost.
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2.1 Introduction
The first step of this thesis is to introduce the deterministic model that will serve as a
basis for the next chapters. In this deterministic case, all the input parameters (i.e., fu-
ture energy demands, production and electricity tariffs) are known with certainty over the
entire horizon. As previously said in the introduction, the contribution of this part to the
state of the art (from a methodological point of view) is limited but this chapter is an es-
sential prerequisite to properly understand the next steps. Another goal is also to provide
insights into the value of multi-energy systems and seasonal storage to supply residential
customers with a high share of solar production and to get a systemic understanding of
how technologies interact.

Deterministic optimization models have been widely used in the literature for the de-
sign of DMES [12]. For example, Gabrielli et al [23] used a deterministic model to design
a multi-energy system with seasonal storage. Especially, they introduced a method to
reduce computation times by simplifying the temporal representation of the initial prob-
lem. Stadler et al [51] implemented such a model to optimize the size of distributed and
renewable energy systems in buildings. Yang et al [52] did the same exercise at a district
scale where another objective is to find the optimal location for the equipment. Murray
et al [53] applied this approach to assess the potential of long- and short-term storage
systems in decentralized neighborhoods. The model was solved for different scenarios to
analyze potential future developments of the technologies. Finally, Cuisinier et al [14]
provided a review of optimization models for the planning of local energy systems where
deterministic models are in the majority. In all the previous references, the model is for-
mulated on a single representative year where the investment costs have been annualized
according to the equipment lifetimes. Based on the literature, the reasons that usually
motivate deterministic modeling are mostly the following: 1) technologies are represented
with high levels of details, thus including uncertainties would lead to intractable problems;
2) the authors need models that can be quickly executed to run parametric analysis (see
for instance [5, 54, 55]).

To solve these problems, two categories of methods are mainly represented in the liter-
ature: mathematical programming and methaheuristics [5, 12]. In the former case,
a single large model based on mathematical programming is formulated where both the
design and operation decisions are variables of the same problem. Among the different
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models, linear programming (LP) or mixed-integer linear programming (MILP) prob-
lems are the dominant approaches [12]. In the latter case, binary variables are usually
introduced to linearize complex models using piecewise linear approximation [56]. De-
composition methods (e.g., Bender decomposition [57]) are often needed when large-scale
problems are difficult to solve. These methods usually rely on external solvers (e.g., Cbc
[58], CPLEX [59]) to find the solutions. The main drawback of these approaches is that
the resolution complexity increases rapidly with binary variables. Therefore, either the
models remain linear to avoid binaries or other simplifications are generally needed (e.g.,
representative periods introduced in chapter 1) to solve the problem.

On the other hand, metaheuristic approaches use black-box algorithms to compute
the size of the assets. In this case, the first step is to build a simulator of the system
operation, unless it comes from an external source. Then, the simulator is embedded
in an external loop that investigates different system configurations via a metaheuristic
algorithm. Examples of such algorithms include Particle Swarm Optimization (PSO) [60],
Genetic Algorithm (GA) [24] and niching methods [61] to name just a few. The optimal
solution is not guaranteed but if the algorithm is properly configured, this approach is
effective in finding the optimum (or at least, getting close to it). The main advantage
is that the algorithm can solve highly nonlinear problems that allow representing the
behavior of technologies with physical models closer to reality. However, the simulation
of the operation strategy must be fast because the design loop requires multiple iterations
to converge towards the solution. Most of the time, the operation strategy is either based
on heuristic rules [62, 63] or anticipative policies [24, 64].

In recent years, another technique has gained popularity where both optimization and
simulation tools are jointly used in an iterative fashion (see for instance [65, 66, 67, 68]).
This approach is named soft-linking. The idea behind this is to get ”the best of the
two worlds” by using efficient optimization and simulation models to converge toward a
feasible solution. Indeed, highly detailed models cannot be used for optimization because
of computational tractability. Thus, the design is computed with a simplified version of
the problem and the sizes are evaluated on a simulator which is a good representation
of the real problem. Then, a design optimization parameter is progressively tuned by
successive iterations between the two phases until the requirements are met.

In the following work, the objective is to perform multiple parametric analyses, mean-
ing that the model must be solved quickly. Furthermore, the integration of uncertainties
in the next chapters will significantly complicate the problem resolution, thus the level of
details remains simple as explained in chapter 1. Therefore, a large LP model is formu-
lated over a single representative year for the design of the DMES depicted in figure 2.1.
The main objective of the multi-energy system is to supply both residential electrical and
thermal demands while ensuring a given share of solar production (also called ”renewable
share”). This ratio represents the share of the total consumption supplied by the local
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solar production. The multi-energy system is connected to the electrical grid and may
include a set of energy converters and storage systems. The results will be compared to
a reference case where all the energy is purchased from the utility grid. In this baseline
case, the thermal demand is supplied thanks to a heater that converts electricity to heat.
The main goal of this study is to assess how the design is changing regarding different
values of renewable share and electricity tariff.

First, the mathematical formulation is shown in section 2.2. Then, the problem is
solved regarding several values of renewable share and electricity tariff in section 2.3.
Finally, the results are discussed in section 2.4, followed by the conclusion.

Figure 2.1: Schematic view of the multi-energy system with seasonal storage.

2.2 Mathematical formulation
This section shows the mathematical formulations of the deterministic optimal design and
operation problems.

2.2.1 Decision variables

The decision variables for both the design and operation optimization problems are given
as follows:

• The decision variables for the design are the size of the assets. They correspond
to the maximum capacity of the storage systems and the maximum power of the
energy converters, gathered in the vector ud ∈ Ud = R6 (2.1). Note that the size
of the heater is not a decision variable of the problem because a 10 kW heater is
assumed to be already installed for the baseline case.

ud = (Eb,d Etes,d Etk,d pfc,d pel,d ppv,d) (2.1)

• The decision variables for the operation are the power flows controlled in the multi-
energy system at every time step. They correspond to the charging and discharging
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power for the storage systems and the electrical powers for the energy converters,
gathered in the vector uoh ∈ Uo

h = R9 (2.2).

uoh = (pb,+h pb,−h ptes,+h ptes,−h ptk,+h ptk,−h pfc,eh pel,eh pht,eh ) (2.2)

2.2.2 Constraints

The set of constraints defines the admissible set of solutions for both the design and
operation problems.

Maximum equipment sizes

The size of the assets is limited by physical constraints set by the decision-maker. For
example, the PV peak power is directly bounded by the available surface required to
install solar panels. These limitations materialize by equations (2.3)-(2.8).

0 ≤ Eb,d ≤ E
b,d (2.3)

0 ≤ Etes,d ≤ E
tes,d (2.4)

0 ≤ Etk,d ≤ E
tk,d (2.5)

0 ≤ pfc,d ≤ pfc,d (2.6)
0 ≤ pel,d ≤ pel,d (2.7)
0 ≤ ppv,d ≤ ppv,d (2.8)

Energy balances

At each time step, operation decisions are made in order to ensure the energy balance
between production and demand for every energy node (i.e., electricity, heat and hydrogen
respectively). It materializes by equations (2.9)-(2.11).

ppv,d · ppvh + pb,+h + pfc,eh + pg,+h = pld,eh + pb,−h + pel,eh + pht,eh + pg,−h (2.9)
ptes,+h + pel,hh + pfc,hh + pht,hh ≥ pld,hh + ptes,−h (2.10)

ptk,+h + pfc,h2
h = ptk,−h + pel,h2

h (2.11)

where ppvh is the hourly solar capacity factor between 0 and 1, while pld,eh and pld,hh are the
electrical and thermal inelastic demand, respectively. The electrical grid powers pg,+h and
pg,−h are introduced to make the optimization implementation clearer but they are not
decision variables of the problem. Their values are computed at the end of each time step
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and limited by the maximum power allowed by the external network g (2.12)-(2.13).

0 ≤ pg,+h ≤ g (2.12)
0 ≤ pg,−h ≤ g (2.13)

Note that no such variable exists for the thermal demand in our model: a lack of supply
would result in temperature discomfort. Also, the thermal energy balance (2.10) is given
with inequality as the overproduced heat is assumed to be dissipated in a dump load.
This simple trick avoids the introduction of another decision variable for the operation as
it has no consequences on the results.

Energy system model

The physical models of the assets remain deliberately simple as the objective of this work
is to focus on parametric analysis, rather than the physical model complexity. Thus,
the modeling is based on the energy hub concept from [69] which is widely used in the
literature when dealing with the design of distributed multi-energy systems. In-depth
discussions about modeling implications and related issues could be found in [16] and [48]
for instance.

Storage systems. Three types of storage technologies are considered in the multi-energy
system: (i) a Li-ion battery, (ii) a thermal energy storage (TES) and (iii) a high-pressure
hydrogen tank. A generic storage model is implemented for both equipment and the state
of charge dynamic is given by equation (2.14).

Eh+1 = Eh · (1− ηloss ·∆h) + (η− · p−h −
p+
h

η+ ) ·∆h (2.14)

e · Ed ≤ Eh ≤ e · Ed (2.15)
E1 ≤ EH+1 (2.16)

where Eh is the state of charge expressed in kWh, η− and η+ are respectively, the charging
and discharging efficiencies, ηloss is the self-discharge coefficient and ∆h the operation time
step (in hours). The state of charge is bounded by a percentage of the maximum storage
capacity Ed (2.15). A periodicity constraint (2.16) is also added to the storage state of
charge. p−h and p+

h are the charging and discharging powers which are limited by equations
(2.17) and (2.18) as the maximum amount of energy that could be exchanged during a
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time step is limited.

0 ≤ p+
h ≤ p · Ed (2.17)

0 ≤ p−h ≤ p · Ed (2.18)

The state variables of the problem are gathered in the vector xh ∈ Xh = R3 (2.19).

xh = (Eb
h Etes

h Etk
h ) (2.19)

Energy converters. They transform a given energy carrier into another through specific
processes, attached with energy efficiencies. The heater produces heat thanks to electricity
and the coupling equation is given by (2.20). The proton-exchange membrane fuel cell
(PEMFC) produces electricity, heat and water from hydrogen (2.21)-(2.22). The chemical
reaction is exothermic and the heat produced could be extracted to supply a thermal
demand. On the contrary, the proton-exchange membrane electrolyzer (PEME) produces
hydrogen from electricity and water (2.23)-(2.24). Overproduced heat by losses inside the
component could also be extracted.

pht,hh = ηht,e→h · pht,eh (2.20)
pfc,eh = ηfc,h2→e · pfc,h2

h (2.21)
pfc,hh = ηfc,h2→h · pfc,h2

h (2.22)
pel,h2
h = ηel,e→h2 · pel,eh (2.23)
pel,hh = ηel,e→h · pel,eh (2.24)

where ηht,e→h is the heater conversion efficiency from electricity to heat. ηfc,h2→e and
ηfc,h2→h are the PEMFC conversion efficiencies from hydrogen to electricity and heat,
respectively. ηel,e→h2 and ηel,e→h are the PEME conversion efficiencies from electricity to
hydrogen and heat, respectively.

The converter electrical powers pht,eh , pfc,eh and pel,eh are positive and limited by the size
of the assets (2.25)-(2.27).

0 ≤ pht,eh ≤ pht,d (2.25)
0 ≤ pfc,eh ≤ pfc,d (2.26)
0 ≤ pel,eh ≤ pel,d (2.27)

Share of solar production

The share of solar production τ sh ∈ [0, 1] represents the proportion of the total consump-
tion supplied by the local solar production: a ratio equal to 1 means that all the electricity
is provided on-site. On the other hand, a ratio equal to 0 means that the total consump-
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tion (i.e., electrical and thermal demands through the heater efficiency) is provided by
the utility grid. Thus, its value is computed based on the energy imported from the grid
and the baseline total consumption (2.28).

H∑
h=1

(
pg,+h − (1− τ sh) · (pld,eh + pld,hh

ηe→h
)
)
·∆h ≤ 0 (2.28)

2.2.3 Optimization problem statement

The integrated design objective is to determine the sizing and operation decisions in order
to minimize the sum of both the annualized investment and operating expenditures as it
is commonly done in the literature [20, 21, 22, 23, 24].

Annualized investment cost

The annual capital cost depends on the equipment sizes which are the investment decisions
of the design problem ud, and the capital cost of each technology (2.29).

Jd(ud) = γb · cb · Eb,d + γtes · ctes · Etes,d + γtk · ctk · Etk,d + γfc · cfc · pfc,d+
γel · cel · pel,d + γpv · cpv · ppv,d (2.29)

where the standard annuity factor γ (2.30) is computed based on the expected lifetime L
of each technology (in years) with an interest rate r of 4.5 %.

γ = r · (r + 1)L
(r + 1)L − 1 (2.30)

Operating cost

At each time step, the operating cost is computed based on the energy exchanged with
the utility grid (2.31).

Joh(ud, uoh) = (cg,+h · pg,+h − cg,−h · pg,−h ) ·∆h (2.31)

where cg,+ is the tariff of electricity (€/kWh) and cg,− the feed-in tariff (€/kWh). Note
that for the sake of simplicity, the maintenance costs are not included in this work but
they can be easily added (for instance, as a fraction of the annual capital cost following
[23]).

Problem statement

The objective of the design optimization problem is to determine the design and operation
decisions in order to minimize the equivalent annual cost. The problem statement is given
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by equations (2.32).

min
ud,uo

Jd(ud) +
H∑
h=1

Joh(ud, uoh) (2.32a)

s.t.
xh+1 = f(xh, ud, uoh) (2.32b)
ud ∈ Ud, uoh ∈ U o

h(ud, xh) (2.32c)

where f is described by the state equations (2.14) for storage systems. Ud and U o
h are the

set of admissible solutions for the design and the operation, defined by the constraints
introduced in section 2.2.2.

The resulting optimization problem belongs to the linear programming (LP) category,
which can be easily solved with traditional solvers like CPLEX [59].
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Toy example - Deterministic formulation

The objective is to determine the size of the assets ud = (Eb,d ppv,d) and the power
flows controlled in the DES at each time step uoh = (pb,+h pb,−h ), in order to minimize
the sum of both the annualized investment and operating expenditures. Remind
that the electrical grid powers pg,+h and pg,−h are introduced to make the optimization
implementation clearer but they are not decision variables of the problem.

The entire formulation is given as follows:

min
ud,uo

γb · cb · Eb,d + γpv · cpv · ppv,d︸ ︷︷ ︸
Annualized investment cost

+
H∑
h=1

(cg,+h · pg,+h − cg,−h · pg,−h ) ·∆h︸ ︷︷ ︸
Hourly operating cost

subject to:

0 ≤ Eb,d ≤ E
b,d Size limitations

0 ≤ ppv,d ≤ ppv,d -
ppv,d · ppvh + pb,+h + pg,+h = pld,eh + pb,−h + pg,−h Energy balance
0 ≤ pg,+h ≤ g Power grid
0 ≤ pg,−h ≤ g -

Eb
h+1 = Eb

h · (1− ηloss ·∆h) + (η− · pb,−h −
pb,+h
η+ ) ·∆h Storage model

e · Eb,d ≤ Eb
h ≤ e · Eb,d -

0 ≤ pb,+h ≤ p · Eb,d -
0 ≤ pb,−h ≤ p · Eb,d -
Eb

1 ≤ Eb
H+1 Periodicity (optional)

H∑
h=1

(pg,+h − (1− τ sh) · pld,eh ) ·∆h ≤ 0 Renewable share

2.3 Numerical results
The objective of this section is to run parametric studies to examine the influence of the
renewable share and the electricity tariff on the design and techno-economic indicators of
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the energy system.

2.3.1 Case study

The input PV production and demand time series are directly the 60 measured Ausgrid
profiles introduced in section 1.1.4. Figure 2.2 shows the annual energy consumption
variability (in MWh) between the 60 residential customers. In this case, the thermal
energy demand approximately represents (in average) 20% of the total consumption for
each customer.

Figure 2.2: Annual energy consumption variability (in MWh) of the 60 Ausgrid profiles.

Storages η− η+ ηloss e e p p Lifetime Cost
[0-1] [0-1] [h−1] [0-1] [0-1] [h−1] [h−1] [years] [€/kWh]

Li-ion 0.9 0.9 0.0005 0.2 0.8 1.5 1.5 12 300
TES 0.8 0.8 0.008 0 1 1.5 1.5 25 10
H2 tank 1 1 0 0 1 1.5 1.5 25 10

Table 2.1: Storage input technical and economical parameters

Input technical and economical parameters are given in table 2.1 and table 2.2, mainly
based on [70] (using the authors ”mode” values). The investment cost for solar panels
is set to 1300 €/kWp. The ”flate rate” price of electricity (taxes included) cg,+h is fixed
to 0.19 €/kWh following [71] for french residential customers in 2020. For the sake of
simplicity, the feed-in tariff cg,−h is set to zero in the rest of the study, meaning that the
power grid is only seen as a generic dispatchable source.
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Converters ηe→h ηe→h2 ηh2→e ηh2→h Lifetime Cost
[0-1] [0-1] [0-1] [0-1] [years] [€/kW]

Heater 1 - - - - -
PEMFC - - 0.4 0.4 14 1700
PEME 0.3 0.5 - - 15 1300

Table 2.2: Energy converters input technical and economical parameters.

The problem is modeled using Julia with the JuMP package [72], and solved with
the IBM CPLEX 12.9 solver [59]. All the computations are run on a standard Intel(R)
Core(TM) i5-7200U CPU @ 2.5GHz 2.7GHz computer.

2.3.2 Sensitivity of the renewable share

To assess the sensitivity of the renewable share over the results, the problem is solved
for each of the 60 customers with a renewable ratio ranging from 0 to 1 (i.e. stand-alone
DES: the energy demand is entirely supplied by solar panels). Again, remember that a
10 kW heater is assumed to be already installed, thus its size is not a decision variable of
the problem.
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Figure 2.3: Sensitivity of the renewable share over the design.

Figure 2.3 shows the size of the assets as a function of the renewable share. All the
60 values are depicted in orange, while the error bar gives both the mean (blue marker)
and the standard deviation (blue lines). The first observation is that only solar panels
and TES are installed until the renewable share reaches 60%. Then, the Li-ion battery
appears above this ratio while hydrogen units are only relevant when the share of solar
production is higher than 80%. The equipment sizes increase exponentially along with
the renewable ratio, except for the TES. Indeed, the cogenerated heat produced by the
PEMFC and PEME is directly consumed, leading to lower thermal storage capacity to
supply the thermal demand at the lowest cost. When the renewable share reaches 100%
(i.e. the grid is no longer required), hydrogen storage provides seasonal flexibility while the
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battery and the thermal storage are used at shorter time scales (from hourly to monthly
time scales for the TES). This latter statement is highlighted in figure 2.4 which depicts
the Fast Fourier transform (FFT) of the storage state-of-charges (SoC) of a randomly
chosen customer from the dataset. The x-axis is given in the log scale for the FFT. Note
that the frequencies higher than the monthly time scale for both the Li-ion battery and
the TES are artifacts of the model. Indeed, the spikes are due to the seasonal usage of the
equipment (e.g., the TES is more likely to be used during winter than during summer),
but no energy is stored over several months as shown in the ”temporal evolution” graph.
Readers interested in more elaborate analysis about flexibility issues could refer to [73].

Figure 2.4: Fast Fourier transform (FFT) of the storage state-of-charges (SoC) for a randomly chosen
customer from the dataset. The x-axis is given in the log scale for the FFT. Note that the frequencies
higher than the monthly time scale for both the Li-ion battery and the TES are artifacts of the model.
Indeed, the spikes are due to the seasonal usage of the equipment (e.g., the TES is more likely to be
used during winter than during summer), but no energy is stored over several months as shown in the
”temporal evolution” graph.

Obviously, increasing the renewable share comes at a price, depicted in figure 2.5. The
latter displays as a bar chart, the mean annualized investment cost for each technology
along with the operating cost from the grid. The mean and standard deviation of the
total annual cost (i.e., involving both investment and operating costs) are also depicted
with error bars in the figure. Note that the baseline cost (i.e., all the energy is supplied
by the utility grid - ”Ref” in the figure) is also displayed for comparison. As observed
in the figure, reaching a 100% share of solar production is costly as the average total
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annual cost goes from 1.2 k€/y to 2.7 k€/y (+ 125%) and the integration of a low-cost
dispatchable source may significantly alleviate the overall cost. For a standalone DES,
the PV investment cost represents 38% of the overall cost while the Li-ion and hydrogen
units equally account for 31%. Therefore, the cost of flexibility means to synchronize
production and demands accounts for 62% of the total annual cost of the DES. In any
case, the cost of the TES is negligible compared to the other costs. Note that the standard
deviation is the highest for the standalone case. Finally, as shown in the figure, achieving
80% of renewable share (using a TES, a battery and PV) does not cost much more than
the baseline case.

Figure 2.5: Sensitivity of the renewable share over the total annual cost. Thick bars correspond to the
mean annualized investment costs for each technology along with the operating costs from the grid. The
mean and standard deviation of the total annual cost are also depicted with error bars in black.

Next, the objective is to compare the multi-energy system to a battery-only solution
(i.e., the toy-example including the thermal demand and the heater) to achieve the same
requirements. Figure 2.6 shows the average annual cost as a function of the renewable
share (only the error bars are plotted for clarity). The ”without coge” case corresponds
to the multi-energy system where the cogenerated heat from hydrogen is not recovered
(i.e., PEME and PEMFC thermal efficiencies are set to zero). In this way, the additional
value brought by cogeneration can be evaluated.

Results show that the mean cost value of the battery-only solution is significantly
higher than the hybrid counterpart. This observation is even more relevant when high
shares of solar production are needed: the mean cost difference goes up from 12% to 128%
without the utility grid. For low values of renewable share, the only difference comes from
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the TES as no hydrogen assets are installed. Hydrogen cogeneration only makes sense
when hydrogen units are actually installed - that is, with renewable share between 90%
and 100%. In this case, the cogenerated heat helps decrease the total annual cost and
the difference goes up to 11%. Keep in mind that in this case study, the thermal demand
only represents 20% of the total consumption over one year.

Figure 2.6: Comparison of the total annual cost between the multi-energy system, the battery-only
solution and the multi-energy system where the cogenerated heat from hydrogen is not recovered (which
corresponds to the ”Without coge” case in the figure).

2.3.3 Sensitivity of the electricity tariff

The objective of this section is to determine the cost of electricity needed to install Li-
ion batteries and hydrogen systems in a profitable manner (from an economic point of
view only). To this end, the renewable ratio is set to zero and the tariff of electricity is
progressively increased from 0.19 €/kWh to 5 €/kWh. Figure 2.7 shows the sizing values
as a function of the electricity tariff. As observed in the figure, the Li-ion battery and
hydrogen units approximately emerge when the electricity tariff is greater than 0.3 €/kWh
and 0.6 €/kWh (i.e., 3 times the current cost), respectively.
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Figure 2.7: Sensitivity of the electricity tariff over the designs.

These values are then reported in figure 2.8 which shows the renewable share (com-
puted a posteriori) as a function of the electricity tariff. Results show that the renewable
share values are consistent with the results depicted in the previous section. In other
words, to reach 70% and 90% of renewable share while being economically optimal, the
electricity tariff should be higher than 0.3 €/kWh and 0.6 €/kWh, respectively.
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Figure 2.8: Sensitivity of the electricity tariff over the renewable share.

2.4 Discussion and conclusions
The value of multi-energy systems and seasonal storage to supply residential customers
with a high share of solar production has been addressed in this chapter. First, the
mathematical formulation of the problem was described in a deterministic framework.
The objective of this part was threefold: i) such LP optimization problems are easily
solved with standard solvers so that fast parametric studies can be run to identify global
DES design and techno-economic trends; ii) the result of the deterministic problem with
perfect foresight of the input parameters gives the best solution (but unreachable in
reality) for a given scenario, which is a valuable tool to understand the topology of the
problem; iii) the stochastic formulation introduced in chapter 4 is directly based on this
formulation.

Then, the problem was solved over 60 real residential customer energy demands and
production profiles to illustrate the relevance of the approach. The results show that under
given assumptions, solar panels and TES are always installed, regardless of the value of the
renewable share constraint. On the contrary, batteries only emerge whether the renewable
share is greater than 60% or the electricity tariff exceeds 0.3 €/kWh, while hydrogen units
only appear whether the renewable share is greater than 80% or the electricity tariff is
higher than 0.6 €/kWh. In this latter case, hydrogen provides seasonal flexibility while the
battery and the thermal storage are used at shorter time scales. Furthermore, the value
of the multi-energy system over battery-only solution was clearly depicted in this case as
the cost difference goes up to 128% when autonomy is required. Finally and without any
surprise, the total annual cost increases exponentially with the renewable ratio and the
integration of a low-cost dispatchable source may significantly alleviate the overall system
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cost.
Of course, quantitative results must be vigorously discussed and taken with caution as

they highly depend on the case study, the input parameters and the modeling assumptions
made in this work. Indeed, the results might be significantly different with more complex
market designs (e.g., participation in local flexibility markets), or by allowing demand-side
management strategies for instance. These latter aspects were out of the scope of this
work. Also, another obvious limitation pertains to the deterministic nature of the model
while the real problem is profoundly stochastic. Indeed, the future electricity tariff, the
energy demand and production values are not perfectly known when sizing and operating
the DES. Thus, the design values might be different to reach the same requirements,
depending on the decision-maker’s risk attitude. This latter limitation will be addressed
in the second part of the thesis. Furthermore, even if the technological model granularity
of the assets is consistent with the literature, they remain simple and their validity might
be discussed. As explained in chapter 1, a good practice to overcome this limitation is to
build a simulator with great technological details to evaluate the design results. Without
this assessment phase, quantitative results must be considered with great caution.

Despite the aforementioned limitations, the mathematical formulation developed in
this work seems to be a useful approach to identify global trends and evolution, concerning
such multi-energy systems. This might be seen as the first important step before going
into more realistic modeling to properly design the system according to a set of techno-
economic requirements.
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Part II

A stochastic framework for the
design of multi-energy systems
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Chapter 3

Generation of synthetic energy
demand and PV production profiles
based on Markov chains

Highlights

• Introduction of a simple method based on Markov chains to generate both
long- and short-term synthetic scenarios of energy demand and production.

• The model recovers the main statistical features of the initial dataset while
introducing temporal variability between scenarios.

• The model is not suitable to address epistemic uncertainties (i.e., only the
power levels and daily patterns from the initial dataset are recovered).

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Building the Markov chains . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Scenario generation . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Evaluation on a case study . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Statistical assessment over the representative periods . . . . . . 49

3.3.2 Short time scale variability . . . . . . . . . . . . . . . . . . . . 51

3.3.3 Autocorrelation and duration curves . . . . . . . . . . . . . . . 51

3.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . 52

44



3.1 Introduction
Since the deterministic model has been developed, the next step of this thesis is to include
uncertainties (i.e., energy demand, renewable production, electricity tariffs) in both the
design and operation decision processes. On one hand, the design of DES under uncer-
tainty might be based on stochastic programming optimization techniques [74, 75] (further
explained in the next chapter) where a large number of scenarios are required. On the
other hand, once the size of the assets has been fixed, short-term probabilistic forecasts
might be needed by real-time operation strategies to optimize the power flows between the
equipment under uncertainty. For instance, look-ahead control strategies solve, at each
time step, a multi-stage optimization problem, based on several probabilistic forecasts,
each of them associated with a given probability (more details are given in [18] and [76]).
In both cases, a large number of data over multi-time scales are essential to accurately
solve the problems.

Having said that, decision-makers and modelers often lack appropriate data to run the
models, especially in a stochastic context. In many real case studies, no historical data
are available or the dataset is of poor quality, over short periods. Therefore, decision-
makers might come up with inappropriate design decisions while modelers do not have
enough data to assess the design and control approaches they are implementing. To
overcome these difficulties, scenario generation methods have been widely implemented
in the literature [77, 78]. This work mainly focuses on the generation of synthetic solar
production and energy demands (i.e. electricity and heat) profiles at an hourly time step.

3.1.1 Literature review

While short-term forecasting is a relatively new topic (late 20th century) driven by effi-
cient real-time operation needs, long-term forecasting for energy systems has been studied
for a long time [77]. Indeed, the latter has been used for decades, to anticipate the energy
demand growth in order to plan future energy production and transmission infrastruc-
tures. However, the recent and strong development of VRE has led to new long-term
forecast requirements where short temporal granularity (i.e. at an hourly time step) is
needed to cope with the short-time scale variability of the production [32]. Also, as no-
ticed by Hong et al in [77] ”another important step in the recent history, is the transition
from a deterministic to a probabilistic point of view”: instead of single values, the output
of probabilistic forecasts are probability distributions of the uncertain parameters.

Recently, Mavromatidis et al [78] draw a great review of uncertainty characterization
for the design of distributed energy system, which is of first interest for this work. A
large number of methods are documented for both the generation of solar production
and energy demand profiles, and the readers could refer to this article for an in-depth
discussion about the different approaches. The objective of this part is to summarize the
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main conclusions and provide a clear insight into the direction of this study. Therefore, the
first observation from their review is that the generation method depends on whether or
not historical data are available. These approaches can be classified into top-down (i.e.,
historical data are available) and bottom-up categories, respectively. While obtaining
solar production data is relatively straightforward [79], the availability of energy demand
measurements is generally rarer.

In the top-down case, the most frequent and easiest generation method is the use of
probability distribution functions (PDFs), derived from historical profiles for each hour.
Then, a scenario is built by sampling from the PDFs. The drawback of such a method
is that the uncertain parameters are treated as independent random variables between
consecutive time steps, which might lead to unrealistic behavior where the autocorrelation
and periodicity of the initial dataset are lost. To overcome this issue, more sophisticated
and hybrid methods have been developed such as autoregressive models [80], Markov
approaches [81], and machine learning based methods [82, 83, 84] to name just a few.
The latter is probably the most popular approach for both the production and energy
demands when large datasets are available [85].

On the other hand, when the case study lacks adequate energy demand measurements
(e.g., newly built buildings), model-based methods are usually implemented to generate
profiles. The most common approaches are probably the use of ready-made Building
Performance Simulation (BPS) tools (e.g., energyPlus [86], TRNSYS [87]), but other
model-based techniques are also implemented (e.g., resistance-capacitance (RC) models
[88], a stochastic model where the input parameters are characterized based on interview
information [89]). More elaborate methods are derived for large-scale districts where the
previous approaches might not be appropriate (creating a model for each building of a
district is quite laborious...) [90, 91]. In the bottom-up case, uncertainty is added to
the input parameters of the simulation. The drawback of these methods is that a non-
negligible amount of time is usually required to get familiar with BPS tools and collect
all the numerous input parameters. Thus, energy modelers who are only seeking a fast
generation method to test their design and operation algorithms might be discouraged by
these approaches.

3.1.2 Main contributions

The main objective of this work is to provide a unique and straightforward method to
generate a large number of probabilistic energy production and demand profiles when
historical measurements are available. The energy modeler point of view is deliberately
adopted in this work. The focus is more on creating a dataset to test different DES design
and operation algorithms rather than the scenario generation accuracy. Nevertheless, the
last section will show that the proposed method can capture the main statistical features
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and variations of real data despite the method’s simplicity. Also, another important
aspect is that the generation approach can be used simultaneously to generate long-term
scenarios and short-term forecasts for operation purposes. Hence, the method is intended
for modelers seeking a simple generation approach without spending too much time in
this phase.

Therefore, the method implemented in this work is based on Markov chains over repre-
sentative periods. The model only requires historical measurements of the uncertain time
series in order to provide a wide range of contingencies. The methodology is introduced
in section 3.2. Next, the performance of the approach is demonstrated on a residential
case study from the Ausgrid dataset in section 3.3. Finally, the discussion and conclusion
are drawn in section 3.4.

3.2 Methodology
The uncertain parameters (i.e. energy demands and solar production) are modeled as
discrete random variables over a probability space (π,Ω). The following work aims at
providing a method to build the discrete sample space Ω where a scenario is a sequence
of all the random variable realizations over a given horizon H.

3.2.1 Building the Markov chains

Therefore, as said previously in the introduction, the generation method is based on
Markov chains over representative periods. A Markov chain is a stochastic model where
the main ingredients are the states and the transition matrix :

• States are observable realizations of the underlying random variables. The finite set
of observed states is called the state space. In our case study, they are derived from
the energy demand and production measurements.

• The transition matrix is a probability matrix where each cell is associated with the
probability of going from one state to another.

The first step of the methodology (step 1 in figure 3.2) is to identify representative
periods from the initial annual dataset to account for the different time scales variability.
The Markov chains will be later computed over these periods. Therefore, each month
of the year is gathered to avoid seasonality issues. Then, for each month, week and
weekend days are divided into two classes as the energy demand pattern usually depends
on the working activity. Finally, each day is segmented into 23 hourly periods to account
for intraday variability. Thus, 23 x 2 x 12 Markov chains will be computed from the
historical dataset. The classification of the representative periods is depicted in figure
3.1. Note that the representative periods are arbitrarily set based on both statistical
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explorations of the initial dataset and intuitions of the authors. Any other classes could
be adopted depending on the nature of the random processes. This latter issue is definitely
a weakness of this approach, which is further discussed in the last section.

Figure 3.1: Representative periods classification to account for the different time scales variability.

Once the representative periods have been identified, a Markov chain is built for each
hour where:

• States are aggregated (to keep the synchronicity) and normalized vectors of energy
demands (i.e., electrical and thermal consumption) and production. To limit the
number of state values for each hour, a given number k of relevant states is selected
using the k-medoids clustering algorithm [92]. Therefore, each hour of each repre-
sentative day is represented by {1, ..., k} state values, associated with k vectors of
aggregated and normalized power levels (step 2 in figure 3.2).

• Probabilities are computed based on the transition from one state to another between
two consecutive hours. Thus, a 24 hours day is associated with 23 k × k transition
matrices (one for each hour) with k state values for each hour (step 3 in figure 3.2).

3.2.2 Scenario generation

Based on the Markov model previously introduced, energy demand and production sce-
narios are generated by giving an initial state, a timestamp and the length of the horizon.
In practice, the power values (which correspond to the Markov chain states) are sampled
from the transition matrices where categorical distributions are built for each hour. The
probability of each scenario πs is given by the product of all the hourly probabilities. The
generation process corresponds to the last step in figure 3.2.

Figure 3.2: Description of the scenario generation method based on Markov chains: from historical data
(0), days are classified into representatives week and week-end days for each month (1), for each hour, a
given number of states is selected using the k-medoids algorithm (2), then the transition matrices based
on the probabilities of going from one state to another between two consecutive hours are computed (3)
and finally, synthetic scenarios are generated by giving an initial state, a timestamp and the length of
the horizon (4).
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3.3 Evaluation on a case study
The generation method is evaluated using the Ausgrid dataset where the 39th customer is
arbitrarily chosen. Figure 3.3 shows the 3-year time series at an hourly time step for the
electrical and thermal demands, in addition to the normalized solar production (in gray).
Note that the first hour corresponds to the 1st of July as the season cycle is opposite to
Europe.

Figure 3.3: Overview of the 3-year time series from the 39th Ausgrid customer (in gray) and a one-year
scenario generated with the Markov model (in color) for example.

While well-established metrics (e.g. root-mean-square error (RMSE), mean absolute
error (MAE), etc.) are usually derived to assess the performance of short-term forecasting
methods, the evaluation of long-term scenarios is less obvious at first glance. Therefore,
following [81], [83] and [89] the evaluation for long-term scenarios will be based on a
combination of both statistical and visual examination in comparison with the measured
data.

3.3.1 Statistical assessment over the representative periods

To run the evaluation, Markov chains are built from the 3-year dataset of measured data.
Then, 1000 scenarios of one year at an hourly time step are generated for the study. A
single scenario is plotted in figure 3.3 with colored lines for comparison. A first general
observation is that the shape of the profiles seems consistent with the measured data
depicted in gray in the figure. This conclusion is also verified at a lower time scale as
depicted in figure 3.4 and 3.5. Indeed, the latter show the comparison between the real
data and the Markov model for both the week and weekend days of each month: the
hourly mean values are depicted with a blue solid and red dash line for the model and the
real data, respectively. All the values are also displayed in the figure backgrounds for both
cases. As observed in the figures, it seems that the Markov model correctly reproduces
the main statistical features of the initial dataset for each of the representative days. The
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seasonal issues are accurately addressed by the model as it follows the monthly variations
of the real data. This latter observation is reinforced by comparing the power level
amplitudes, in addition to the sunrise and sunset times of the different months. Note that
for this case study, there are no major differences between the week and weekend days
energy demand patterns. This latter observation might not be true with other residential
customers.

Figure 3.4: Comparison between the Markov model (in blue) and the real data (in red) for each week
day of each month. Mean values are depicted with a solid and dash line for the model and the real data,
respectively. All the values are given in the background of each figure for both cases.

Figure 3.5: Comparison between the Markov model (in blue) and the real data (in red) for each weekend
day of each month. Mean values are depicted with a solid and dash line for the model and the real data,
respectively. All the values are given in the background of each figure for both cases.
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3.3.2 Short time scale variability

Despite those statistical similarities, the Markov model still introduces short time scale
variability from one scenario to another as shown in figure 3.6, where the energy demands
and production are depicted over one week for 10 scenarios randomly chosen in July. In-
deed, power values are not simultaneously the same between scenarios, which leads to a
wide range of contingencies. This latter aspect is of first importance when dealing with
the DES design and operation under uncertainties. Also, remember that each scenario is
associated with a given probability which is computed thanks to the transition matrices
(see section 3.2). Thus, the generation procedure is also suitable for short-term proba-
bilistic forecasts, which can be later used by look-ahead control strategies to operate the
DES (more details are given in chapter 4).

Figure 3.6: Short time scale variability over one week for 10 randomly chosen scenarios in July. The
mean value is depicted in red.

3.3.3 Autocorrelation and duration curves

Autocorrelation refers to the correlation of a time series with a lagged copy of itself.
The goal is to determine if the signal shows similarities between observations at different
time lags. The result is given as a function of the delay (also called lags in figure 3.7).
Despite the Markovian property attached to the generation method (i.e. the future state
of the stochastic process only depends on the current state, without any memory of the
past), the autocorrelation of the three variables is also recovered by the model as shown
in figure 3.7. This might be explained as Markov chains are computed for each hour of
representative days, leading to realistic power level sequences.
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Figure 3.7: (Left) Autocorrelation of the three variables, and (Right) Load and production duration
curves for both the synthetic scenarios (in blue) and the 3-year historical dataset (in red).

Finally, figure 3.7 also shows the duration curves of the three variables. With this rep-
resentation, the values are sorted in descending order, which makes easier the comparison
between the real data and the synthetic scenarios at a yearly time scale. The area under
the curve corresponds to the total energy consumed (or produced) over the horizon. As
shown in the figure, while model peak values are consistent with real data, the Markovian
approach tends to generate scenarios with annual energy demands close to the average.
Indeed, the model’s blue curves are delimited by the real data. This latter observation
is not verified for the production profiles. This is probably because the energy demand
profiles have redundant patterns, leading to more peaked state probability distributions
than for production. Indeed, despite the deterministic meteorological characteristics (i.e.
the sunrise and sunset only depend on the position of the earth), the PV production is
more likely to have random variations during the day, leading to more diversity in the
generation process.

3.4 Discussion and conclusion
In order to generate synthetic scenarios for both long and short-term applications, a
simple stochastic model based on Markov chains was presented in this chapter. First, the
methodology was introduced where the Markov chains are computed over representative
periods to account for the different time scales variability. Then, the method was applied
to a residential case study where the objective was to build several energy demands and
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production scenarios. The results have shown that the main statistical features of the
initial dataset have been recovered with this simple Markov model while introducing
temporal variability to the annual time series. Finally, the last section has demonstrated
that the Markovian approach is also suitable to generate short-term probabilistic forecasts,
later used to control the DES.

The first limitation of this work comes from the classification procedure manually
operated to identify the representative periods. Indeed, the performance of the Markov
method is directly related to the expert knowledge concerning the structure and patterns
of the initial dataset. Other approaches (mostly based on machine learning as in [83] for
instance) do not require this first step and might be more relevant if little information
is available about the stochastic processes. Moreover, although the Markov model intro-
duces temporal variability into the scenario set, following the conclusion in [35], epistemic
uncertainties are not addressed within this approach. Indeed, the model only recovers
power levels and daily patterns that were already present in the historical dataset. When
applied to a real case study, a strong assumption made by using this method is that the
values of the uncertain parameters will remain the same in the future, regardless of their
temporal variability. But what happens if the future energy demands increase or if the
shape of the daily consumption changes? These latter issues are not properly addressed
by only using the Markov model. This work aimed at developing a simple method to
generate a large number of scenarios that will be later used to assess the different design
and operation approaches. Decision-makers seeking quantitative and realistic results must
spend a significant amount of time towards this generation phase.
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Chapter 4

Design under uncertainty of a
multi-energy system with seasonal
storage: on the importance of the
operation strategy in the design
procedure

Highlights

• Introduction of a stochastic framework to study the design and operation of
DES.

• Comparison of different design (i.e., mathematical programming and meta-
heuristic approaches in a two-stage fashion) and operation (i.e., anticipative,
rule-based, open-loop feedback control) strategies under uncertainties.

• Results show that the real-time operation strategy and the one embedded in
the design procedure do not have to be strictly identical, as long as their levels
of optimality are similar. This work helps quantify this notion.

• The mathematical programming approach (widely implemented in the liter-
ature) is relevant if, and only if, the DES is finally operated with a real-time
policy that performs similarly to the anticipative operation strategy. This
latter condition might be critical for large and complex energy systems.
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4.1 Introduction
A common practice to assist decision-making under uncertainty is to run uncertainty
and sensitivity analyses to assess the impact of stochasticity on the results [20, 55, 54].
In the former case, the objective is to observe the output variability of a model given
multiple uncertain input realizations, while sensitivity analysis aims to identify the most
influential input parameters regarding the output variability. This can be done using
several well-known approaches as the Sobol or Morris methods [93, 94]. Following the
modeling framework given in this work, both analyses can be performed either on the
simulator or only on the design strategy (for example, references [20] and [55] only ran
the analyses on the design optimization model). In the latter case, the authors built a
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deterministic optimization model on which the analyses were performed to evaluate the
impact of uncertainty on the techno-economic indicators and the DES configuration. One
of the objectives is to reduce the set of uncertain parameters in order to simplify the
stochastic formulation. Despite the popularity of this approach, King and Wallace [75,
95] thoroughly explained why the results of such analyses must be used with caution.
Indeed, the analyses are run on a deterministic model which does not reflect the real
nature of the decision process (i.e., in reality, decisions are made without anticipating the
future), so the sensitivity results are those of the deterministic model and their stochastic
counterpart could be quite different. In any case, uncertainty and sensitivity analyses are
made to provide insights into the impact and key drivers of uncertainty, but they do not
deliver any design solution to hedge against them.

Having said that, this chapter deals with methods for optimization under uncertainty
where the objective is to provide design values consistent with the risk aversion of the
decision-maker. These techniques are far from new and two paradigms are mainly investi-
gated in the literature: stochastic programming [96] and robust optimization [97].
The main difference between these two approaches is that the uncertain parameters are
modeled as random variables over a discrete probability space with the former, while
the latter uses uncertainty sets. Examples of such methods applied to the energy sector
include [74, 98, 99, 100] for stochastic programming and [101, 102, 103, 104] for robust
optimization.

In this work, the problem is formulated using the stochastic programming framework.
As further explained in the following, the resulting stochastic design optimization problem
is most of the time intractable, and simplifications are inevitable to come up with a
solution. Among these simplifications, a common practice is to approximate the operation
strategy (included in the design procedure), meaning that the DES will be controlled in
real life with a policy different from the one used to design it. The main objective of this
study is to challenge this latter hypothesis by comparing several design and operation
methods under uncertainties.

4.1.1 Literature review

In the majority of the studies that apply stochastic programming to the design of DES, the
optimization model is based on a single equivalent year where the uncertain parameters
are modeled as random variables. To tackle long computation times, the information
dynamic (i.e., the way uncertainties are revealed over time) is most of the time simplified,
and uncertainties are assumed to unfold in only two stages: first, design decisions are
made without perfectly knowing the future, then uncertainties are revealed, and recourse
power flow decisions are made with perfect foresight over the operation horizon. The
resulting model belongs to the well-known two-stage recourse problem category, widely
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discussed in the stochastic literature.
For instance, the authors in [74] and [98] implemented this technique for DES de-

sign, where a single large optimization problem is formulated and solved with standard
commercial solvers. Other studies [99, 100] used decomposition methods for large-scale
expansion planning problems where the number of variables is too large to be directly
solved. Another widely used approach to solve the two-stage problem is to compute the
sizing values thanks to a metaheuristic algorithm where the DES operation is simulated
over a large set of scenarios and nested in the design loop [35, 105, 106]. As computa-
tional times are highly sensitive to the number of scenarios, scenario reduction methods
are usually implemented to identify a reduced set of scenarios to statistically approximate
the stochastic processes with a limited number of samples [100, 107, 108].

In all the previous works, the operation strategy integrated into the design
procedure cannot be implemented in real life. Indeed, recourse decisions are made
with perfect foresight over the entire operation horizon (i.e., one year), while realistic
operation strategies cannot anticipate the future as they only have access to past and
current observations. The operation might be based on forecasts, but in this case, forecasts
are only computed from historical data, and decisions are made with limited foresight (i.e.,
usually one day). Therefore, the simplification of the operation strategy in the sizing
procedure is a modeling approximation to facilitate the resolution of the design problem.
However, this latter point has to be thoroughly discussed as the DES will be later operated
in real life with a policy different from the one used to design it. In this case, how to be
sure that the required performances will be met with a realistic operation strategy? Is the
perfect foresight hypothesis (attached to the operation in the design method) appropriate
for the design of DES? Should the operation strategies used for the design and in real life be
the same? How sensitive are the design values to the operation policy? Despite their great
importance for real-world applications, these design issues are, to the author’s knowledge,
rarely addressed in conjunction with realistic operation strategies. For example, the
authors in [109] provided a brief comparison of different operation strategies with regards
to the design but the study was carried out in a deterministic framework.

Another shortcoming of previous works concerns the evaluation of the stochastic so-
lution. Indeed, the techno-economic indicators (e.g., total annual cost, renewable share)
are usually computed over the same scenario set as the one used to design the DES [74].
To avoid any bias in the evaluation, the resulting design must be assessed on another set
of scenarios, sharing the same statistical features but with different contingencies (e.g.,
synchronicity between the production and consumption, sequences of ”good” and ”bad”
days). This process is called out-of-sample assessment, which is a common practice in the
data science community, but rarely addressed in the energy planning field.
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4.1.2 Main contributions

To address these shortcomings, the main objective of this work is to provide a comprehen-
sive and joint comparison of different design and operation strategies under uncertainty
for a multi-energy system with seasonal storage (depicted in figure 4.1). Especially, this
study examines to what extent the aforementioned approximations (i.e., made for the
purpose of the design), may lead to inaccurate results when operating the system in a
realistic manner. To this end, the general framework introduced in chapter 1 is used: 1)
first, the size of the assets is obtained by solving an integrated design approach where
the approximated operation strategy Φd is embedded in a design loop to facilitate its
resolution; 2) then, once the sizes have been fixed, the DES is evaluated on a common
out-of-sample simulator with several realistic operation strategies Φa (i.e., which only
have access to past and current information). The operation strategies Φd and Φa are
not necessarily the same, so the objective of this work is to study the interplay between
the design and the operation by varying the optimality level of the operation strategies in
both phases (see figure 4.2 for a detailed representation of the methodology developed in
this work). The only difference between the optimization and simulation phases is the way
information is revealed over time: the design strategy may rely on the ”perfect foresight”
assumption, while the simulation is run with realistic operation strategies that only have
access to past and current information. Note that the scenario sets Ωd and Ωa (i.e., time
series of energy demands, generation and electricity tariffs) are different to avoid any bias
in the evaluation. In practice, Ωd could be historical measurements while Ωa represents
the future unknown values of the uncertain parameters.

Figure 4.1: Schematic view of the multi-energy system with seasonal storage.

This work is organized as follows: section 4.2 shows the mathematical formulation of
the design and operation problems where uncertainties are modeled as random variables.
Then, section 4.3 describes the scenario generation method which is developed to build the
sample space. Next, the resolution methods for both the design and operation of the DES
are introduced in section 4.4. Then, the methods are applied and compared in section 4.5.
Finally, section 4.6 provides in-depth discussions about the interaction between design and
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operation on a simplified case study, while the discussion and conclusions are drawn in
section 4.7.

Figure 4.2: Detailed representation of the methodology developed in this work: 1) first, the size of the
assets is obtained by solving an integrated design approach where the approximated operation strategy
Φd is embedded in a design loop to facilitate its resolution; 2) then, once the sizes have been fixed,
the DES is evaluated on a common out-of-sample simulator with several realistic operation strategies
Φa (i.e., which only have access to past and current information). The operation strategies Φd and Φa

are not necessarily the same, so the objective of this work is to study the interplay between the design
and the operation by varying the optimality level of the operation strategies in both phases. Note that
the scenario sets Ωd and Ωa (i.e., time series of energy demands, generation and electricity tariffs) are
different to avoid any bias in the evaluation. In practice, Ωd could be historical measurements while Ωa

represents the future unknown values of the uncertain parameters.

4.2 Mathematical formulation
In this section, the mathematical formulation of the stochastic problem is introduced. The
model is mainly built on its deterministic counterpart introduced in chapter 2. The main
difference is that operation variables become random variables as further explained in
section 4.2.1. they are denoted with bold letters while their realizations are materialized
by regular lower case letters. Only the main differences are introduced in this section,
and the reader can refer to chapter 2 for more details about the energy system models.

4.2.1 Uncertainties

The electrical (pld,eh ) and thermal (pld,hh ) demands, the hourly solar capacity factor (ppvh )
and the electricity tariff (cg,+h ) are the uncertainties of the problem as their future val-
ues could not be predicted with perfect accuracy over the system lifetime. They are
modelled as random variables over a probability space (π,Ω) and gathered in the vector
wh ∈ Wh = R4 (4.1). For the sake of simplicity, the electricity feed-in tariff (cg,−h ) is
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fixed to zero in the rest of the study.

wh = (pld,eh pld,hh ppvh cg,+h ) (4.1)

In this work, a scenario s ∈ Ω is a sequence of 8760 realizations over one year, at an
hourly time step ws = (w1,s, . . . , wH,s). The aim of section 4.3 is to build the discrete
sample space Ω with the associated probabilities π = (π1, . . . , πS).

4.2.2 Decision variables

The decision variables for both the design and operation optimization problems are given
as follows:

• The decision variables for the design are the size of the assets. They correspond
to the maximum capacity of the storage systems and the maximum power of the
energy converters, gathered in the vector ud ∈ Ud = R6 (4.2).

ud = (Eb,d Etes,d Etk,d pfc,d pel,d ppv,d) (4.2)

• The decision variables for the operation are the power flows controlled in the multi-
energy system at every time step. They correspond to the charging and discharging
power for the storage systems and the electrical powers for the energy converters,
gathered in the vector uoh ∈ Uo

h = R9 (4.3). Because they depend on uncertainties,
decision variables for the operation are also random variables.

uoh = (pb,+h pb,−h ptes,+h ptes,−h ptk,+h ptk,−h pfc,eh pel,eh pht,eh ) (4.3)

4.2.3 Constraints

This section describes the constraints defining the admissible set of solutions for the deci-
sion variables previously introduced. The ”energy balances” and ”energy system model”
constraints are not depicted in this section as they remain unchanged from chapter 2. The
only difference is that operation variables become random variables. Special attention is
paid to the flow of information (i.e., the way uncertainties are revealed over time) and the
renewable share constraint. The entire stochastic formulation is given in a colored box
for the toy-example at the end of this section.

Information structure

Particular attention is paid to the flow of information in the decision-making structure:
in real-world problems, uncertainties unfold time step after time step and decisions are
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only made with past and current observations. As time passes, new information becomes
available and the decision-maker could benefit from updated observations to make new
decisions. A stage corresponds to a moment in time when the information is revealed,
which is not necessarily related to the number of time periods. For instance, a ”two-stage”
model only means that uncertainties are revealed in two stages which has nothing to do
with the number of time steps in the problem.

In our case study, the first decisions made by the decision-maker before operating the
DES, are the size of the assets ud. These decisions are made without perfectly knowing
the future uncertainty realizations over the equipment lifetimes. Next, when operating
the system in real-time, values of the uncertain parameters are first observed and then,
operation decisions are made. The same decision-making structure applies until the end
of the system operation. The interplay between decision and uncertainties is depicted in
(4.4).

ud  w1  uo1  w2  uo2  · · · wH  uoH (4.4)

To formalize that operation decision variables only depend on past and current informa-
tion, the so-called non-anticipativity constraint is introduced by equation (4.5) where σ is
the σ-algebra generated by the input arguments (more details about the σ-algebra could
be found in [19]).

σ(uoh) ⊂ σ(w1, . . . ,wh) (4.5)

Share of solar production

In the following work, the renewable share constraint needs to be fulfilled according to a
given risk measure. For example, if the risk measure is the expectation, this only means
that the constraint has to be met in expectation but not in all cases. In this work, the
so-called conditional value at risk (CVaR) is introduced as a coherent risk measure (for
more information about the CVaR, see appendix A). The CVaR is convenient as it makes
it possible to go from the expectation to the worst-case by only varying the β parameter
from 0 to 1 (4.6).

CVaRβ

[
H∑
h=1

(
pg,+h − (1− τ sh) · (pld,eh + pld,hh

ηe→h
)
)
·∆h

]
≤ 0 (4.6)

4.2.4 Optimization problem statement

As in chapter 2, the integrated design objective is to determine the sizing and operation
decisions in order to minimize the sum of both the annualized investment and operating
expenditures.
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Annualized investment cost

The annual capital cost depends on the equipment sizes which are the investment decisions
of the design problem ud, and the capital cost of each technology (4.7).

Jd(ud) = γb · cb · Eb,d + γtes · ctes · Etes,d + γtk · ctk · Etk,d + γfc · cfc · pfc,d+
γel · cel · pel,d + γpv · cpv · ppv,d (4.7)

where the standard annuity factor γ is computed based on the expected lifetime of each
technology (in years) with an interest rate of 4.5%.

Operating cost

At each time step, the operating cost is computed based on the energy exchanged with
the external network (4.8).

Joh(ud,uoh,wh) = (cg,+h · pg,+h − cg,−h · pg,−h ) ·∆h (4.8)

where cg,+ is the tariff of electricity (€/kWh) and cg,− the feed-in tariff (€/kWh), set to
zero in the following work.

Problem statement

The resulting stochastic optimal design optimization problem is a nested problem where
the operation is included in the design loop (4.9). The latter aims at finding the optimal
operation decisions according to the decision-maker’s risk attitude.

min
ud

Jd(ud) + CVaRβ

[
J̃o(ud,w)

]
(4.9a)

s.t. ud ∈ Ud (4.9b)

where Ud is the set of admissible solutions for the design variables. The stochastic optimal
operation problem is then given by (4.10).

J̃o(ud,w) = min
uo

H∑
h=1

Joh(ud,uoh,wh) (4.10a)

s.t.
xh+1 = f(xh, ud,uoh,wh) (4.10b)
uoh ∈ U o

h(ud,xh,wh) (4.10c)
σ(uoh) ⊂ σ(w1, . . . ,wh) (4.10d)
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where f is described by the state equations for storage systems. U o
h is the set of admissible

solutions for the operation which is related to the constraints introduced in section 4.2.3.
At this point, problem (4.9) is profoundly ”multi-stages” (and most of the time, in-

tractable) as the information is only revealed time step after time step. Section 4.4 aims
at introducing the two-stage approximation, in order to solve this problem.
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Toy example - Two-stage stochastic formulation (deterministic equivalent)

The objective is to determine the size of the assets ud = (Eb,d ppv,d) and the power
flows controlled in the DES uoh,s = (pb,+h,s pb,−h,s ) at each time step h ∈ {1, . . . , H}
and for each scenario s ∈ {1, . . . , S}, in order to minimize the sum of both the
annualized investment and operating expenditures. The uncertainties are given by
wh,s = (pld,eh,s pld,hh,s ppvh,s cg,+h,s ). More information about the linearization proce-
dure are given in section 4.4.2.

The entire formulation is given as follows:

min
ud,uo

ζ + 1
1− β ·

S∑
s=1

πs · αs

subject to:

αs ≥ Jd(ud) + Joh,s(ud, uoh,s, wh,s)− ζ Objective linearization
αs ≥ 0 -
0 ≤ Eb,d ≤ E

b,d Size limitations
0 ≤ ppv,d ≤ ppv,d -
ppv,d · ppvh,s + pb,+h,s + pg,+h,s = pld,eh,s + pb,−h,s + pg,−h,s Energy balance
0 ≤ pg,+h,s ≤ g Power grid
0 ≤ pg,−h,s ≤ g -

Eb
h+1,s = Eb

h,s · (1− ηloss ·∆h) + (η− · pb,−h,s −
pb,+h,s
η+ ) ·∆h Storage model

e · Eb,d ≤ Eb
h,s ≤ e · Eb,m -

0 ≤ pb,+h,s ≤ p · Eb,d -
0 ≤ pb,−h,s ≤ p · Eb,d -
Eb

1,s ≤ Eb
H+1,s Periodicity (optional)

ζ ′ + 1
1− β′ ·

S∑
s=1

πs · α′s ≤ 0 Renewable share

α′s ≥
H∑
h=1

(pg,+h,s − (1− τ sh) · pld,eh,s ) ·∆h− ζ ′ Constraint linearization

α′s ≥ 0 -
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4.3 Scenario generation
This section aims at building the discrete probability space (π,Ω) in order to accurately
represent the uncertain parameters of the problem.

4.3.1 Case study

The distributed multi-energy system is assumed to be installed for a five residential houses
district, newly built. We only know that the future inhabitants will behave as residential
consumers but the exact number of people is a priori unknown (single person? a small
family? a large family?). In order to estimate the future electrical and thermal energy
demands, the scenarios generated in the next section are built upon a 3-year historical
dataset of measured consumption for 20 residential consumers. This dataset comes from
Ausgrid [10] and the authors in [11] identified a ”clean dataset” where 20 consumers are
taken. The total energy demands supplied by the multi-energy system is the aggregation
of the five houses’ consumption profiles (see figure 4.3).

(a) (b)

Figure 4.3: (a) The multi-energy system is installed for a five residential houses urban district newly
built with unknown energy demands and production. (b) 2000 aggregated scenarios are built using the
Markov model and split into two distinct parts: one set will be used for the design and the other for the
assessment.

4.3.2 Generation process

Energy demands and production

Based on the Markov method developed in chapter 3, 2000 annual scenarios at an hourly
time step are generated for each of the 20 consumers. Then, 5 among 20 are randomly
aggregated to constitute the final set of energy demands and production scenarios used
in this work (see figure 4.3).
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Tariff of electricity

The price of electricity is another parameter that is usually concerned by uncertainty
as it is unlikely to remain constant during the operational lifetime of the multi-energy
system. As observed in figure 4.4 from data provided by Eurostat (European statistical
office) [71], the ”flat rate” price of electricity in France has increased from 0.12 €/kWh to
0.19 €/kWh (+58%) in only 12 years. From these observations, a simple statistical model
is built which assumes a 4% increase per year with an additive white Gaussian noise of
variance 4%. Then, 2000 scenarios projected over 20 years are randomly sampled from
this model and the mean values over the 20 years for each projection are taken as inputs
of this work similarly to [20] (see figure 4.4).

(a) (b)

Figure 4.4: (a) Evolution of the ”flat rate” electricity tariff in France from Eurostat [71]. (b) Evolution
of the electricity tariff over 20 years from the statistical model developed in this work. The mean values
over the 20 years for each projection are taken as inputs of this study.

Scenario compilation

Energy demands and production profiles are randomly combined with electricity tariff
scenarios, so a final set of 2000 scenarios with the same uniform probability is generated.
Then, the final set is split into two parts: odd scenarios will be used for the design
optimization phase (Ωd) while even scenarios will be used for the out-of-sample assessment
step (Ωa). Figure 4.5 illustrates the annual energy demands (i.e., electricity and heat)
diversity for both the design and the assessment sets.
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Figure 4.5: Annual energy demands variability for both the design and assessment sets.

The short time scale variability from one scenario to another is represented in figure
4.6 where the energy demands and production are depicted over one week for 10 scenarios
randomly chosen.

Figure 4.6: 10 scenarios of energy demands and production over one week generated using the Markov
model (in gray). The colored lines are mean values.

4.4 Resolution methods
This section introduces the resolution methods for both the operation and design optimiza-
tion problems, formulated in section 4.2. First, three operation strategies (i.e., rule-based,
open-loop feedback control and anticipative) are introduced in section 4.4.1. Then, two
integrated design methods (i.e., mathematical programming and metaheuristic) based on
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the ”two-stage” approximation are presented in section 4.4.2. These approaches will be
later compared in section 4.5.

4.4.1 Operation strategies

Unlike deterministic cases, the result of a stochastic optimal operation problem is a pol-
icy which is a sequence of mappings Φ = (Φ1, ...,ΦH) which gives at each time step
the operation decisions as a function of the current state and available information
Φh : Xh × Wh → Uo

h [18, 19].
Two realistic policies are introduced in what follows: (i) a heuristic policy based on a

set of rules, and (ii) a look-ahead method that solves a multistage optimization problem at
each time step, based on a forecast of the uncertain parameters. Rule-based (RB) policies
are widely implemented in real-life applications and in the literature because of their
simplicity. However, when the system complexity increases (e.g., number of equipment,
multi-energy carrier, complex market structure), it becomes more and more difficult to
define a good set of rules to be close to the optimal operation. To address this shortcoming,
look-ahead methods such as model predictive control (MPC) or its stochastic counterpart,
open-loop feedback control (OLFC) [19] (also called stochastic MPC ), are well suited for
complex case studies. This comes at a price as an optimization problem needs to be
solved at each time step, which might lead to a more complex control architecture. Note
that many other optimized operation strategies could be found in the literature (e.g.,
stochastic dynamic programming, reinforcement learning) but their implementation is
out of the scope of this work. The objective of this study is to compare a sub-optimal
operation strategy (i.e. the RB policy described in the next section) with a smarter policy
based on optimization (i.e. OLFC) to study the sensitivity of the operation strategy over
the design. A smarter RB strategy could have been implemented but the objective of this
work is to have two policies with different levels of optimality.

Rule based policy

A simple rule-based policy Φrb is implemented in this work: first, solar production is
directly used to supply the electrical demand. Next, if there is a surplus of electrical
energy, the charging priority is given to the Li-ion battery, followed by the H2 tank through
the PEME, and the remainder is converted into heat through the heater. Otherwise, the
battery is discharged firstly, then the PEMFC is turned on. The heat produced by the
H2 cogeneration units is directly consumed to supply the thermal demand. If there is a
surplus of thermal energy, the TES is charged. Otherwise, the TES is discharged and the
heater is finally turned on if required.
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Open-loop feedback control policy

As previously mentioned, OLFC is a well-known operation strategy which solves at each
time step h ∈ {1, ..., H} a multistage optimization problem, based on s ∈ {1, ..., S}
scenario forecasts of the uncertain parameters w̃s = (w̃h,s, ..., w̃T,s) over a given hori-
zon T (4.11).

Φolfc
h : Xh ×Wh → Uh (4.11)

(xh, wh)→ uh ∈ arg min
uh,...,uT

CVaRβ

[
h+T∑
t=h

Jot (ud, uot , w̃t,s) +K(xT )
]

The result is a sequence of optimal decisions (uh, ..., uT ) but only the first value is kept.
The same procedure is repeated at each time step. The forecasts are generated with the
Markov chain method introduced in section 4.3. For more details about OLFC, see [19].
A final cost K(xT ) is typically added to the objective to avoid empty storages at the end
of the look-ahead horizon.

The application of such a policy to seasonal storage is more challenging as the look-
ahead horizon T is usually short enough to avoid long computation times (e.g., 1 - 3
days). Indeed, it would make no sense to repeatedly solve the problem over one year at
each operation time step to deal with seasonal issues. In order to tackle this problem,
a reference trajectory for the H2 tank state variable is added to the final cost and the
deviation is penalized in the objective function (4.12). The reference trajectory comes
from the two-stage design procedure where the deterministic equivalent problem over one
year is solved. Then, the mean value of the deterministic H2 trajectories (one for each
scenario over one year) is chosen as a reference target for the operation. The idea is similar
to [110] and [111] but the target constraint (which represents the reference trajectory in
their case) is somehow penalized in the objective function, leading to more flexibility in
the operation.

K(xT ) = −k1 · Eb
T − k2 · Etes

T − k3 · (Etk
T − E

tk,ref
T ) (4.12)

where k1, k2 and k3 are positive penalization coefficients calibrated by trial and errors
(further explained in section 4.5). Without this final cost, it makes no sense for the
controller to save energy for seasonal purposes and the tank would be used on a daily
time scale. For the sake of simplicity, a simple linear penalization scheme is used but more
complex penalization structures are possible to improve the performance of the operation
strategy.

To summarize, OLFC is an optimized policy that has to be parametrized: the look-
ahead horizon, the number of scenario forecasts, the penalization coefficients, the reference
trajectory and the risk measure have to be fixed before operating the multi-energy sys-
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tem. Note that this chapter focuses more on design methodologies rather than optimal
operation issues. Therefore, the parameters will be set manually by trial and error in
section 4.5 but this issue could be a research question in itself for anyone interested in
high-performance strategies.

Anticipative policy

The anticipative policy is also introduced as an unrealistic operation strategy. The latter
finds the exact solution of the operation problem, assuming that all the information
(i.e. realizations of the uncertain parameters) is available over the entire horizon for
each scenario. The implementation of such “anticipative” (as the future is assumed to
be perfectly known) policy is, of course, unfeasible in real life as uncertainties unfold
progressively over time. However, its computation gives a lower bound to the operating
cost (for each scenario) which is valuable information to measure the performance of any
other realistic operation strategy.

4.4.2 Integrated design methods

As previously said in section 4.1 and 4.2, the resulting design problem is profoundly
”multi-stages” and simplifications are inevitable to solve the problem. The most common
simplification in the literature is the ”two-stage” approximation where uncertainties are
assumed to be revealed in only two stages. In this case, design decisions are made without
knowing the future while the operation has perfect foresight of the uncertain parameters
for each scenario. Therefore, two well-known algorithms (i.e., mathematical programming
and metaheuristic) are introduced in this section to solve the two-stage optimization
problem. They are depicted in figure 4.7 and further explained in the following.
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(a) (b)

Figure 4.7: (a) With the metaheuristic approach, design and operation decisions are computed itera-
tively. The metaheuristic algorithm feeds a simulator with different system configurations (i.e., design
decisions ud) where the operation strategy is simulated over multiple scenarios of one year at an hourly
time step. The process stops either when the objective has converged or the maximum number of itera-
tions has been reached. (b) With the mathematical programming approach, the design and operation
form a single optimization problem where both design and operation decisions are computed at the same
time. Because of the two-stage approximation, the operation strategy embedded in the design procedure
is indirectly anticipative.

Mathematical programming

The first approach is widely used in the literature [41, 74, 98, 99, 100], and implements a
single large linear programming (LP) optimization problem where both the optimal design
and operation decisions are computed at the same time. Therefore, the deterministic
equivalent of problem (4.9) is formulated over a finite set of scenarios where the CVaRβ

risk-measure is linearized according to [112]. As previously said in the introduction,
this method leads to unrealistic operation policies as operation decisions are made with
”perfect foresight” over the entire horizon. This simplification is a modeling approximation
to facilitate the resolution of the design problem. The formulation is given by equation
(4.13) where ζ and αs are auxiliary variables introduced for the purpose of linearization.

min
ud,uo

1:H,1:S

ζ + 1
1− β ·

S∑
s=1

πs · αs (4.13a)

s.t.
xh+1,s = f(xh,s, ud, uoh,s, wh,s) (4.13b)
ud ∈ Ud, uoh, s ∈ U o(ud, xh,s, wh,s) (4.13c)
αs ≥ Jd(ud) + Joh,s(ud, uoh,s, wh,s)− ζ (4.13d)
αs ≥ 0 (4.13e)

Unlike design variables, note that operation variables are indexed by the set of scenario s
to take into account the non-anticipativity of the design in the ”two-stage” structure. The
same linearization technique is implemented for the renewable share constraint (see the
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toy-example for an illustration). The resulting problem is a single large LP optimization
problem that can be solved with standard solvers (e.g., CPLEX [59]).

Metaheuristic

Another widely used method [24, 62, 113] is to use a metaheuristic algorithm to compute
the design decisions: the DES is simulated over the set of design scenarios using one
of the operation policies described above, and nested in a design loop. The size of the
assets is computed through successive iterations. The algorithm stops either when the
objective has converged towards a constant value or the maximum number of iterations
has been reached. In this work, a niching genetic algorithm (also referred as clearing) [61]
is implemented to compute the design decisions. The clearing is a niching elitist genetic
algorithm that usually outperforms standard genetic algorithms on difficult problems with
multiple nonlinear constraints and multimodal features. In this work, the renewable share
and storage periodicity constraints are directly integrated into the objective function with
penalty coefficients. The population size and the number of generations are respectively
set to 50 and 100. Typical values for crossover and mutation rates are used (i.e., pc = 1
and pm = 5%). In what follows, the algorithm is run multiple times in order to take
the stochastic nature of the algorithm into account and to ensure the reproducibility of
results.

The advantage of black-box algorithms is that no requirement on the model complexity
(linear or not) is needed. Also, the embedded operation strategy might be the one used
in real life, simulated over the set of design scenarios. However, the main drawback of
this approach is that the number of iterations is usually very large to converge, with no
guarantee of reaching optimality. Therefore, the operation strategy must be fast enough,
and time-consuming policies like OLFC cannot be directly integrated into the design loop
without any other simplifications (e.g., time step granularity, simulation horizon).

Scenario reduction

Solving previous methods using the 1000 design scenarios of Ωd would result in intractable
problems. Indeed, the total number of variables for the two-stage problem is approxi-
mately (without counting the auxiliary variables introduced for linearization):

6︸ ︷︷ ︸
design decisions

+ ( 9 + 3︸ ︷︷ ︸
operation decisions and states

) × 8760︸ ︷︷ ︸
hours

× 1000︸ ︷︷ ︸
scenarios

= 105 120 006 (4.14)

Therefore, scenario reduction methods are commonly implemented to tackle this con-
cern [75]. The goal of such approaches is to identify a subset of scenarios Ωr ⊂ Ωd to
statistically approximate the initial set with a lower number of scenarios.

In this work, the reduction approach is based on clustering where the k-medoids al-
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gorithm is applied to a limited set of features (sum, maximum and first 4th statistical
moments) previously extracted from each time series following [74] and [114]. The number
of scenarios is fixed using stability tests [75]: the design methods are run with a growing
number of scenarios until the objective function converges toward a constant value. In
this work, 40 scenarios are needed, with each probability equal to the number of cluster
assignments. Note that reduction methods is a fruitful research domain and more sophis-
ticated techniques exist [100, 107, 108, 115], but their implementation is out of the scope
of this work. More details about the scenario reduction technique implemented in this
work are given in appendix B.

Therefore, the resulting problem has approximately 4 204 806 variables, which is
computationally affordable for traditional solvers.

4.5 Application on the case study
This section is divided into four parts. In section 4.5.1, the perfect foresight hypothe-
sis (attached to the mathematical programming design method) is challenged regarding
realistic operation strategies. The goal is to discuss the validity domain of such an as-
sumption. Next, section 4.5.2 introduces the metaheuristic method for poor performance
policies with low computation time. Then, section 4.5.3 discusses the value of the stochas-
tic solution compared to its deterministic counterpart. In the two previous sections, the
objective is to entirely supply the consumption with the solar production (i.e., τ sh = 1)
in a risk-neutral setting (i.e., β = 0 for both the objective and the renewable share con-
straint). Finally, a sensitivity analysis over the renewable share and the risk measure (i.e.,
β parameter) is carried out in section 4.5.4.

Storages η− η+ ηloss e e p p Lifetime Cost
[0-1] [0-1] [h−1] [0-1] [0-1] [h−1] [h−1] [years] [€/kWh]

Li-ion 0.9 0.9 0.0005 0.2 0.8 1.5 1.5 12 300
TES 0.8 0.8 0.008 0 1 1.5 1.5 25 10
H2 tank 1 1 0 0 1 1.5 1.5 25 10

Table 4.1: Storage input technical and economic parameters

Input technical and economic parameters are unchanged from chapter 2. They are
given in table 4.1 and table 4.2, mainly based on [70] (using the authors ”mode” values).
The investment cost for solar panels is set to 1300 €/kWp.
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Converters ηe→h ηe→h2 ηh2→e ηh2→h Lifetime Cost
[0-1] [0-1] [0-1] [0-1] [years] [€/kW]

Heater 1 - - - - -
PEMFC - - 0.4 0.4 14 1700
PEME 0.3 0.5 - - 15 1300

Table 4.2: Energy converters input technical and economic parameters

The problem is modeled using Julia with the JuMP package [72], and solved with
the IBM CPLEX 12.9 solver [59]. All the computations are run on a standard Intel(R)
Core(TM) i5-7200U CPU @ 2.5GHz 2.7GHz computer.

4.5.1 Evaluation of the mathematical programming approach
with realistic operation strategies

In this section, the renewable share is fixed to 1 and the risk measure is the expectation.
The first objective is to run the mathematical programming approach (also called ”LP”
in the following) to design the DES and then evaluate the solution with the realistic
OLFC and rule-based operation strategies. Indeed, while most of studies solve the design
problem assuming perfect foresight of the operation strategy, the main goal of this section
is to examine to what extent this makes sense regarding realistic operation strategies
which only have access to past and current information. In the following, Φa corresponds
to the realistic policies while Φd is the anticipative strategy indirectly embedded in the
design procedure to compute the size of the assets. Again, design values are computed
using the reduced set of scenarios Ωr, while they are evaluated with realistic policies over
the 1000 assessment scenarios Ωa to avoid any bias in the evaluation.

Therefore, the mathematical programming method is solved and the resulting design
values are given in table 4.3. In the stand-alone case (i.e., τ sh = 1), the optimal cost option
to reach autonomy is a combination of daily and seasonal storage along with multi-energy
strategies to overcome the mismatch between solar production and energy demands. The
total annual capital cost of the system is 14.7 k€ regarding the equipment sizes.

Li-ion TES H2 tank PEMFC PEME PV Cost CPU time
[kWh] [kWh] [kWh] [kW] [kW] [kWp] [k€/y] [min]

LP 128 104 5085 3.5 3.8 68 14.7 133

Table 4.3: Design results with the mathematical programming approach. The risk measure is the ex-
pectation and the renewable share is equal to 1. The total annual capital cost and the CPU time
(computational time required to solve the problem) are also added to the table.

More importantly are the results of the assessment phase run with both the optimized
OLFC and RB strategies over the 1000 assessment scenarios Ωa. The pending question is
whether or not the renewable share constraint is met (on average) with realistic operation
strategies despite the simplifications made for design purposes.
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To this end, the OLFC strategy is parametrized by trial and error using the design
scenario set Ωd: once the sizes have been obtained, the OLFC parameters (i.e., the looka-
head horizon T , the number of scenario forecasts S, and the penalization coefficients k1,
k2 and k3) are set manually by trial and error based on the expected value of the re-
newable share constraint computed on the design scenario set. They are given in table
4.4. Again, anyone seeking a high-performance policy needs to spend more time tuning
these parameters. They can also be obtained by optimization based on a metaheuristic
algorithm for instance. As previously said, the H2 reference trajectory comes from the
design procedure and the risk measure is the expected value in this case.

Parameters T S k1 k2 k3
[h] [-] [€/kWh] [€/kWh] [€/kWh]

Φolfc 24 5 1e-3 1e-3 1e-2

Table 4.4: The OLFC parameters set manually by trial and error using the design scenario set Ωd.

Figure 4.8 shows the statistical distribution of the out-of-sample renewable share as
a histogram for both cases. As it can be observed, when the system is controlled with
OLFC, most of the values (>700 occurrences over 1000) belongs to the upper interval (the
renewable ratio is between 99.5% and 100%) and its expected value is close to 100% (see
the red dash line in the figure which corresponds exactly to 99.6% in this case). In some
rare events (<100 occurrences), its value is lower than 99% which is consistent with the
expectation risk measure over the renewable share constraint. Note that, the operation
policy could be even more improved to rigorously reach autonomy without shedding the
loads. On the other hand, when the RB strategy is used, the distribution is much more
flattened (values range from 94% to 100%) and the renewable share expected value is
around 98%. Some would argue that this is quite a thin range and thus the optimization is
relatively robust, but from a strictly mathematical point of view, the autonomy constraint
is not met with respect to the project requirements.
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Figure 4.8: Histograms of the renewable share from the evaluation of the LP design results with the
OLFC (top) and RB (bottom) policies. The dash red line is the expected value of the renewable share
over the 1000 scenarios Ωa, for both cases. The normalized H2 tank state of charge is also depicted for
the 1000 scenarios in gray and its mean value is depicted in red.

This observation strengthens the fact that both operation strategies Φd and Φa must
have similar performance (i.e. level of optimality). Otherwise, it can lead to underesti-
mated (or overestimated) sizing values. As a result, the mathematical programming
method is only relevant if, and only if, the system is finally operated with a
real-time policy that performs similarly to the anticipative operation strategy
(section 4.6 aims at quantifying this notion). Once the sizing is fixed, the only pragmatic
way to verify that the constraints are met is to use out-of-sample simulations. This latter
remark is even more important for complex DES (e.g., a high number of assets with com-
plex market designs) because the implementation of a ”near-optimal” realistic operation
strategy is difficult.
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4.5.2 The metaheuristic approach for poor performance policies
with low computation time

The remaining issue is how to provide relevant sizing values in the case where the decision-
maker chooses to operate the DES with the sub-optimal RB policy. Indeed, OLFC is quite
sophisticated for a real-world application and the decision-maker might choose the RB
policy for its simplicity. In this case, the metaheuristic algorithm can be run with the
nested RB strategy over the reduced set of design scenarios Ωr. Note that the integration
of the OLFC strategy into the metaheuristic approach would not have been possible
without other simplifications (e.g, simplification of the temporal facet) for computational
reasons (i.e., the simulation of the OLFC policy is too slow).

Li-ion TES H2 tank PEMFC PEME PV Cost CPU time
[kWh] [kWh] [kWh] [kW] [kW] [kWp] [k€/y] [min]

LP 128 104 5085 3.5 3.8 68 14.7 133
Meta 149 585 1597 3.3 1.5 112 17.0 155

Table 4.5: Comparison of the design results with both the mathematical programming and metaheuristic
approaches. The risk measure is the expectation and the renewable share is equal to 1. The total annual
capital cost and the CPU time (computational time required to solve the problem) are also added to the
table.

The design values are shown in table 4.5 in comparison with those of the mathematical
programming approach. As shown in the table, the size of the PV (+65%), the Li-ion
battery (+16%) and the TES (+463%) are increased while lower capacity hydrogen as-
sets are installed. This difference might be explained as the RB policy is less effective at
controlling the hydrogen systems to their full potential when coupling the energy carriers
with each other. The comparison of the design results shows that the sizing solutions are
completely different depending on the operation strategy embedded in the design proce-
dure. Furthermore, the resulting design leads to a cost increase of 16% compared to the
previous case. Hence, the comparison between those two design methods allows
assessing the potential cost reduction by using a near-optimal policy such as
OLFC instead of sub-optimal strategies to reach the same requirements. The
out-of-sample renewable share distribution is depicted in figure 4.9. Unlike previously, the
constraint is now entirely fulfilled with the RB policy and the expected value is 99.8%.
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Figure 4.9: Histogram of the renewable share from the evaluation of the metaheuristic design results
with the RB policy. The dash red line is the expected value of the renewable share ratio over the 1000
scenarios. The normalized H2 tank state of charge is also depicted for the 1000 scenarios in gray and its
mean value is depicted in red.

As a conclusion from the two previous sections, the results could be summed up as
follows:

• Most of the planning studies (in the literature) solve a single mathematical pro-
gramming problem, but the only condition to make it a relevant design approach is
that the DES is finally operated with a real-time policy that performs similarly to
the anticipative operation strategy. Otherwise, the constraints might not be met.

• If the operation strategy is fast enough to be nested in the metaheuristic algorithm,
this latter approach is preferred to avoid inappropriate design values.

• Both methods provide design values consistent with a given risk measure. The com-
parison between those two approaches allows assessing the gain of using optimized
policies instead of sub-optimal strategies to control the DES.

• Whatever the design and operation method, this study highlights the importance of
both the design and assessment phases to ensure that the techno-economic require-
ments are met with realistic operation strategies. The interaction between design
and operation is again strengthened by this work.

Concerning computation performances, 2h15 is needed to solve the LP design problem
which has approximately 4 204 806 variables, and 2h35 with the metaheuristic algorithm
for a single run.

4.5.3 Limitations of deterministic designs

Since uncertainties are usually ignored in most studies, this section examines the value
of the stochastic solution in comparison with its deterministic counterpart. The question
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is to what extent this approximation could lead to inaccurate results. In what follows,
deterministic problems are solved using three different scenarios and evaluated on the
out-of-sample simulator with the OLFC strategy.

Figure 4.10: Renewable share statistical distribution for 3 deterministic cases: ”S1” and ”S179” corre-
spond to the 1st and 179th scenario, while ”EVP” is the result of the expected value problem where the
uncertain parameters are replaced by their expected value. The dash red line is the expected value of the
renewable share ratio over the 1000 out-of-sample scenarios.

Figure 4.10 shows the renewable share statistical distributions and the sizing values are
given in table 4.6: ”S1” and ”S179” are the 1st and 179th scenarios randomly selected for
optimization, while ”EVP” is the result of the expected value problem further detailed in
what follows. As observed, the resulting out-of-sample share of solar production distribu-
tion highly depends on the scenario selected for optimization: in the ”S1” case, the results
are really close to those obtained with the stochastic approach, while the requirements
are, by far, not satisfied with the 179th scenario. In this latter case, the sizing values
are largely underestimated, leading to a renewable share expected value of around 75%
and a total cost equal to 6.3 k€/years (-57% compared to the stochastic result). Thus,
deterministic results could lead to serious inaccurate solutions depending on the scenario
used for optimization. One could say that the scenario must be cleverly chosen according
to the goal of the study. But what does ”good”, ”bad” or ”middle” scenario means in a
design perspective for complex multi-energy systems? Also, how to select the adequate
scenario to finally ended up with out-of-sample results consistent with the decision-maker
risk aversion? It feels like these questions are not properly addressed with a deterministic
point of view.

Li-ion TES H2 tank PEMFC PEME PV Cost CPU time
[kWh] [kWh] [kWh] [kW] [kW] [kWp] [k€/y] [s]

S1 151 123 4700 3.0 2.1 65 14.7 40
S179 54 55 2027 1.8 1.9 30 6.3 40
EVP 117 99 3333 2.4 1.5 59 11.9 40

Table 4.6: Sizing values from deterministic methods with a renewable share equal to 1 for several scenarios.

Another common temptation is to replace all the random variables in equation (4.9)
with their expected values, leading to a deterministic formulation with a single scenario.
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This latter problem is known as the expected value problem (EVP) in the stochastic
programming community [96]. In this case, the results are closer to the stochastic solution
as depicted in figure 4.10 but the autonomy constraint is still not met: its expected value
is 98% with some rare values reaching 85%. Consequently, despite shorter computational
times (40 seconds against approximately 2.5 hours for the stochastic resolution), results
from deterministic models might be hazardous and should be carefully treated as they
could lead to underestimation of the total system cost with overestimated performances.

4.5.4 Renewable share and risk measure sensitivity analysis

Since the previous results have been obtained in a risk-neutral setting with autonomy
requirement, the aim of this section is to vary these two parameters in order to study
their consequences over the sizing values and total system cost: for the risk measure, only
the expectation (i.e., β = 0) and the worst case (i.e., β = 1) are investigated in this work
but any other analyses could be run by varying the β parameter.
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Figure 4.11: Sizes of the equipment for different share of solar production in the risk neutral and worst
cases.

Figure 4.11 depicts the design values as a function of the renewable share for both risk
measures. Unlike the deterministic results of chapter 2, a Li-ion battery is installed even
with low renewable share constraints. This is probably due to the uncertainty attached to
the cost of electricity over the system’s lifetime. In the expectation case, a combination
of 30 kWp of solar panels, 95 kWh of thermal storage and 52 kWh of Li-ion batteries is
profitable up to 60% of renewable share, regarding the assumption of this work. Then,
hydrogen only emerges since the renewable share is greater than 90%, which is consistent
with the conclusion of chapter 2. Increasing the share of solar production comes at a price
as the total cost exponentially increases between 60% and 100% and its value jumps from
7.8 k€/year to 14.7 k€/ (see figure 4.12).
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Figure 4.12: Annual system cost for different share of solar production in the risk neutral and worst cases.

Finally, the higher the risk aversion, the higher the equipment sizes and the higher the
total system cost. As shown in figure 4.11 and 4.12, the gap is greater when the renewable
share is lower than 90%: +20% against +10% for the total cost. This gap is probably due
to the fact that the multi-energy system is facing uncertainties from the electricity tariff,
the energy demands and the production in the first case, while only the second and third
factors remain when autonomy is reached. Furthermore, the size of the thermal storage
seems to be the most impacted by the risk measure. So far, the reason for this variation
has not been properly understood by the author.

4.6 A closer look at the interaction between design
and operation

The objective of this section is to get better insights into the design and operation in-
teraction. Should the operation strategies used for the design (i.e., Φd) and in real life
(i.e., Φa) be the same? This part attempts to answer this question on a simplified case
study. In addition, this section quantifies the optimality level of the operation strategy
and studies its impact on the design values.

To this end, the DES is simplified to solely focus on this latter methodological aspect
rather than the system complexity. The simplified case study is depicted in figure 4.13
where the hydrogen units and the thermal storage are removed. Following the same phi-
losophy, the DES is successively designed and evaluated using several operation strategies
with different levels of optimality.
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Figure 4.13: Schematic view of the simplified DES.

Therefore, six policies (i.e., 1 anticipative and 5 RBs) with decreasing performances
are introduced where the anticipative policy gives the best result. Then, the first rule-
based strategy (RB1) is defined as follows: first, the heater is used to supply the thermal
demand. Then, the solar production is directly consumed to supply both the electrical
demand and the heater consumption. Finally, the battery is charged whenever there is a
surplus of energy or discharged otherwise. Then, four other RB policies are built upon the
previous strategy by adding an increasing white noise perturbation to the final battery
power flow decision. Therefore, the operation strategies range from the most efficient but
unrealistic anticipative policy to the last RB strategy with poor performances due to the
added perturbation. For the sake of simplicity, only the battery power flow decisions are
degraded but more sophisticated perturbation could be added to the controller. The only
objective is to end up with a range of strategies that perform differently.

The objective is now to run the metaheuristic design method with the anticipative and
noisy RBs successively to compare the resulting equipment sizes. Two special cases are
further studied in the following: 1) a first case without any share constraint (i.e. τ sh = 0)
where the benefit from installing solar panels and storage systems is purely economic; 2)
a second case with a strong renewable share (arbitrarily set to 80%).

4.6.1 Sensitivity of the operation strategy performance over the
design

Figure 4.14 shows the sizing as a function of the operation policies. Without any share
constraint, the size of the battery decreases to zero along with the performance of the
operation policy as it makes no sense to install a battery if it is misused. The anticipative
and RB1 policies give approximately the same design results. On the other hand, when
80% of solar production (on average) is required, the optimizer has to oversize the assets
to compensate for poor energy management performances: the difference goes up to
+70% for solar panels and +40% for the battery between the best and the worst strategy.
However, in this second case, design values are less sensitive to the operation policy as
the results are nearly the same for the first three strategies.
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Figure 4.14: Design results for both assets as a function of the operation policy (left) without the share
constraint; (right) with a renewable share equal to 80%.

Therefore, the results confirm previous section observations: the operation policy
embedded in the design phase Φd and the one used in real-life Φa do not have to be the
same, but their levels of optimality must be similar. In practice, it only means that the
mathematical programming method can be used instead of the metaheuristic procedure,
only if the system is finally operated in real life with the RB1 or RB2 policies (depending
on the renewable share constraint).

4.6.2 Sensitivity of the operation strategy over the out-of-sample
cost

Once the system has been designed, the objective of this part is to assess each sizing
solution with the different operation strategies. The assessment results over the 1000
scenarios Ωa are given in figure 4.15. For each table, a row is associated with one design
obtained with one of the six corresponding operation strategies. Then, each design is
evaluated with all the operation strategies (one for each column) and the resulting total
annual cost expected value is printed in the table. When the renewable share expected
value is not met, the cell is left blank (figure 4.15b).
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(a) τsh = 0% (b) τsh = 80%

Figure 4.15: Expected total annual cost (k€/y) for each design value evaluated with each operation policy
(a) without the share constraint; (b) with a renewable share equal to 80%. When the renewable share
expected value is not met, the cell is left blank.

Without any renewable share constraint, the worst total annual costs (about +10%
compared to the lowest cost) are obtained when the DES is designed with high-performance
policies (anticipative or RB1) and then operated with the low-performance RB5 policy
(upper right corner). Note that the cost remains constant when the DES is designed with
both RB4 and RB5 (whatever the assessment strategy) as the size of the battery is null
(see figure 4.14). Concerning the constrained case, the renewable share might not be met
if the operation strategy used to design the DES performs better than the one used for the
assessment (blank cells in figure 4.15b). In every case, the total annual cost is lower when
the system is finally operated with a more effective policy than the one used in the design
phase (lower matrix triangle). Therefore, an important remark from these observations is
that it is safer to use a poor energy management strategy to design the system
and then use an operation strategy that performs well in real-time, than the
opposite. Otherwise, techno-economic requirements might not be met, with a higher
total annual cost than expected.

But what does “good” or “high-performance” mean for an operation policy? Similarly
to [116], a way to quantify the degree of optimality for each strategy is to remind that the
anticipative policy gives the best operating cost (J̃o,ants ), while the worst case is obtained
when the battery is unused (J̃o,refs ) i.e. power flow decisions sent to the battery are
zeros. Therefore, a score qs ∈ [0, 1] is computed for each operation strategy and for
each scenario s ∈ Ωa based on the maximum achievable economic gain for a given design
solution (J̃o,refs − J̃o,ants ) (4.15).

qs = J̃o,refs − J̃os
J̃o,refs − J̃o,ants

(4.15)

where J̃os is the operating cost obtained from the evaluated operation policy.
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(a) τsh = 0% (b) τsh = 80%

Figure 4.16: Performance score of the different operation strategies for each design value (a) without the
share constraint; (b) with a renewable share equal to 80%.

Figure 4.16 shows the expected value of the performance score over the 1000 scenarios
Ωa for both cases (with and without the renewable share constraint). Note that the
variance over the 1000 scenarios is lower than 10−3 for each value. A first observation
is that the anticipative and RB1 policies give the same performance score despite the
heuristic nature of the rule-based strategy. Again, note that RB4 and RB5 solutions lead
to zero battery capacity so that the performance score does not mean anything in these
two latter cases (the cells are left blank in the table). Moreover, the performance metric
seems to be approximately constant regardless of the design values for each policy. This
remark is not completely true for the RB3 design where the size of the battery is close to
zero. Comparing both figure 4.14 and figure 4.16 leads to the following conclusions:

• Design values are more sensitive to the operation strategy performance without the
renewable share constraint than in the other case.

• Solving a single large LP optimization problem to design the DES is only relevant
whether the performance score of the realistic and anticipative strategies are the
same in the first case, or greater than 0.92 in the second case.

• The performance indicator introduced in this section helps quantifying the optimal-
ity notion attached to the operation strategy.

4.7 Discussion and conclusions
The optimal design and operation under uncertainties of a multi-energy system with sea-
sonal storage were presented in this chapter. First, the general mathematical formulation
was described with a particular focus on the information structure, which is of first impor-
tance when dealing with stochastic issues. Next, uncertainties were modeled as discrete
random variables over a probability space, and a scenario generation method based on
Markov chains was introduced to build the discrete sample space. Then, because the exact
solution of such optimization problems is most of the time unreachable, resolution meth-
ods for both the design (i.e., mathematical programming and metaheuristic approaches)
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and operation (i.e., RB, OLFC and anticipative policies) were introduced. These methods
have been jointly studied through a modeling framework where the design and assessment
phases are divided into two distinct parts. In this way, whatever the assumptions made
during the design optimization step, the solutions are assessed on a common out-of-sample
simulator with realistic operation strategies which only have access to past and current
information.

Results show that the mathematical programming method (widely implemented in
the literature) gives the least cost option as long as the DES is finally operated in real
life with near-optimal operation policies such as OLFC. Otherwise, the techno-economic
requirements might not be satisfied with underestimated design values. In the case where
poor performance and fast operation policies (such as RB) are used in real life, the meta-
heuristic approach might be a suitable option to provide design values consistent with
a given risk measure. Comparing these two approaches allows assessing the potential
cost reduction from improving the performance of the operation policy: in this work, the
total system cost is reduced by 16% when using OLFC instead of RB. Note that design
values are completely different depending on the operation policy embedded into the de-
sign procedure. In the last part of this chapter, the value of the stochastic solution was
strengthened by its comparison with deterministic designs. As it has been shown, despite
shorter computational times, sizing values from deterministic models should be carefully
treated as they highly depend on the scenario selected for optimization which could lead
to a severe underestimation of the techno-economic system performances.

This work reinforces that the design and the realistic operation of the DES cannot
be approached separately. Without this latter part, which is to the best of the authors’
knowledge, usually omitted in most of the planning studies, the value of the design solu-
tions might not be relevant for real-world applications. Indeed, most of the papers apply
the mathematical programming approach and then run parametric analyses, but they do
not discuss or verify that the requirements are met with realistic operation policies. The
output techno-economic indicators of the design phase are those of the simplified problem
which assumes perfect foresight of the operation. This work provides some insights into
the validity of this assumption regarding the realistic operation of the DES. This infor-
mation might be critical for engineers seeking to install and operate such multi-energy
systems in real life.

For the sake of clarity, the same model granularity (e.g., physical models, time step)
was used in both the optimization and simulation phases, because the objective of this
work was to highlight the relation between the design and realistic operation issues. How-
ever, the accuracy of the out-of-sample simulator must be enhanced if quantitative results
are needed, with special attention to the uncertainty characterization. These two latter
points are definitely future directions for this work to increase the value of the approach
for real-life applications. Furthermore, the model implemented in this work is based on a
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single representative year over multiple scenarios to account for the operation uncertainty.
However, in real-world applications, systems are aging and several investment decisions
can be made over the horizon of the study. In this case, uncertainty is also added to
the design parameters such as the investment costs and long-term evolution of the energy
demands. This problem is usually referred to as the multi-stage planning problem, and
future work needs to be conducted in that direction. This way, in addition to the size
of the assets, the optimizer also provides the investment pathway which can be valuable
information for decision-makers.
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Part III

Toward dynamic design approaches
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Chapter 5

Dynamic aware aging design of a
simple distributed energy system: a
comparative approach with design
strategies based on a two-stage
model

This is a joint work with Rémy Rigo-Mariani, based on an original mathematical
formulation from Rigaut et al [19]

Highlights

• Introduction of a multi-year planning model where the impact of the operation
over equipment lifetimes is taken into account.

• This model is compared with two heuristic design strategies based on the two-
stage model previously introduced: 1) in the first method, the optimization
problem is solved the first year, then systems are replaced with the same sizes
at the end of their life; 2) in the second method, the optimization is rerun for
each replacement.

• Results show that, unlike heuristic strategies, the dynamic aware aging
method can control both the investment pathway and the battery aging,
thereby reducing the overall system cost.
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5.1 Introduction
In all previous chapters, design decisions were made based on a single representative year
(with multiple scenarios in the stochastic case). The following work deals with the multi-
year dynamic design of DES where multiple sizing decisions can be made over the lifetime
of the project.

5.1.1 Literature review

The multi-year planning problem has been widely studied in the literature, especially for
the long-term evaluation of energy systems at national scales and beyond [32, 42] (usually
referred as expansion planning problems). The objective of such approaches is to obtain the
optimal sizes, location and pathway (i.e., timing of construction and decommission) over
the horizon of a project. Until recently, most studies have considered oversimplifications
of the system operation with limited snapshots or monthly averages to cope with long
computation times caused by the multi-year formulation.

In recent years, the integration of VRE in planning studies has led to the increasing
consideration of detailed operation (with accurate temporal and spatial resolution) to
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properly account for the cost and value of the different technologies at the system scale.
For example, Mavromatidis et al [117] developed the MANGO model that incorporates
dynamic design for DMES while accounting for detailed operation based on representative
days at an hourly time step. The model also includes equipment degradation over years,
and multi-location optimization capabilities. Pecenak et al [118] compared two dynamic
design strategies for microgrids where the operation is also represented by representative
days for each year. Limpens et al [119] used a multi-year model to study different energy
system pathways for Belgium. In this case, investment can be made every 5 years and
each 5-year block is represented by a single equivalent year.

The studies above were derived in a deterministic framework, and the operation is
mostly based on representative periods to tackle long computation times. The reason for
this is that the multi-year dimension significantly increases the model complexity, leading
to inevitable simplifications of the other facets of the original problem. However, the
nature of the multi-year problem is highly stochastic because it is unlikely that the future
parameters (e.g., investment and energy costs, energy demands) remain unchanged over
time. As a result, a growing number of studies have sought to include both short- and
long-term uncertainties in the multi-year planning process [44, 45, 46, 120, 121, 122].
In this case, the resolution of such complex optimization problems usually requires the
development of new mathematical methods (mostly based on decomposition techniques).

All the previous references assume that the assets have fixed lifetimes as it facilitates
mathematical implementation. Indeed, because the asset lifetime is known a priori and
does not depend on the operation, the decommissioning time is also known in advance.
However, the interaction between the design and the operation is not fully captured
as the way systems are operated has no consequences on their lifetime. Even if some
studies include technology performance degradation (for example [117] and [118]), these
degradation do not impact the lifetime of the equipment. This latter hypothesis might
be strongly discussed for DES including battery storages because, in addition to calendar
aging, the number of charge/discharge cycles has great consequences on the equipment
lifetime [123, 124].

Unlike previous studies, the authors in [62] and [125] attempted to consider the im-
pact of the operation over the design in the planning process. However, in their case,
they only optimized the size of the assets the first year (i.e., design decisions are single
values). Then replacements are taken into account by simulating the operation over the
entire horizon and systems are replaced with the same sizes. In this case, the multi-year
dimension is not included in the design procedure i.e. replacements are not decisions of
the optimization problem. Hence, the optimizer does not provide any information about
the optimal investment pathway. These approaches have nothing to do with the previous
references where the optimizer can decide whether or not to install (or decommission)
technology at each design time step.
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5.1.2 Main contributions

This work addresses the aforementioned shortcomings by bridging the gap between the
different time scales which is deemed necessary to represent the DES lifetime in the
design phase, from hourly variations to long-term forecasts of energy prices and cost of
technologies. The main challenge tackled by this work is to investigate to what extent
the design performance is increased when aging is taken into account in the DES design
phase compared to standard methods based on a single equivalent year. To address this
question, a multi-time scale model is formulated in a deterministic framework for the
toy-example introduced in chapter 1 (see figure 5.1). The DES remains intentionally
simple as the objective is to focus on the methodology and the novelties given by this
approach rather than the system complexity. Applying the proposed methodology to
more complex DES is definitely the intended direction of future works. Then, two heuristic
design strategies based on a single equivalent year are compared to the aware aging design
method on a common simulation referential which includes the battery aging model and
the replacement dynamic properly modeled. The comparison is run at an hourly time step
over 20 years (see figure 5.2). In that way, the performance of each approach could be
rigorously assessed, despite the simplification made for the purpose of optimization. The
objective is to provide a common framework, not commonly encountered in the literature,
to equally discriminate different planning strategies.

Figure 5.1: Schematic view of the DES with solar panels and a battery.

This work is organized as follows: section 5.2 shows the problem formulation of the
multi-time scale model and the optimization problem statement. Then, section 5.3 de-
scribes the resolution methods which are going to be compared. Finally, results are shown
in section 5.4, conclusions and perspectives are drawn in section 5.5.
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Figure 5.2: Three design methods are compared (depicted in the blue rectangle): they give the design
decisions to be made each year based on the current state of the system and available information. The
different approaches are evaluated on a common simulation referential which includes the battery aging
and the replacement dynamic properly modeled. The comparison is run at an hourly time step over 20
years.

5.2 Mathematical formulation
This section describes the fundamental mathematical equations that allow modeling the
DES operation and the impact of design choices. The simulator referential used to evaluate
the different design strategies is based on this formulation.

The formulation is then based on Rigaut et al [19] applied to the design and operation
of the DES. Both the design and operation dynamics are included in a common optimiza-
tion problem as described in the following. The contribution of this chapter is towards
the comparison of the aware-aging model with other design strategies depicted in section
5.3. To this end, the current study is first limited to the deterministic case. This latter
hypothesis is further discussed in section 5.5.

5.2.1 Notations

The design dynamic is a slow process compared to the operation where power flow deci-
sions need to be made every hour. Hence, we define two time scales with the set of years
y ∈ Y = {1, . . . , Y } and hours h ∈ H = {1, . . . , H} with ∆y and ∆h the two time steps
respectively. A time continuum is ensured as depicted in figure 5.3. design decisions are
made along the set Y (orange nodes) while the operations along both sets Y and H (blue
nodes).
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Figure 5.3: A time continuum is ensured in the simulation between the design (y) and operating (h) time
scale

5.2.2 Decision variables

The decision variables for both the design and operation optimization problems are given
as follows:

• The decision variables for the design are the new sizes of the assets that could be
made every year. They correspond to the battery maximum capacity and the PV
peak power, gathered in the vector udy = (Eb,d

y ppv,dy ) ∈ Ud
y = R2. Contrary to

previous chapters, the design decisions are no longer single values.

• The decision variables for the operation are the power flows controlled in the system
at every hour. They correspond to the charging and discharging power for the
battery, gathered in the vector uoh,y = (pb,+h,y pb,−h,y ) ∈ Uo

h,y = R2.

5.2.3 Constraints

The constraints are distinctly introduced for both the design and the operation time
scales. Then, the last part shows how to bridge the gap between the two time scales.

Design time scale

Unlike previous chapters, state variables are also introduced for the design to model the
replacement dynamic due to aging. They represent the sizes of existing technologies that
need to be updated based on the value of the design decisions udy each year. They are
denoted by Eb,state

y (in kWh) and ppv,statey (in kWp) for the battery and PV, respectively.
The sizes of the existing equipment could be increased or downscaled depending on

the case study. Note that systems are assumed to be completely replaced when a design
decision is made. In this case, the dimensions of the existing system Eb,state

y and ppv,statey

need to be updated with the new installed capacities. Otherwise, they remain the same
as the year before. This design dynamic is given by (5.1) and (5.2). Because solar panels
aging is not considered in the current study, a linear formulation would have been possible
for the design dynamic of the PV. As it has little consequences on computational times,
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this generic formulation was adopted in this work.

ppv,statey+1 =

p
pv,d
y , if ppv,dy > 0

ppv,statey , otherwise
(5.1)

Eb,state
y+1 =

E
b,d
y , if Eb,d

y > 0

Eb,state
y , otherwise

(5.2)

The design decisions are both continuous, positive and bounded variables (5.3), (5.4).

0 ≤ ppv,dy ≤ ppv,d (5.3)
0 ≤ Eb,d

y ≤ E
b,d (5.4)

Operation time scale

The operation constraints are almost the same as the toy-example introduced in chapter 2.
The only difference comes from the aging equation which is added to the ”energy system
model” constraints.

To this end, the battery state-of-health (SoH) Abh,y in hour h and year y - expressed
in kWh - is introduced to take the lifetime of the battery into account over the hori-
zon. The aging dynamic is computed using a simple model (5.5) based on the maximum
exchangeable energy during its lifespan [123]. This model only considers aging due to
cycling. Calendar aging or degradation of the battery parameters (e.g., loss of capac-
ity and increased internal resistance over time) are not taken into account. As in [123],
the maximum exchangeable energy depends on the battery maximum number of cycles
nc for a fixed depth-of-discharge dod (5.6). These parameters are usually provided by
constructors for each battery technology.

Abh+1,y = Abh,y − (pb,+h,y + pb,−h,y ) ·∆h (5.5)
0 ≤ Abh,y ≤ 2 · nc · dod · Eb,state

y (5.6)

Bridging the gap between time-scales

In order to ensure the inter-year continuity for the battery SoC and the SoH, the decision
process is defined as follows: design decisions are made at the end of the last hour of each
year (H, y) when the SoH and SoC are completely known over the current year. The sizes
of the existing assets are then updated with the new sizes at the beginning of the first
hour of the next year (1, y + 1). Furthermore, any newly installed battery is assumed
to be fully charged and with maximum exchangeable energy (i.e. maximum SoH). Thus,
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continuity equations for the SoH and SoC between years are given by (5.7) and (5.8).

Eb
1,y+1 =

e · E
b,d
y , if Eb,d

y > 0

Eb
H+1,y , otherwise

(5.7)

Ab1,y+1 =

2 · nc · dod · Eb,d
y , if Eb,d

y > 0

AbH+1,y , otherwise
(5.8)

The problem state variables for each year y are gathered in vector xy ∈ Xy (5.9). It
includes the size of the assets along with all the SoC and SoH values over the year.

xy = (Eb
1:H+1,y Ab1:H+1,y Eb,state

y ppv,statey ) (5.9)

5.2.4 Optimization problem statement

The objective is to determine both the sizing and operation decisions in order to minimize
the sum of both the discounted design and operating expenditures over the 20-years
horizon.

Investment cost

The annual capital cost depends on the design decisions udy, and the capital cost of each
technology (5.10).

Jdy (udy) = cby · Eb,d
y + cpvy · ppv,dy (5.10)

where cpvy and cby are the investment costs of solar panels (€/kWc) and the battery (€/kWh)
for each year, respectively.

Operating cost

The operating cost is computed based on the energy exchanged with the external network
(5.11).

Joh,y(udy, uoh,y) = (cg,+h,y · p
g,+
h,y − c

g,−
h,y · p

g,−
h,y ) ·∆h (5.11)

where cg,+h,y is the tariff of electricity (€/kWh) and cg,−h,y the feed-in tariff (€/kWh), set to
zero in the rest of the study. Note that those rates could change over the horizon as they
are also indexed by y which motivates the proposed multi-time scale approach.
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Salvage value

A salvage value is also introduced to account for the remaining life of the battery at the
end of the horizon Y . Its value is computed according to [126] which assumes a linear
depreciation of components over time.

Js(xY ) = K · AbH+1,Y (5.12)

The salvage coefficient K is the ratio of the discounted investment cost over the maximum
exchangeable energy at the end of the horizon (5.13).

K = γY · cbY · E
b,state
Y

2 · nc · dod · Eb,state
Y

= γY · cbY
2 · nc · dod

(5.13)

The value of the discount factor γy for each year is given by (5.14).

γy = 1
(1 + τ)y (5.14)

where τ is the discount rate, set to 4.5% in this study.

Problem statement

The formulated problem aims at finding the optimal decision variables for both the op-
eration and the design in order to minimize the total cost of the system over the horizon
(5.15).

min
ud,uo

Y∑
y=1

γy

[
Jdy (udy) +

H∑
h=1

Joh,y(udy, uoh,y)
]
− Js(xY ) (5.15a)

s.t.
xy+1 = f(xy, udy, uo1:H,y) (5.15b)
udy ∈ Ud

y , uo1:H,y ∈ U o
1:H,y(udy, xy) (5.15c)

where f is described by the operation and design dynamic equations previously intro-
duced.

5.3 Resolution methods
Problem (5.15) can be solved using traditional solvers but its resolution is computationally
intensive. The objective of this section is to introduce two heuristic strategies derived from
the two-stage model (described in chapter 4) to solve the multi-year design problem in a
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shorter time. The results from these two heuristics will be compared to the exact solution
of the problem in section 5.4. The different design approaches are depicted in figure 5.4.

Figure 5.4: Three design methods are compared in the next section. (a) and (b) are two heuristic design
strategies derived from the two-stage model introduced in chapter 4. In the first case, the problem is
only solved once at the beginning of the horizon, then the battery is always replaced with the same
capacity when it reaches its lifetime during simulation. In the second method, the design optimization is
rerun every time the battery reaches its end of life over the horizon. The last method (c) finds the exact
solutions of the multi-year problem.

5.3.1 Method 1: two-stage model based on a single representa-
tive year

The first heuristic method is derived from the two-stage model introduced in chapter 4
applied to the toy-example. Each year y of energy demand and production (i.e., {1, . . . , Y }
in total) corresponds to a scenario s in the two-stage formulation of section 4. The
expectation risk measure is used for the total annualized cost, while the renewable share
constraint must be met at all times.

Therefore, the design strategy aims at solving the problem in the first year. Then,
the battery is always replaced with the same capacity when it reaches its lifetime during
simulation. The resulting design strategy φ1 is then given by (5.16) which depends on the
battery SoH at each design time step.

φ1
y(xy) =



ud∗ = arg min
ud,uo

(problem 4.9) , if y = 1

ud∗ , if AbH+1,y ≤ ε

0 , otherwise

(5.16)

where ε is a parameter fixed by the user. In this work, the battery is replaced when the
SoH is lower than 10% of its initial value.

5.3.2 Method 2: two-stage model based on a single representa-
tive year with online re-optimization

The second method is similar to method 1 except that the two-stage optimization model
is rerun every time the battery reaches its end of life over the horizon. Instead of replacing
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the battery with the same capacity computed at the first year, new design decisions can
be made with updated information (e.g. equipment cost, energy prices). Because the
PV lifetime is assumed to be longer than the horizon, its capacity remains fixed to its
first-year value and no replacement may be needed. The formulation is unchanged from
method 1 but the investment costs and the number of remaining years Y before the end
of the horizon are updated. The heuristic design strategy φ2 is given by (5.17).

φ2
y(xy) =


ud∗ = arg min

ud,uo

(problem 4.9) , if AbH+1,y ≤ ε

0 , otherwise
(5.17)

5.3.3 Method 3: aware aging design based on the multi-time
scale model

The third method finds the exact solution of problem (5.15) by formulating a single large
MILP problem. Big-M values with binary variables are introduced in order to linearize ”if-
else” functions (5.2) - (5.8) as it is commonly done in MILP formulation. As an example,
the replacement dynamic equation (5.2) for the battery becomes (5.18) and (5.19) and
allows ensuring the inter-year continuity as previously mentioned.

−M · (1− δby) ≤ Eb,state
y+1 − Eb,d

y ≤M · (1− δby) (5.18)
−M · δby ≤ Eb,state

y+1 − Eb,state
y ≤M · δby (5.19)

M is the big-M value equal to the sizing bounds and δby a binary variable which is equal
to 1 when the battery has to be replaced (i.e., Eb,d

y > 0). In that way, if Eb,d
y > 0 then

Eb,state
y+1 is equal to Eb,d

y thanks to (5.18), otherwise the capacity is unchanged from the
previous year (5.19).

Note that since the problem has been modeled in a deterministic framework, the three
resolution methods provide both the design and operation decisions at the same time
(similarly to chapter 2). In other words, the operation policies that will be used to evaluate
the different design approaches in the next section are, by construction, anticipative.

5.4 Numerical results
This section aims at demonstrating novelties from the multi-time scale approach compared
to the other resolution methods. Several examples will be introduced in order to highlight
some specific points.
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5.4.1 Case study

Input parameters 1 are listed below:

• The electrical demand and production profiles come from Ausgrid. For each year of
the 20-years horizon, 10 consumers profiles were randomly chosen and aggregated as
input of the study. The demand and production variability between years is taken
into account as each yearly profile is different from the others.

• The tariff of electricity follows a peak/off-peak EDF ”Tarif Bleu” [127]. For the sake
of simplicity, no price evolution is taken into account over the 20 years.

• The cost of storage system (Li-ion battery + converter) is given by [128] and de-
creases from 600 e/kWh in 2021 to 300 e/kWh in 2040.

• The cost of solar panels including AC/DC converters is given by [129] and decreases
from 1040 e/kWc in 2021 to 735 e/kWc in 2040.

• Technical parameters for the battery are reported in table 5.1.

In what follows, the net present value (NPV) is also computed along with the total cost
over the horizon, to assess the performance of each method. It is a standard metric
to compare different investment projects [126, 130] as it gives extra information about
the profitability along the system lifetime. This latter quantity is computed from the
difference between positive cash flows and investment costs. A positive NPV results in
profit: the higher the NPV at the end of the horizon, the higher the profitability. In
this work, cash flows correspond to savings compared to the baseline cost where all the
electricity is purchased from the grid.

Parameters η− η+ e e p p nc
[0-1] [0-1] [0-1] [0-1] [h−1] [h−1] [-]

Battery 0.8 0.8 0.2 0.8 1.5 1.5 2500

Table 5.1: Battery parameters

The problem is modeled using Julia and JuMP package [72]. The IBM CPLEX 12.10
solver is then used to solve the problem. All the computations are run on a Intel Xeon(R)
CPU E5-2697 v2 @ 2.70 GHz x 48 server.

1It would have been more relevant to apply the methodology on a case study similar to chapter
4. However, this study was conducted before chapter 4, and it was decided to apply the stochastic
approaches to a different case study. Hence, other parameters (e.g., battery efficiency, investment costs)
are also different from those of the previous chapter.
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5.4.2 Example 1: comparison with a renewable share constraint
set to 60%

With the current low electricity tariffs and costs of technologies, none of the three methods
would invest in a Li-ion battery due to high capital expenditure compared to the expected
savings on the operation. Thus, to compare the results from the different approaches, a
first example is introduced where the renewable share ratio is arbitrarily set to 60% in
order to justify the installation of a storage system.

Figure 5.5 shows the planning strategy over the horizon for the three methods with a
60% renewable share ratio. Note that the assets are assumed to be installed at the end
of the first year in order to be operated the first hour of the second year. As shown in
the figure, method 3 installs 75 kWp of solar panels and 182 kWh of battery in the first
year. Then, the battery is replaced once the 9th year by a new 205 kWh asset (+23 kWh
compared to the initial investment) which occurs when the SoH reaches zero (see figure
5.6). Figure 5.6 shows that the multi-time scale formulation handles correctly continuity
issues and aging is controlled in order to install the new battery when the previous is out
of order.

Figure 5.5: Planning strategy over the horizon with a 60% renewable share ratio.

For methods 1 and 2, the sizing results are the same in both cases with 88 kWp of PV
and 188 kWh of storage installed the first year. Then the battery is replaced two times,
the 8th and the 15th year with the same capacity as in the first year. Remember that
method 2 reruns the optimization at the end of the battery lifetime whereas method 1
installs the same initial capacity at each replacement. The optimizer in method 2 does
not take advantage of the investment cost reduction to increase the battery capacity when
it has to be replaced. Indeed, even with cost decrease and current energy prices, it is not
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economically profitable to purchase battery storage, so the optimizer installs just enough
battery and PV to ensure the renewable share constraint fulfillment until the end of the
simulated horizon. In both cases, the SoH is not controlled during operation and the
battery needs to be replaced one more time compared to method 3. However, at the
end of the horizon, the storage systems are still ”usable” and the remaining SoH (as a
percentage of the total exchangeable energy) is 35% for both methods.

Figure 5.6: The battery SoH over the horizon with method 3 and a 60% renewable share ratio. The SoH
has been normalized by the maximum exchangeable energy in the figure.

As shown in figure 5.7, the renewable share constraint is fulfilled each year with every
method. Concerning method 3, the optimizer operates the DES and installs just enough
capacity to fulfill the constraint each year with less margin than with the other strategies.
In contrast, methods 1 and 2 optimize the system to fulfill the constraint during the worst
years when the net energy demand is the highest which leads to a greater renewable share
ratio for the rest of the years as the operation takes advantage of the system oversizing.

Figure 5.7: Renewable share constraint for each method after simulation. Its value was set to 60%.
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Economical results are shown in table 5.2. Note that with the current economic
hypothesis, the DES is not profitable over 20 years because of the high installation cost
of the battery. The reference cost is then lower than the optimal results obtained with
the renewable share constraint and the NPV is here given for information purposes only
(negative values for all the methods). As shown in the table, the total discounted cost
over the 20 years is 10% lower with method 3 than with the other methods. Note that
the results of methods 1 and 2 are approximately the same.

Ref. Method 1 Method 2 Method 3
OPEX [k€] 185.8 62.5 62.5 72.4

CAPEX [k€]
Li-ion - 205.4 205.2 167.9

PV - 87.0 87.0 74.8
Salvage [k€] - -8.4 -8.3 -
Total [k€] 185.8 346.5 346.4 315.1

NPV [k€] - -160.7 -160.7 -129.3
CPU time - 5 min 3× 5 min 24 h

Table 5.2: Comparison of the total discounted costs over the 20 years and CPU time (computational time
required to solve the model) between the three methods with a renewable share ratio set to 60%. The
reference case where all the electricity is bought from the grid and the NPV are given for information
purposes.

Finally, the better performances of method 3 are obtained at the cost of greater compu-
tational time with 24h long calculation where method 1 is run in only 5 min and method 2
in 15 min. Even if the number of variables and constraints are in the same range between
the different methods (see table 5.3), the complexity in the third approach is increased
with the introduction of binary variables for the inter-year continuity on the investment
decisions.

Variables Constraints
Method 1 & 2 876 022 1 927 304
Method 3 1 051 362 (38 bin) 2 444 637

Table 5.3: Comparison of the complexity between the three methods.

As a conclusion of this section, the results could be summed up as follows:

• With the multi-time scale approach, aging and number of replacement are controlled
over the whole time horizon.

• The sizing could be increased or down-scaled each year with method 3.

• It pays to control aging as the total discounted cost over the horizon is 10% lower
than with the other strategies on the considered test case.
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• The last method suffers from longer computational times compared to the other
approaches.

5.4.3 Example 2: comparison with a higher electricity tariff

The aim of this section is to compare the three methods in a case where it is profitable to
install a Li-ion battery without the renewable share constraint. This could be obtained by
assuming a lower investment cost of systems or with increased tariffs of electricity. The
latter strategy is chosen and the tariff of electricity is multiplied by 5 in order to have a
battery installed the first year.

Figure 5.8: Planning strategy over the horizon with a tariff of electricity multiplied by 5.

As shown in figure 5.8, every method approximately installs the same battery capacity
the first year (260 kWh). Then, both methods 2 and 3 take advantage of lower storage
costs to increase the size of the battery. While method 3 only replaces the battery once
with a 394 kWh asset (+134 kWh), method 2 replaces the storage twice with greater
capacities: 280 kWh (+20kWh) the first time and 311 kWh (+51kWh) the second time.
Similar to the test performed in the previous section, the battery is out of order at the end
of the horizon for method 3 whereas it remains 50% and 54% of the total exchangeable
energy for methods 1 and 2 respectively. Concerning the PV, both methods 1 and 2
install 116 kWp of solar panels which is 24 kWp greater than method 3. Compared to the
previous section, the solar panel size increases when the electricity gets more costly, but
no additional investment is made over the horizon. This latter aspect may be explained
because when investment decisions are made, technologies are entirely replaced by new
systems according to the modeling developed in this work. The cost induced is then
proportional to new sizes instead of additional investment only. Thus, technologies with
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longer lifespans than the horizon are preferably installed in the first year. Similar to
previous section, the economic results are given in table 5.4. As previously mentioned,
the DES is profitable in every case and the NPV at the end of the 20 years corresponds to
profits compared to the baseline case without solar panels and batteries. The differences
between the NPV values are lower than in the previous case: the profit is 4% greater with
method 3 than method 1 and 3.6% greater than method 2. Note that the resulting NPV
of methods 1 and 2 are again approximately the same.

Ref. Method 1 Method 2 Method 3
OPEX [k€] 929.0 210.5 197.6 213.0

CAPEX [k€]
Li-ion - 280.3 296.8 270.8

PV - 115.8 115.8 91.8
Salvage [k€] - -16.6 -21.9 -
Total [k€] 929.0 590.0 588.3 575.6

NPV [k€] - 339.1 340.8 353.4
CPU time - 5 min 3× 5 min 24 h

Table 5.4: Comparison of the total discounted costs over the 20 years and CPU time between the three
methods with the tariff of electricity multiplied by 5.

An interesting point is highlighted in figure 5.9. In that case, the tariff of electricity is
multiplied by 3. Unlike the other methods, method 3 installs 48 kWp of solar panels the
first year but waits until the 11th year to purchase a 134 kWh battery when its cost is
divided by 1.5. The multi-time scale approach not only optimizes the size of technologies
but also determines the optimal timing (investment pathway) to install the components
along the horizon. This result is only made possible with the use of the proposed method
3 as the design is reconsidered each year in the formulation. This latter aspect gives more
flexibility to the approach when strong evolution occurs over the input parameters.
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Figure 5.9: Planning strategy over the horizon with a tariff of electricity multiplied by 3. Unlike the
other methods, method 3 waits until the 11th year to install the battery at a lower cost than first year.

Again, the NPV of methods 1 and 2 are approximately the same while it is 20% higher
for method 3 in this case.

Ref. Method 1 Method 2 Method 3
OPEX [k€] 557.4 233.7 214.3 345.7

CAPEX [k€]
Li-ion - 153.2 179.8 35.3

PV - 74.2 74.2 48.1
Salvage [k€] - -6.2 -14.5 -
Total [k€] 557.4 454.9 453.8 429.1

NPV [k€] - 102.4 103.5 128.4

Table 5.5: Comparison of the total discounted costs over the 20 years between the three methods with
the tariff of electricity multiplied by 3.

5.5 Discussion and conclusions
A generic multi-time scale model for both the design and operation of energy systems was
presented in this work. The integration of the aging and replacement dynamic into MILP
formulation was depicted. Two examples were run to demonstrate novelties that could be
extracted from this approach. Results were then compared to more standard approaches
which consider a single equivalent year for the optimization of the design.

It is shown from the previous sections that it pays to control aging as the optimal
solutions from the proposed multi-time scale model give the best economic results: the
difference goes up to 20% of the total cost in some cases. This cost improvement is made
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possible because the multi-time scale model includes the interaction between design and
operation with investment options every year. Indeed, the aging of the battery and thus,
the number of replacements is controlled over the horizon, which is not possible with
methods 1 and 2. Moreover, method 3 gives more flexibility to the design of the DES
as it can accommodate input parameters evolution over time: the size of systems could
be modified along the horizon by taking full advantage of the new information available.
Furthermore, more than only optimizing the size of systems, the multi-time scale approach
also determines the investment strategy over the horizon. This latter point seems to be
interesting for industrial who are willing to know when would be the best moment to
invest in order to maximize profitability. Again, this feature could not be addressed by
standard methods.

Unlike [45] and [131], the multi-time scale formulation focuses on the interaction be-
tween the investment and the operation which is, to the best of the authors’ knowledge,
rarely addressed in the literature. For the sake of simplicity, equipment were assumed
to be entirely replaced with the modeling developed in this work and no additional in-
vestment is made possible. This latter point is definitely a weakness of the model and
future work needs to be conducted in that direction to increase the value of the approach.
Furthermore, the study was conducted in a deterministic framework whereas the real
problem is profoundly stochastic: investment and operation decisions have to be made
without perfectly knowing the future. However, the aim of the study was to make a
first evaluation in a deterministic framework to assess the cost reduction potential of the
multi-time scale approach before going into more realistic modeling with uncertainties. In
order to include the stochastic nature of the problem and apply the methodology to more
complex energy systems, computational times need to be reduced and further resolution
methods have to be explored (the better performances of method 3 are obtained at the
cost of greater computational time with 24h long calculation where method 1 is run in
only 5 min and method 2 in 15 min). For instance, the decomposition methods developed
by [19] seems to be a great candidate to address this challenge.

Despite these aforementioned limitations, it seems that the multi-time scale approach
could be a promising direction in order to improve the income of a given project when
grid rates are low and standard strategies fail to find out a profitable design. The model
has proven to be a relevant approach and this work could be seen as a starting point for
whoever would be interested in the integration of the interaction between investment and
operation in more general energy models and complex analysis.
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Part IV

Software
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Chapter 6

Genesys.jl: a generic toolbox to
assess and compare multiple design
and operation approaches

The code is freely available at https: // github. com/ hradet/ Genesys. jl .

Highlights

• A generic Julia toolbox to assess and compare different design and operation
strategies without changing the overall code.

• An example is given where the two-stage problem is solved for the toy-
example, and the results are assessed using a rule-based policy.

• Custom design and operation approaches can be easily added to the frame-
work.
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6.1 Introduction
Coding is an essential part of this work as appropriate tools are necessary to get valuable
results. Along this PhD journey, a significant number of hours were spent in front of this
black box Atom [132] screen, thinking about the code architecture, its potential reuse,
and writing a multitude of code lines. However, despite its critical importance, software
implementation is usually less valued than the results. This section is added to this
manuscript to pay tribute to the hard coding work, as it constitutes the foundation of all
the previous results shown in this thesis.

A wide range of planning and simulation tools have been already developed in the
literature to deal with the design and operation issues of energy systems [14, 133]. As
previously said in chapter 1, a difference is usually made between simulation and opti-
mization tools, leading to different scientific communities with little overlap [14, 16]. On
the one hand, simulation tools (e.g., EnergyPlan [134]) are generally used to simulate
energy system operations with fixed architecture, allowing ”what-if” analyses by running
the model several times with different input parameters. On the other hand, optimization
tools (e.g., OSeMOSYS [135], PyPSA [136], Calliope [137]) are mainly developed to opti-
mize the design of energy systems, depending on case study requirements. In most cases,
they can be used at multiple scales, ranging from buildings to entire continents. Also,
a growing number of modeling tools include dynamic investment optimization issues, as
previously introduced in chapter 5.

The main drawback of these ”ready-made” tools is that single design and/or operation
methods are usually implemented in the software package as their main objective is to
come up with optimized solutions. While the majority of software packages handle sensi-
tivity analysis, the latter is only run over the input parameters. However, the sensitivity
of the design and operation methodologies over the results cannot be assessed, especially
in a coordinated manner. As a result, the software architectures have not been designed
in a generic way to handle multiple sizing and operation strategies without changing the
overall code.

To address these shortcomings, Genesys.jl has been developed as a generic Julia [138]
toolbox to assess and compare different design and operation approaches for energy sys-
tems. The objective is to provide a unique and straightforward framework for both the
design and the evaluation of the sizing solutions with different operation strategies. The
toolbox enables easy integration of custom design and operation methodologies without
modifying the entire code structure. This feature is made possible thanks to the ”mul-
tiple dispatch” capability of the Julia language. Also, the toolbox addresses simulation
over multiple years (i.e., dynamic investment) and multiple scenarios (i.e., stochastic) at
an hourly time step. Similarly to the PyPSA philosophy, the toolbox has no graphical
interface and the user interacts through Jupyter notebooks or any other Julia IDE (e.g.,
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Juno)
The chapter is organized as follows: first, an overview of the toolbox core ingredients

is given in section 6.2. Then, section 6.3 shows an application where the two-stage model
is solved for the toy-example. Next, section 6.4 describes how to use custom design and
operation strategies within this framework. And finally, the conclusion and perspectives
are drawn in section 6.5.

6.2 Toolbox description
As previously said in the introduction, the toolbox enables simulation over multiple sce-
narios and years at an hourly time step. The time scale is split into both hours and years
to account for decisions at the different dynamics: design decisions are made at yearly
time steps, while operation decisions are made at hourly time steps. In practice, it only
means that operation variables have 3 dimensions (i.e., one for each time set (hours and
years), and the last dimension for scenarios), while design variables only have 2 dimensions
(i.e., years and scenarios). Continuity issues between two consecutive years are addressed
following the formulation introduced in chapter 5.

6.2.1 Structure overview

The toolbox is made of 4 essential components, defined as individual Julia composite type
(also called structure):

• Microgrid1: the ”Microgrid” structure (in listing 6.1) is the key ingredient of a sim-
ulation, and it must be first initialized before going any further. The global param-
eters (e.g., time steps, hourly and yearly horizons, number of scenarios, renewable
share, discount rate) are stored in the microgrid ”parameters” field. Furthermore,
the assets are gathered in specific vectors depending on their type: demands, gener-
ations, storages, converters and grids. As further explained in section 6.3, they can
be added to the microgrid thanks to the ”add!()” function.

1 mutable struct Microgrid
2 parameters :: GlobalParameters
3 demands :: Vector { AbstractDemand }
4 generations :: Vector { AbstractGeneration }
5 storages :: Vector { AbstractStorage }
6 converters :: Vector { AbstractConverter }
7 grids :: Vector { AbstractGrid }
8
9 Microgrid (; parameters = GlobalParameters (8760 , 20, 1)) = new( parameters )

10 end
11

Listing 6.1: Type definition for ”Microgrid”.
1In the toolbox, DES are called ”Microgrid” without making the difference introduced in section 1.1.
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• Scenario: the ”Scenario” structure (in listing 6.2) is built from both the input time
series and investment costs (stored in a ”.jld” file), and the ”Microgrid” component.
A scenario is a sequence of realization of the uncertain parameters, associated with
a set of investment costs for design decisions. The toolbox also provides a set of
methods to manipulate these scenarios. For instance, the ”generate()” and ”re-
duce()” methods can be used to generate forecasts of the uncertain parameters and
reduce the initial scenario set, respectively. Several approaches are given for both
functionalities.

1 mutable struct Scenarios {T, O, I} <: AbstractScenarios
2 demands :: Vector { NamedTuple {(:t, : power ),Tuple {T,O}}}
3 generations :: Vector { NamedTuple {(:t, :power , :cost), Tuple {T, O, I}}}
4 storages :: Vector { NamedTuple {(: cost ,) , Tuple {I}}}
5 converters :: Vector { NamedTuple {(: cost ,) , Tuple {I}}}
6 grids :: Vector { NamedTuple {(: cost_in , : cost_out ), Tuple {O, O}}}
7 end
8

Listing 6.2: Type definition for ”Scenario”.

• Designer: the ”Designer” structure is associated with the design strategy. A de-
signer is initialized thanks to the ”initialize designer!()” method, which has the
”Microgrid” and ”Scenario” structures as input. More details are given in section
6.2.2.

• Controller: the ”Controller” is associated with the operation strategy. As for the
designer, a controller is initialized thanks to the ”initialize controller!()” method.
More details are given in section 6.2.3.

Based on these components, the toolbox provides a set of methods to evaluate designer
and controller performances, and to visualize the techno-economic indicators (see section
6.2.4 for more details). Figure 6.1 gives an overview of the Genesys.jl main functions
based on the framework developed throughout this thesis.
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Figure 6.1: Overview of the main toolbox functions based on the framework developed throughout this
thesis.

6.2.2 Implementation of a designer

The objective of this section is to describe the designer structure regarding the toolbox
requirements.

Essential ingredients

A designer is defined as a mutable structure with at least a ”decisions” field and an inner
constructor. The former is a named tuple with 3 entries (i.e., generations, storages and
converters) where design decisions are assigned. Then, each designer comes with two
essential functions:

1. initialize designer!(): this function is needed to preallocate the ”decisions” field and
derive all the ”offline” computations (e.g., calibration of the algorithm). Also, design
decisions made in the first year are computed within this function. In order to be
fully consistent with the methodological philosophy of this thesis, these first-year
decisions should have been computed within the next function which corresponds
to the design strategy in itself. The assumption behind the current implementation
is that the simulation phase only begins once the size of the assets has been fixed
in the first year.

2. compute investment decisions!(): this function is the design strategy that gives, at
each design time step, the sizing decisions as a function of the state of the system
and the available information. According to the previous remark, this function is
only used when dealing with dynamic design issues where multiple decisions have
to be made over the horizon.
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To illustrate the above, the following parts describe the main design strategies imple-
mented in this thesis. Because this work mainly addresses single-year problems, only the
initialize designer!() function is shown for each design method.

Manual designer

The manual designer is needed when the size of the assets is manually fixed by the user.
The sizing values are given as input values when a designer object is built. The type
definition is given by listing 6.3.

1 mutable struct Manual <: AbstractDesigner
2 generations :: Vector { Float64 }
3 storages :: Vector { Float64 }
4 converters :: Vector { Float64 }
5 decisions :: NamedTuple
6
7 Manual (; generations = [0.] , storages = [0.] , converters = [0.]) = new( generations ,

storages , converters )
8 end

Listing 6.3: Type definition of the manual designer

Then, the offline function (given by listing 6.4) basically preallocates the ”decisions”
field and assigns the design values previously filled in by the user (lines 5-14).

1 function initialize_designer !( mg :: Microgrid , designer :: Manual , w:: AbstractScenarios )
2 # Preallocation
3 preallocate !(mg , designer )
4
5 # Fix initial values
6 for (k, a) in enumerate ( designer . decisions . generations )
7 a[1 ,:] .= designer . generations [k]
8 end
9 for (k, a) in enumerate ( designer . decisions . storages )

10 a[1 ,:] .= designer . storages [k]
11 end
12 for (k, a) in enumerate ( designer . decisions . converters )
13 a[1 ,:] .= designer . converters [k]
14 end
15
16 return designer
17 end

Listing 6.4: Initialize function of the manual designer

Mathematical programming designer

The mathematical programming designer (also called ”MILP” in the toolbox) solves a
single large optimization problem introduced in chapter 4. The type definition is given
by listing 6.5.
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1 mutable struct MILP <: AbstractDesigner
2 options :: MILPOptions
3 decisions :: NamedTuple
4 model :: JuMP. Model
5 history :: AbstractScenarios
6
7 MILP (; options = MILPOptions ()) = new( options )
8 end

Listing 6.5: Type definition of the mathematical programming designer

Besides the ”decisions” field, the designer also has a ”model” field where the JuMP
model is stored, a ”history” field where historical scenario can be stored for online com-
putations and an ”options” field where several options can be passed during initialization
(e.g., solver type, scenario reducer, risk measures). The latter are given in a ”MILPOp-
tions” structure (with default field values already assigned) depicted in listing 6.6.

1 mutable struct MILPOptions
2 solver :: Module
3 reducer :: AbstractScenariosReducer
4 objective_risk :: AbstractRiskMeasure
5 share_risk :: AbstractRiskMeasure
6 reopt :: Bool
7 read_reduction :: Union {String , Nothing }
8 write_reduction :: Union {String , Nothing }
9

10 MILPOptions (; solver = CPLEX ,
11 reducer = FeatureBasedReducer () ,
12 objective_risk = Expectation () ,
13 share_risk = Expectation () ,
14 reopt = false ,
15 read_reduction = nothing ,
16 write_reduction = nothing ) =
17 new(solver , reducer , objective_risk , share_risk , reopt , read_reduction ,

write_reduction )
18 end

Listing 6.6: Options of the mathematical programming designer

Then, the initialization function where the design values are computed is given in
listing 6.7.

1 function initialize_designer !( mg :: Microgrid , designer :: MILP , w:: Scenarios )
2 # Preallocate
3 preallocate !(mg , designer )
4
5 # Scenario reduction from the optimization scenario pool
6 if isa( designer . options . read_reduction , Nothing )
7 println (" Starting scenario reduction ...")
8 w_reduced , probabilities = reduce ( designer . options .reducer , w)
9 # Saving

10 if !isa( designer . options . write_reduction , Nothing )
11 save( designer . options . write_reduction , " scenarios ", w_reduced , " probabilities

", probabilities )
12 end
13 else
14 println (" Reading scenario reduction from file ...")
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15 w_reduced = load( designer . options . read_reduction , " scenarios ")
16 probabilities = load( designer . options . read_reduction , " probabilities ")
17 end
18
19 # Initialize model
20 println (" Building the model ...")
21 designer . model = build_model (mg , designer , w_reduced , probabilities )
22
23 # Compute investment decisions for the first year
24 println (" Starting optimization ...")
25 optimize !( designer . model )
26
27 # Assign values
28 for k in 1: length (mg. generations )
29 designer . decisions . generations [k][1 ,:] .= value ( designer . model [: r_g ][k])
30 end
31 for k in 1: length (mg. storages )
32 designer . decisions . storages [k][1 ,:] .= value ( designer . model [: r_sto ][k])
33 end
34 for k in 1: length (mg. converters )
35 designer . decisions . converters [k][1 ,:] .= value ( designer . model [: r_c ][k])
36 end
37
38 # Save history
39 designer . history = w_reduced
40
41 return designer
42 end

Listing 6.7: Initialize function of the mathematical programming designer

We now comment on each line of the code:
Line 5-17: If the ”read reduction” option is filled in with a pathname, a reduced set

of scenarios with the associated probabilities are loaded from the given path. Otherwise,
the initial scenario set is reduced using the method specified in the designer options. The
”write reduction” option enables to save the reduced set.

Lines 19-25: The two-stage LP model is built using the JuMP library and solved
by the solver specified in the options. Note that the JuMP model is automatically built
from the microgrid architecture defined at the beginning of a study. The model function
is given by listing 6.8. The reader could refer to the Github folder for more information
about the functions associated with the model creation.

Lines 27-39: Design decisions are assigned to the ”decisions” designer field and the
reduced set of scenarios is saved for online computations.

1 function build_model (mg :: Microgrid , designer :: MILP , w:: Scenarios , probabilities :: Vector {
Float64 })

2 # Sets
3 nh , ns = size(w. demands [1]. power , 1) , size(w. demands [1]. power , 3)
4 # Initialize
5 m = Model ( designer . options . solver . Optimizer )
6 # Add design decision variables
7 add_investment_decisions !(m, mg. generations )
8 add_investment_decisions !(m, mg. storages )
9 add_investment_decisions !(m, mg. converters )
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10 # Add operation decision variables
11 add_operation_decisions !(m, mg.storages , nh , ns)
12 add_operation_decisions !(m, mg. converters , nh , ns)
13 add_operation_decisions !(m, mg.grids , nh , ns)
14 # Add design constraints
15 add_investment_constraints !(m, mg. generations )
16 add_investment_constraints !(m, mg. storages )
17 add_investment_constraints !(m, mg. converters )
18 # Add technical constraints
19 add_technical_constraints !(m, mg.storages , mg. parameters .dh , nh , ns)
20 add_technical_constraints !(m, mg. converters , nh , ns)
21 add_technical_constraints !(m, mg.grids , nh , ns)
22 # Add periodicity constraint
23 add_periodicity_constraints !(m, mg.storages , ns)
24 # Add power balance constraints
25 add_power_balance !(m, mg , w, Electricity , nh , ns)
26 add_power_balance !(m, mg , w, Heat , nh , ns)
27 add_power_balance !(m, mg , w, Hydrogen , nh , ns)
28 # Renewable share constraint
29 add_renewable_share !(m, mg , w, probabilities , designer . options . share_risk , nh , ns)
30 # Objective
31 add_design_objective !(m, mg , w, probabilities , designer . options . objective_risk , nh ,

ns)
32 return m
33 end

Listing 6.8: Model creation of the mathematical programming designer

Metaheuristic designer

The metaheuristic designer introduced in chapter 4 is given by listing 6.9. As previously,
several options can be passed during initialization, and the reader could refer to the
Github folder for in-depth details. Note that the ”results” field is an instance of ”Meta-
heuristicResults” where the ”Metaheuristics” library implements the niching algorithm
introduced in chapter 4.

1 mutable struct Metaheuristic <: AbstractDesigner
2 options :: MetaheuristicOptions
3 decisions :: NamedTuple
4 results :: Metaheuristics . MetaheuristicResults
5 history :: AbstractScenarios
6
7 Metaheuristic (; options = MetaheuristicOptions ()) = new( options )
8 end

Listing 6.9: Type definition of the metaheuristic designer

Then, the initialization function is given by listing 6.10. As the method shares common
lines with the mathematical programming method, only the differences are depicted in
the listing. Hence, once the design bounds are fixed (line 5), the ”optimize” method
of the ”Metaheuristic” library (https://github.com/hradet/Metaheuristics.jl) is
called where the objective function (”fobj” in line 12) simulates the microgrid over the
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reduced set of scenarios, with the operation strategy specified in the designer options (see
the Github folder for more details).

1 function initialize_designer !( mg :: Microgrid , designer :: Metaheuristic , w:: Scenarios )
2 ... [" Preallocation and scenario reduction "] ...
3
4 # Bounds
5 lb , ub = set_bounds (mg)
6
7 # Optimize
8 designer . results = Metaheuristics . optimize (lb , ub ,
9 designer . options .method ,

10 options = Metaheuristics . Options (
iterations = designer . options . iterations , multithreads = designer . options .
multithreads )

11 ) do decisions
12 fobj(decisions , mg , designer , w_reduced , probabilities )
13 end
14
15 ... [" Assignment of the design decisions "] ...
16
17 return designer
18 end

Listing 6.10: Initialize function of the metaheuristic designer

6.2.3 Implementation of a controller

As in the previous section, the objective of this part is to describe the controller structure
regarding the toolbox requirements.

Essential ingredients

A controller is defined as a mutable structure with at least a ”decisions” field and an inner
constructor. The former is a named tuple with 2 entries (i.e., storages and converters)
where operation decisions are stored. Then, each controller comes with two essential
functions:

1. initialize controller!(): this function is needed to preallocate the ”decisions” field
and derive all the ”offline” computations (e.g, model creation, initialize the scenario
generator).

2. compute operation decisions!(): this function is the operation strategy which gives
at each time step, the operation decisions as a function of the state of the system
and the available information.

To illustrate the above, two controllers (i.e., RB and OLFC) are described in the
following.
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RB controller

Similar to the designer definition, the RB controller structure is given by listing 6.11.
However, in this case, the ”decisions” field is a named tuple with 3-dimensional arrays.

1 mutable struct RBC <: AbstractController
2 options :: RBCOptions
3 decisions :: NamedTuple
4 history :: AbstractScenarios
5
6 RBC (; options = RBCOptions ()) = new( options )
7 end

Listing 6.11: Type definition for the RB controller

The initialization function (listing 6.12) only preallocates the controller as no offline
computation is required for the RB policy. In case some parameters need to be calibrated,
this function can be used for that purpose.

1 function initialize_controller !( mg :: Microgrid , controller ::RBC , w:: AbstractScenarios )
2 # Preallocation
3 preallocate !(mg , controller )
4
5 return controller
6 end

Listing 6.12: Initialize function for the RB controller

In the toolbox, RB policies are specific to microgrid configurations. In practice, it
means that each time a new microgrid topology is investigated, a new policy must be
built by the user (unlike the OLFC strategy which automatically builds the appropriate
JuMP model from the input microgrid architecture).

Three policies have been already implemented for the purpose of this work: the first
one concerns the multi-energy system introduced in chapter 2, the second is for the toy-
example which only considers electrical demand, and the third is used by the simplified
energy system introduced in section 4.6. As the simulation progresses, operation decisions
are computed at each time step by the operation strategy function described by listing
6.13. The corresponding policy is chosen according to the user option. Each ”phi” function
computes the operation decisions as a function of the state of the microgrid and available
information. In case a new RB strategy needs to be built, the corresponding ”if-else” rule
has to be implemented in this latter function.

1 function compute_operation_decisions !(h:: Int64 , y:: Int64 , s:: Int64 , mg :: Microgrid ,
controller :: RBC)

2 # Chose policy
3 if controller . options . policy_selection == 1
4 return phi_1 (h, y, s, mg , controller )
5 elseif controller . options . policy_selection == 2
6 return phi_2 (h, y, s, mg , controller )
7 elseif controller . options . policy_selection == 3
8 return phi_3 (h, y, s, mg , controller )
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9 else
10 println (" Policy not defined !")
11 end
12 end

Listing 6.13: RB policy

OLFC controller

The OLFC controller introduced in chapter 4, is given by listing 6.14. The OLFC pa-
rameters (i.e., scenario generator, number of scenarios, lookahead horizon, penalization
coefficients, risk measure, reference trajectory) are set by the user in the OLFC options.
Also, the size of the assets is assigned to the ”generations”, ”storages” and ”converters”
fields (as for the manual designer), in order to build the corresponding LP model during
the offline phase.

1 mutable struct OLFC <: AbstractController
2 options :: OLFCOptions
3 generations :: Vector { Float64 }
4 storages :: Vector { Float64 }
5 converters :: Vector { Float64 }
6 decisions :: NamedTuple
7 model :: JuMP. Model
8 history :: AbstractScenarios
9 OLFC (; options = OLFCOptions () ,

10 generations = [0.] ,
11 storages = [0.] ,
12 converters = [0.]) =
13 new(options , generations , storages , converters )
14 end

Listing 6.14: Type definition for the OLFC controller

Then, the offline initialization function (given in listing 6.15) aims at building the
model (line 6) and the scenario generator (lines 7-12), later used to forecast the uncertain
parameters over the lookahead horizon.

1 function initialize_controller !( mg :: Microgrid , controller :: OLFC , w:: Scenarios )
2 # Preallocate
3 preallocate !(mg , controller )
4 # Build model
5 println (" Building the model ...")
6 controller . model = build_model (mg , controller , w)
7 # Scenario reduction
8 println (" Starting scenario reduction ...")
9 w_reduced = reduce ( controller . options .reducer , w)[1]

10 # Compute markov chain for scenario generation
11 println (" Initializing scenario generator ...")
12 controller . options . generator = initialize_generator !( controller . options .generator , [a

for a in w_reduced . generations ]... , [a for a in w_reduced . demands ]...)
13 # History
14 controller . history = w
15 return controller
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16 end

Listing 6.15: Initialize function of the OLFC controller

Similar to the mathematical programming designer, the model creation is depicted in
listing 6.16 where design decisions are fixed variables (line 12). Note that only the power
balances and grid powers depend on the number of scenarios ns, as previously explained
in chapter 4.

1 function build_model (mg :: Microgrid , controller :: OLFC , w:: Scenarios )
2 # Sets
3 nh , ns = controller . options .horizon , controller . options . nscenarios
4 # Initialize
5 m = Model ( controller . options . solver . Optimizer )
6 set_optimizer_attribute (m," CPX_PARAM_SCRIND ", 0)
7 # Add investment variables
8 add_investment_decisions !(m, mg. generations )
9 add_investment_decisions !(m, mg. storages )

10 add_investment_decisions !(m, mg. converters )
11 # Fix their values
12 fix_investment_decisions !(m, controller . generations , controller .storages , controller .

converters )
13 # Add operation decision variable with the non - anticipative structure
14 add_operation_decisions !(m, mg.storages , nh , 1)
15 add_operation_decisions !(m, mg. converters , nh , 1)
16 # Add demand and generation variables to be fixed online , along with recourse

variable (grid)
17 add_operation_decisions !(m, mg. generations , nh , ns)
18 add_operation_decisions !(m, mg.demands , nh , ns)
19 add_operation_decisions !(m, mg.grids , nh , ns)
20 # Add technical constraints
21 add_technical_constraints !(m, mg.storages , mg. parameters .dh , nh , 1)
22 add_technical_constraints !(m, mg. converters , nh , 1)
23 add_technical_constraints !(m, mg.grids , nh , ns)
24 # Add power balance constraints
25 add_power_balance !(m, mg , w, Electricity , nh , ns , ispnet = true)
26 add_power_balance !(m, mg , w, Heat , nh , ns , ispnet = true)
27 add_power_balance !(m, mg , w, Hydrogen , nh , ns , ispnet = true)
28 return m
29 end

Listing 6.16: Model creation for the OLFC controller

Finally, the OLFC policy is given in listing 6.17:
Line 2-7: The uncertain parameters are forecasted over the lookahead horizon, and

their values are fixed in the model previously built offline.
Line 8: The objective function is set with the risk measure defined by the user.
Line 11: The optimization problem is solved over the lookahead horizon.
Lines 12-24: Only the first value is kept and assigned to the corresponding ”decisions”

field.

1 function compute_operation_decisions !(h:: Int64 , y:: Int64 , s:: Int64 , mg :: Microgrid ,
controller :: OLFC)

2 # Forecast window
3 window = h:min(mg. parameters .nh , h + controller . options . horizon - 1)
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4 # Compute forecast
5 demands , generations , grids , probabilities = compute_forecast (h, y, s, mg , controller

, window )
6 # Fix model variables
7 fix_operation_variables !( controller , demands , generations , [a.soc[h,y,s] * a. Erated [y

,s] for a in mg. storages ])
8 # Add objective
9 add_objective !( controller , mg , grids , probabilities , window )

10 # Optimize
11 optimize !( controller . model )
12 # Assign controller values
13 for k in 1: length (mg. storages )
14 controller . decisions . storages [k][h,y,s] = value ( controller . model [: p_dch ][1 ,1 ,k] -

controller . model [: p_ch ][1 ,1 ,k])
15 end
16 for (k,a) in enumerate (mg. converters )
17 if a isa Heater
18 controller . decisions . converters [k][h,y,s] = - value ( controller . model [: p_c

][1 ,1 ,k])
19 elseif a isa Electrolyzer
20 controller . decisions . converters [k][h,y,s] = - value ( controller . model [: p_c

][1 ,1 ,k])
21 elseif a isa FuelCell
22 controller . decisions . converters [k][h,y,s] = value ( controller . model [: p_c ][1 ,1 ,

k])
23 end
24 end
25 end

Listing 6.17: OLFC policy

6.2.4 Simulation of a controller and designer

Once the designer and operation strategies have been built, the toolbox provides a function
to evaluate these strategies by simulating the microgrid over multiple scenarios of a given
horizon.
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Algorithm 1: Simulation algorithm
Input : A microgrid, a controller, a designer, a scenario set Ω
Output: State and decision variables for both the design and operation for each

hour h, year y and scenario s

for s = 1, ..., S do
for y = 1, ..., Y do

for h = 1, ..., H do
→ Update operation informations

→ Compute operation decisions

→ Compute operation dynamics

→ Compute power balances
end

→ Update design informations

→ Compute design decisions

→ Compute design dynamics
end

end

Note that the available information is updated at the beginning of each time step for
both the operation and the design so that the controller and designer only have access
to past and current observations. To this end, a difference is made between the values
assigned to the ”Scenario” structure (i.e., all the values are available over the entire
horizon) and the corresponding asset of the microgrid (where the values are updated time
step after time step). For instance, both the ”Scenario” and ”Microgrid” structures have
a ”Demand” field, however, the values of the microgrid ”Demand” are updated at each
time step, from the ”Scenario” structure. Decisions are only made based on the ”Demand”
attribute of the ”Microgrid” structure so that future values are unknown.

As the simulation progresses, the state and control values for both the design and the
operation are assigned to the corresponding microgrid asset fields. Once the simulation
is finished, the techno-economic metrics can be computed thanks to the Metrics(). The
toolbox also provides a set of additional functions to visualize the main results.

6.3 Application on a case study
As an example, the two-stage model is solved for the toy-example (depicted in figure
6.2) using the mathematical programming design approach. Then, the sizing values are
assessed with a predefined RB policy (corresponding to the second RB policy in the
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Genesys.jl library) where the battery is charged as long as there is energy surplus and
discharged otherwise.

Figure 6.2: Schematic view of the toy-example.

Each line of listing 6.18 is commented in the following:
Line 2: Packages are loaded to run the application. ”JLD” and ”Dates” are used to

load the input ”.jld” file.
Lines 5-8: The hourly and yearly horizons (i.e., ”nh” and ”ny”, respectively) and

the number of scenarios ”ns” are set as constant parameters. Also, the Ausgrid dataset
(stored in a ”.jld” file) is loaded into the namespace.

Lines 11-14: The microgrid is initialized with a renewable share constraint equal
to 1. Then, the assets are added to the microgrid thanks to the add!() function. Note
that both the ”Grid” and ”Demand” structures require to specify the type of the energy
carrier.

Line 17: Two sets of scenarios for both the design and simulation are built from the
input dataset and the microgrid structure.

Line 20: The designer is initialized using the mathematical programming method
(called ”MILP” in the library) with the default options.

Line 23: The controller is initialized using the second RB policy.
Line 26: The designer and controller are evaluated over the simulation scenario set

which is different from the one used to design the microgrid. Note that the ”multithreads”
option is enabled to speed up computation.

Lines 29-35: Finally, techno-economic indicators are computed afterward and the
main simulation results can be visualized.

1 # Load packages
2 using Genesys , JLD , Dates
3
4 # Parameters of the simulation
5 const nh , ny , ns = 8760 , 2, 1000
6
7 # Load input data
8 data = load( joinpath ("data"," ausgrid_5_twostage .jld"))
9

10 # Initialize the microgrid
11 microgrid = Microgrid ( parameters = GlobalParameters (nh , ny , ns , renewable_share = 1.))
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12
13 # Add the equipment to the microgrid
14 add !( microgrid , Solar () , Grid( carrier = Electricity ())), Liion () , Demand ( carrier =

Electricity ()))
15
16 # Initialize scenarios
17 w_d , w_a = Scenarios (microgrid , data["w_d"]) , Scenarios (microgrid , data["w_a"])
18
19 # Initialize the designer
20 designer = initialize_designer !( microgrid , MILP () , w_d)
21
22 # Initialize the controller
23 controller = initialize_controller !( microgrid , RBC( options = RBCOptions ( policy_selection

= 2)), w_d)
24
25 # Assessment
26 simulate !( microgrid , controller , designer , w_a , options = Genesys . Options (mode = "

multithreads "))
27
28 # Compute the metrics
29 metrics = Metrics (microgrid , designer )
30
31 # Plot the metric statistics ...
32 plot_metrics ( metrics )
33
34 # ... and the operation !
35 plot_operation ( microgrid )

Listing 6.18: Application on the toy example with the mathematical programming design
method and a rule-based policy for the assessment.

6.4 How to use custom designer and controller meth-
ods within the framework?

The first step is to define your own designer and controller as Julia composite types (see
listing 6.19). For this example, the designer is named ”bar” and the controller ”foo”.
Do not forget to specify the subtype of each structure (i.e., ”AbstractController” and
”AbstractDesigner”) otherwise, they won’t be recognized by the simulator. Moreover,
both the ”decisions” structure field (defined as named tuple) and the inner constructor
are mandatory for the two Julia types.

1 # Define your own designer ...
2 mutable struct bar <: Genesys . AbstractDesigner
3 decisions :: NamedTuple
4 bar () = new ()
5 end
6
7 # ... and controller
8 mutable struct foo <: Genesys . AbstractController
9 decisions :: NamedTuple

10 foo () = new ()
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11 end

Listing 6.19: Type definition for custom designer and controller.

Then, similarly to sections 6.2.2 and 6.2.3, you have to define the ”offline” methods
which are used (at least!) to preallocate the ”decisions” field of each structure (listing
6.20). In this case, dummy controller and designer are implemented where the ”decisions”
named tuple is filled with zeros.

1 # Define the " offline " functions for both the designer and controller
2 function Genesys . initialize_controller !( mg :: Microgrid , controller ::foo , w:: Scenarios )
3 # Preallocate
4 Genesys . preallocate !(mg , controller )
5 return controller
6 end
7
8 function Genesys . initialize_designer !( mg :: Microgrid , designer ::bar , w:: Scenarios )
9 # Preallocate

10 Genesys . preallocate !(mg , designer )
11 return designer
12 end

Listing 6.20: Offline functions for custom designer and controller.

Next, you have to implement the ”online” strategies for both the designer and con-
troller, which give at each time step the decision variables as a function of the current
system state and available information (listing 6.21). Again, the dummy controller and
designer always return zeros regardless of the input information for this example.

1 # Define the " online " functions for both the designer and controller
2 function Genesys . compute_operation_decisions !(h:: Int64 , y:: Int64 , s:: Int64 , mg :: Microgrid

, controller :: foo)
3 return controller
4 end
5
6 function Genesys . compute_investment_decisions !(y:: Int64 , s:: Int64 , mg :: Microgrid ,

designer :: bar)
7 return designer
8 end

Listing 6.21: Online functions for custom designer and controller.

Finally, you can evaluate the performance of the foo() controller and bar() designer
by following the procedure previously described in section 6.3 (listing 6.22).

1 # Load packages
2 using Genesys , JLD , Dates
3
4 # Parameters of the simulation
5 const nh , ny , ns = 8760 , 2, 1000
6
7 # Load input data
8 data = load( joinpath ("data"," ausgrid_5_twostage .jld"))
9

10 # Initialize the microgrid
11 microgrid = Microgrid ( parameters = GlobalParameters (nh , ny , ns))
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12
13 # Add the equipment to the microgrid
14 add !( microgrid , Solar () , Grid( carrier = Electricity ())), Liion () , Demand ( carrier =

Electricity ()))
15
16 # Initialize scenarios
17 w_d , w_a = Scenarios (microgrid , data["w_d"]) , Scenarios (microgrid , data["w_a"])
18
19 # Initialize designer
20 designer = initialize_designer !( microgrid , bar () , w_d)
21
22 # Initialize controller
23 controller = initialize_controller !( microgrid , foo () , w_d)
24
25 # Assessment
26 simulate !( microgrid , controller , designer , w_a)

Listing 6.22: Application with the custom designer and controller.

6.5 Conclusion and perspectives
Genesys.jl has been introduced as a generic Julia toolbox to easily assess and compare
different design and operation strategies for energy systems. First, the main toolbox in-
gredients were described, followed by the description of the design and operation strategies
implemented in this thesis. Then, an example of how to use the toolbox was presented
on a simple case study. Finally, the integration of custom designer and controller within
the Genesys.jl framework was shown for anyone interested in this concern.

Although the general code structure is approximately settled, several critical points
need further developments to improve the toolbox performance. A non-exhaustive enu-
meration is listed below (with increasing difficulty according to the author’s point of
view):

• Compute the first-year design decisions in the compute investment decisions!() func-
tion in order to be fully consistent with the methodological philosophy of the thesis.
The initialize designer!() function should only be dedicated for offline computations.

• Improve the toolbox input/output interfaces. Especially, 1) efficient scenario gen-
eration from ”.csv” like files (which exchange format is the most appropriate?); 2)
implementation of a module to save the outputs of any Genesys.jl study for later
post-processing.

• Add more complex asset models to the library, which can be used in both the design
and simulation phases.

• Add transmission line models for each carrier to account for energy transmission
issues (cf the next bullet point).
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• Add a spatial dimension in addition to the temporal and scenarios dimensions.

• Improve and take full advantage of parallel computing.

• Improve the simulator by interfacing the toolbox to more appropriate simulation
tools (e.g., Modelica [139]) or even hardware-in-the-loop (HIL) energy systems.

Despite all these aforementioned limitations, the Genesys.jl toolbox can be a valuable
”starter pack” for researchers looking for practical implementation of several design and
operation strategies for energy systems.
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Chapter 7

Conclusion and perspectives

Contents
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1 Summary
In recent years, driven by ambitious decarbonization plans, the energy system has been
rapidly evolving to integrate a growing share of renewable energies. The shift from dis-
patchable to variable resources has led to the development of new flexibility means to
overcome the mismatch between production and demand at all times. Among the dif-
ferent options, storage systems along with multi-energy strategies tend to be promising
directions to mitigate the production variability by coupling the energy carriers with each
other.

As introduced in chapter 1, planning the design of such systems is a challenging task
because the problem displays multiple facets that are difficult for policy- and decision-
makers to address in a systemic manner. Also, decisions are made while many parameters
remain uncertain as their values progressively unfold over time. Therefore, mathematical
tools are often needed to provide decision support regarding several techno-economic
requirements: the problem is expressed in a form of optimization problems where decision
variables are the sizes of the equipment. The resulting problem is most of the time
intractable, thus simplifications are inevitable to come up with solutions. The main
modeling challenge is then to determine the relevant simplifications regarding the objective
of the study.

Within this context, chapter 2 developed a simple deterministic model to assess the
value of multi-energy systems and seasonal storage to supply residential customers with
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a high share of solar production. The objective of this part was threefold: i) such opti-
mization problems are easily solved with standard solvers so that fast parametric studies
can be run to identify global DES design and techno-economic trends; ii) the result of the
deterministic problem with perfect foresight gives the best (but unreachable) solution for
a given scenario, which is valuable information to understand the topology of the problem;
iii) the deterministic model forms the basis of the stochastic formulation, thus this step
is an essential prerequisite to properly understand the next chapter developments. Re-
sults of the parametric analysis showed that the total annual cost increases exponentially
with the renewable ratio and the integration of a low-cost dispatchable source may sig-
nificantly alleviate the overall system cost. Furthermore, hydrogen units only emerge for
high shares of solar production (i.e., renewable share greater than 80%). In the particular
case of standalone DES, the multi-energy system with seasonal storage leads to better
techno-economic performance than the battery-only solution. In this case, cogenerated
heat from hydrogen helps reduce the total cost of the system.

Then, the next two chapters dealt with the design of the DES under uncertainties: the
energy demands, the solar production and the electricity tariff are not perfectly known
when sizing the system. The first objective was to develop a method to generate synthetic
scenarios of energy demands and production for both long and short-term applications.
To this end, a simple stochastic model based on Markov chains was presented in chap-
ter 3. The method was applied to a residential case study and the results showed good
performance to recover the main statistical features of the initial dataset while introduc-
ing temporal variability between scenarios. The drawback of such a method is that the
synthetic future scenarios only display power levels and daily patterns from the initial
dataset. However, in practice, the epistemic nature of future scenarios may be different
from that of the historical dataset. Despite this limitation, the method is appropriate for
the modeling purpose of this thesis where a large set of scenarios is needed to assess the
performance of different design and operation methodologies.

Next, chapter 4 took on the challenge of developing several design (i.e., mathemat-
ical programming and metaheuristic approaches in a two-stage fashion) and operation
strategies (i.e., anticipative, rule-based and open-loop feedback control) under uncertain-
ties for a multi-energy system with seasonal storage. The main objective of this part was
to challenge the perfect foresight hypothesis attached to typical mathematical program-
ming approaches from the literature, regarding realistic operation strategies which only
have access to past and current information (i.e., the future energy demands, production
and electricity tariffs are not perfectly known when sizing the systems). Furthermore,
this section examined more precisely the interaction between design and operation on a
simplified case study. Results showed that the real-life operation strategy and the one
embedded in the design procedure do not have to be strictly identical. However, their
level of optimality must be similar, and this work helped quantify this notion. As a result,
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the mathematical programming approach (widely implemented in the literature to solve
complex planning problems) is relevant if, and only if, the DES is finally operated with
a real-time policy that performs similarly to the anticipative operation strategy. This
latter condition might be critical for complex energy systems where the development of
”near-optimal” real-time policies is difficult. In the case of poor performance operation
strategies, the sizing values resulting from the two-stage LP model might not be appro-
priate to meet the project requirements. In this case, the metaheuristic approach should
be considered provided that the operation policy is fast enough to be integrated into the
design loop. The results also demonstrated the relevance of stochastic solutions over de-
terministic designs as the latter can lead to misleading results since they strongly depend
on the scenario selected for optimization.

Finally, the last part of this thesis (see chapter 5) addressed multi-year planning
issues where multiple design decisions can be made over the horizon of the project. More
precisely, a multi-time scale model (derived from the literature) was implemented on
a simple case study (i.e., battery and solar panels) where the impact of the operation
over equipment lifetimes is taken into account. Unlike the majority of studies from the
literature, system lifetimes are not fixed a priori, but they depend on the way systems
are operated over time. This aspect is particularly interesting for storage systems such
as Li-ion batteries where the number of charge/discharge cycles has great consequences
on their aging. This dynamic aware aging design method was compared to two heuristic
design strategies based on the two-stage model previously introduced in chapter 4. Results
showed that, unlike heuristic strategies, the dynamic aware aging method can control both
the investment pathway and the battery aging, thereby reducing the overall cost of the
DES.

All the previous works would not have been possible without a strong numerical back-
ground. Therefore, Genesys.jl was introduced in chapter 6 as a generic Julia toolbox to
easily assess and compare different design and operation strategies for energy systems.
The toolbox allows switching from one strategy to another without changing the overall
code. The last part of this chapter presented how custom design and operation approaches
can be easily added to the framework for anyone interested in such issues.

7.2 Contributions
Based on the previous developments, the contributions of this thesis are mainly method-
ological. They can be summarized as follows:

• The introduction of a modeling framework to assess different design and
operation strategies under uncertainty. To this end, the models used to design
and simulate the strategies are clearly divided into two distinct parts: the simulator
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is assumed to be a good representation of the real system, while the design model
can be built on simplified versions of the problem. Also, scenarios used to design
the DES and to compute the techno-economic indicators are different to avoid any
bias in the evaluation.

• The joint comparison of diverse design and realistic operation strategies
under uncertainty. As a result, the scope of the mathematical programming ap-
proach was clarified regarding the performance of realistic operation strategies. This
work helped quantify this notion. Another method based on a metaheuristic algo-
rithm was also provided to design DES that are controlled with poor performance
policies.

• The comparison of a dynamic aware aging design method with two heuris-
tic design strategies based on a two-stage model.

• The introduction of a generic toolbox to easily assess and compare dif-
ferent design and operation strategies without changing the overall code.

We don’t have the arrogance to claim major advances through this work, but we hope
that our little steps will contribute to the research effort on these questions.

7.3 Future directions
The work presented in this thesis comes with multiple limitations attached to the modeling
choices. They were previously discussed in the introduction. In addition, this section
attempts to identify some perspectives that seem crucial to the author in order to enhance
the value of this work.

The first direction pertains to the simulator model. In this work, the same model
granularity (e.g., technological details, time steps) was kept for both the design and
simulator for the sake of clarity (and lack of time...). The only differences were deliberately
introduced to highlight some specific research points. However, the simulator could be
improved to come closer to the real behavior of the system by using appropriate simulation
tools such as Modelica [139] or TRNSYS [87] (the simulator could also be replaced by
hardware-in-the-loop (HIL) simulation). Then, the model implemented in the design
strategy can be gradually simplified to evaluate and compare the impacts of the different
simplifications over the results (i.e., both the resulting sizes and the techno-economic
indicators computed by simulation).

Next, one obvious perspective would be to integrate both operation and investment
uncertainties in the multi-year planning model. Also, the benefit of including the aging
dynamic into the model must be discussed in view of typical multi-stage approaches
where the asset lifetimes are fixed a priori. This latter assumption may be sufficient
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from a design perspective, and the aging dynamic may be unnecessarily complex for this
purpose. Furthermore, this thesis only addressed uncertainties attached to time series.
Another source of uncertainty comes from the nature of the modeling process. Indeed, a
model is an approximation of reality, so any model is by nature uncertain. Integrating
uncertainties related to the physical model of the assets could be a direction for future
work.

Another direction that is related to the first point would be to compare ”soft-linking”
methodologies to the design methods developed in this thesis. Indeed, some simulation
models already exist in the literature and it would be interesting to couple these models to
design strategies where a parameter is progressively tuned to reach the requirements. The
performance of these methods could then be compared to traditional design strategies,
such as those developed in this work.

Based on the previous methodological improvements, it would be interesting to apply
these methodologies to more complex case studies where DES users participate in multiple
energy markets (e.g., frequency ancillary services, capacity mechanism, balancing mecha-
nism) that are available to support VRE integration into the system. Future work could
include performing techno-economic analyses in this context to determine new business
models for these systems. And last, but not least, it would be crucial to include social and
environmental indicators into the framework (e.g., based on life-cycle analysis) to assess
the true relevance of such multi-energy systems to achieve net carbon reduction goals in
accordance with societal needs.

The base of the pyramid has been built during this thesis. The edifice is huge, and
the rest of the construction will be the role of future doctoral and postdoctoral students
based on their own research issues.
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Appendix A

The conditional value at risk (CVaR)
risk measure

The CVaR is a coherent risk measure introduced by Rockafellar and Uryasev [140] depicted
in figure A.1.

Figure A.1: Schematic representation of the VaR and CVaR of a random variable (from Mavromatidis
et al [5]): β = 0 corresponds to the expectation while β = 1 is the worst case.

Given a random variable X and its associated probability distribution, the value at
risk (VaRβ) at level β ∈ [0, 1] is the β-quantile of X. Therefore, the CVaRβ at level β is
defined as the expected values of X that are larger than the VaR:

CVaRβ(X) = E[X|X ≥ VaRβ(X)] (A.1)

Basically, the CVaR is the expected value of the (1− β) · 100% worst scenarios. The

135



advantage of CVaR is that it can easily be linearized to be integrated into optimization
problems. This usually needs the introduction of auxiliary variables and the authors in
[112] rigorously demonstrated the linearization procedure. Readers seeking more infor-
mation about this point should directly refer to the reference.
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Appendix B

Scenario generation for stochastic
programming

The main challenge in solving stochastic programs is to determine the right number of
scenarios to represent uncertainties: the latter must be low enough to keep computational
tractability while ensuring a good representation of the underlying stochastic processes.

Therefore, scenario generation methods can be classified into bottom-up and top-down
approaches. In the former case, the goal is to build the sample space starting from a single
scenario and then iteratively add scenarios until the model objective converges [75, 141].
On the other hand, top-down approaches start with a large set of scenarios, and the
objective is to statistically approximate the initial set with a lower number of scenarios.
In this case, heuristic strategies can be used to minimize a probability distance from the
original distribution (e.g., forward selection and backward reduction) [107, 108, 142]. The
number of scenarios can be fixed using stability tests [75]: the model is run with a growing
number of scenarios extracted from one of the previous approaches until the objective
function converges. According to King et al [75], it is usually difficult to observe good
convergence for large scale stochastic problems, especially over the solutions
(i.e., sizing values in this work), because stochastic problems mostly have flat
objectives where multiple solutions could lead to similar results. Note that
scenario generation methods could be a research topic in itself. The aim of this work is
to provide two simple top-down heuristic algorithms to reduce the initial set of scenarios.
The number of scenarios is then fixed through stability tests.

Therefore, the initial set of scenarios Ωd is made of 1000 annual time series (at an
hourly time step) of energy demands, production and electricity tariff. The two heuristic
methods are introduced in the following and depicted in figure B.1.
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Figure B.1: The different reduction steps for the two heuristic strategies: (a) the ”raw clustering” ap-
proach directly applies the k-medoids algorithm on the initial set of scenarios while (b) the clustering
algorithm is run over a limited set of features (i.e., sum, maximum and first 4th statistical moments)
with the ”feature-based clustering” method.

The first step in the reduction procedure is to aggregate and normalize the data to keep
the synchronicity between time series. Then, the first method implemented in this work
(called ”raw clustering”) directly applies the clustering algorithm on the 4 (electricity,
heat, PV and tariff) x 8760 (hours) x 1000 (scenarios) observations. Following the data
science vocabulary, the initial set has 35 040 dimensions and 1000 observations. As it
has been noticed several times in the literature [74, 115], applying clustering algorithms
to such high-dimensional data may lead to inaccurate results because the concept of
”distance” becomes less precise. Therefore, the second method (called ”feature-based
clustering”) integrates a typical intermediate step where the number of dimensions is
reduced before applying the clustering method. The main challenge is then to determine
the representative features that will constitute the low-dimensional space. These features
must be chosen according to the purpose of the study (i.e., the design of DES in this
work).

A large number of methods are available for both dimension reduction (e.g., the repre-
sentative features can whether be chosen manually according to the intuition of the user
or extracted using more sophisticated dimension reduction algorithms as PCA [143] or
UMAP [144]) and clustering (e.g., k-medoids [92], DBSCAN [145]). In this work, both
scenario reduction methods apply the k-medoids algorithm with the euclidean distance 1

to cluster the scenarios. However, with the second method, the dimension is first reduced
by manually extracting a limited set of features for each time series (i.e., sum, maxi-
mum and first 4th statistical moments) following [74] and [114]. The probability of each
scenario is computed based on the number of cluster assignments. Note that the more
sophisticated techniques previously introduced as examples were also used but they did
not provide better results.

1Dynamic Time Warping (DTW) might be more appropriate for time series but this latter was not
studied in this work. The reader could refer to [146] for more information about this metric.
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Figure B.2: Results of the stability tests for the two scenario reduction methods. The results are compared
with those of the ”Monte Carlo” approach where the scenarios are randomly selected from the initial
dataset.

Figure B.2 shows the stability test results in a case where the risk measure is the expec-
tation and the renewable ratio is equal to 1. To this end, the mathematical programming
approach is run with a growing number of scenarios from both reduction methods. As
these methods are based on aleatory numbers, they are run 10 times to deal with their
stochastic nature. For each ”number of scenarios”, the corresponding error bar (i.e., mean
and standard deviation) is drawn in the figure.

As with the authors’ conclusions in [75], convergence is not clearly depicted in the
figure with both methods. Even if the ”feature-based” approach seems to reach a plateau
at 40 scenarios, the variability between runs still remains around 10% of the mean value.
The convergence for the ”raw clustering” method is even more questionable and the gain
of one reduction method over the other is not obvious. More surprisingly is the result
of the Monte Carlo method. Indeed, while the value of the total annual cost is highly
variable for a single scenario (see the error bar - this is consistent with the conclusion of
section 4.5.3), the results seem to be more stable than for the other approaches when the
number of scenarios increases. The main drawback of such a method is that the scenarios
are randomly selected with equal probabilities. Therefore, there is a chance that the
scenarios extracted by the Monte Carlo approach are not statistically representative of
the initial dataset. This remark is even more relevant for a different risk measure that
would be more sensitive to the tail of the distribution (e.g., the CVaR at 95%).

Despite these poor results, the feature-based method is used to constitute a reduced set
of 40 scenarios as a trade-off between computation times and statistical representation.
This method is chosen among the others as it seems to the author more accurate to
approximate the entire probability distribution. Note that in any case, the consistency
of the reduction approach will be settled in section 4.5 when the design values will be
assessed on the out-of-sample simulator: if the techno-economic requirements are not met,
the reduction method will have to be revised.

In order to be fully accurate, stability tests should have been run for each case study
(i.e., risk measure and renewable share value) and for each design method (i.e., mathemat-
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ical programming and metaheuristic). For computational reasons (each run takes about
2 hours when the number of scenarios is greater than 20...), the reduced scenario set is
only built once with the mathematical programming approach and the same scenarios are
used to run the parametric analyses of section 4.5.
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