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Abstract: This work demonstrates the discretization of the boundary-controlled Maxwell
equations, recast as a port-Hamiltonian system (pHs). After a reminder on the Stokes-
Dirac structure associated with the Maxwell system, we introduce different partitioned weak
formulations that preserve the pHs structure, and its associated power balance, at the semi-
discrete level. These weak formulations are compared through numerical applications to closed
non-perfectly conducting cavities and open waveguides under transverse approximation.
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1. INTRODUCTION

This work extends (Payen et al., 2020) by investigating al-
ternative finite element discretizations of Maxwell’s equa-
tions recast as an open port-Hamiltonian system (pHs).
The discretizations considered rely on partitioned weak
formulations (Cardoso-Ribeiro et al., 2020), which pre-
serve the pHs structure at the semi-discrete level.

1.1 Maxwell’s equations as pHs

pHs are dynamical systems with collocated boundary
inputs and outputs, endowed with a Hamiltonian func-
tional that satisfies a power balance (van der Schaft and
Maschke, 2002; Rashad et al., 2020). One of the strength
of the pHs formulation is that it provides a systematic ap-
proach to the passive interconnection of systems through
their boundaries. Since the passive interconnection of N
pHs is itself a pHs (Cervera et al., 2007), the pHs formalism
has proven to be a powerful tool for the modelling and
control of complex multi-physics systems. The underlying
geometric structure of infinite-dimensional pHs is known
as a Stokes-Dirac structure.

Partial differential equations (PDEs) such as the transmis-
sion line, the shallow water, the beam equations and the
reactive Navier-Stokes equations have been investigated in
the port-Hamiltonian framework (Duindam et al., 2009;
Altmann and Schulze, 2017). The pHs formulation of the
Maxwell system has been considered in (van der Schaft
and Maschke, 2002) and also in (Vu et al., 2012; Vu, 2014),
where it is applied to tokamak modeling, and (Farle et al.,
2013), where an exterior calculus viewpoint is proposed.

1.2 Structure-preserving discretization of pHs

The ability to discretize an interconnected set of pHs
while preserving its pHs structure is advantageous to
tackle control problems. Importantly, the preservation of
the Stokes-Dirac structure implies the preservation of

the power balance (hence of passivity) as well as other
dynamical properties such as stability.

The Partitioned Finite Element Method (PFEM) (Cardoso-
Ribeiro et al., 2020) preserves the Stokes-Dirac structure
of interconnected pHs at the semi-discrete level. This dis-
cretization methodology relies on the use of a so-called
partitioned weak formulation, which results from integrat-
ing by parts only a subset of the equations. In practice,
the choice of which equation to integrate by parts is mo-
tivated by the collocated boundary controls of interest.
(In the terminology of (Joly, 2003), the choice is between
a primal–dual or a dual–primal weak formulation). Once
a partitioned weak formulation has been chosen, it can
be discretized using standard mixed finite element spaces
(Monk, 2003; Boffi et al., 2013). This methodology has
been applied to the boundary control of the heat and
wave equations in (Serhani et al., 2019) and of Maxwell’s
equations in (Payen et al., 2020).

1.3 Contributions and outline

The purpose of this work is to investigate the structure-
preserving discretization of Maxwell’s equations. This
work extends (Payen et al., 2020) by considering alter-
native partitioned weak formulations and numerical appli-
cations.

This paper is organized as follows. Section 2 recalls the
Stokes-Dirac structure associated with the full Maxwell
system. Section 3 introduces the weak formulations con-
sidered in this work and discusses the enforcement of di-
vergence constraints. Numerical applications and ideas for
future work are gathered in Sections 4 and 5, respectively.

2. PORT-HAMILTONIAN STRUCTURE OF
MAXWELL’S EQUATIONS

Let Ω ⊂ R3 be an open bounded set with a Lipschitz
boundary. We consider the macroscopic Maxwell equations
(Zangwill, 2012, § 2.4)



(a) ∂tD −∇×H = −j, (b) ∂tB +∇×E = 0,

(c) ∇ ·D = ρ, (d) ∇ ·B = 0,
(1)

where we use the terminology from (Zangwill, 2012,
Chap. 2):

E ∈ H(curl) := {E ∈
[
L2

]3 | curlE ∈
[
L2

]3}
is the electric field,

B ∈ H(div) := {B ∈
[
L2

]3 | divB ∈ L2}
is the magnetic field, D ∈ H(div) and H ∈ H(curl) are
the auxiliary fields, ρ ∈ L2 is the free charge density, and
j ∈ H(div) is the free current density. On the boundary Γ,
we consider the linear time-invariant impedance boundary
condition (IBC)

πt(E) = z ⋆ γt (H) (x ∈ Γ), (2)
where ⋆ is the time-domain convolution, n is the unit
outward normal, γt(H) = H |Γ × n is the tangential
trace mapping, and πt (E) = n × γt(E) is the tangential
components trace mapping (Buffa et al., 2002). We assume
that the convolution kernel z is causal and such that its
Laplace transform is a positive-real function (Zemanian,
1965, § 10.4); this ensures that the boundary condition
is passive (Zemanian, 1965, Thm. 10.6-1). Physically, z
models a time-invariant non-perfect conducting material
that behaves linearly 1 . To close the system (1,2), three
constitutive laws are needed.

This section is organized as follows. Section 2.1 gives the
constitutive laws considered in this work and provides the
associated power balance, while Section 2.2 summarizes
the pHs formulation and the Stokes-Dirac structure.

2.1 Constitutive relations and power balance

For simplicity, we further assume that Ω has a smooth
boundary or that Ω is a Lipschitz polyhedron with no
pathological vertices (Assous et al., 2018, p. 204). In both
cases, we have

γt(H(curl)) ∩ πt (H(curl)) ⊂ L2
t (Γ),

where L2
t (Γ) is the space of square-integrable tangential

functions, which implies that the IBC (2) always take
place in L2

t (Γ). For background on tangential traces, see
(Monk, 2003, § 3.5.3) for smooth boundaries and (Buffa
et al., 2002) for general Lipschitz boundaries.

The starting point to derive the power balance is the
integral identity

(E, ∂tD)L2(Ω) + (H, ∂tB)L2(Ω) =

− (γt (H) , πt (E))L2
t (Γ)

− (j,E)L2(Ω) , (3)

which is obtained by multiplying (1a) (resp. (1b)) by E
(resp. H), integrating by parts, and using Green’s identity
(Assous et al., 2018, (2.19)). Note that only the tangential
components of E and H contribute to the boundary term.

We now state constitutive laws that enable to turn (3) into
a proper power balance. The first two constitutive relations
model the auxiliary fields of a nondispersive material that
behaves linearly:

D(t,x) = ε(x)E(t,x), H(t,x) =
1

µ(x)
B(t,x), (4)

1 The case of a perfect conductor is recovered for z = 0 (negligible
penetration depth).

where ε (resp. µ) is the dielectric permittivity (resp.
magnetic permeability). We assume that both coefficients
are positive and belong to L∞(Ω) so that the evolution
operator associated with (1) is maximal monotone. We
define the Hamiltonian as

H :=
1

2
(E,D)L2(Ω) +

1

2
(H,B)L2(Ω) , (5)

so that using (4)
Ḣ = (E, ∂tD)L2(Ω) + (H, ∂tB)L2(Ω) ,

which provides us with an interpretation of the left-hand
side of (3). The third and last constitutive relation is
Ohm’s law

j(t,x) = σ(x)E(t,x) (x ∈ Ω), (6)
where σ ≥ 0 is the conductivity, which provides the
inequality Ḣ ≤ 0 along the trajectories.

2.2 port-Hamiltonian formulation

To formulate the Stokes-Dirac structure, we first need
to introduce the various ports of our open system. The
presentation follows (Payen et al., 2020).

Energy and co-energy variables. The energy variables are
defined as

αD := D, αB := B,
so that the Hamiltonian is

H =
1

2

(
ε−1αD,αD

)
L2(Ω)

+
1

2

(
µ−1αB,αB

)
L2(Ω)

.

By definition, the co-energy variables are
eD := δDH, eB := δBH.

By using the constitutive relations (4) we therefore deduce
eD = E, eB = H.

Boundary collocated control pair. From the power bal-
ance (3), we deduce that a suitable control pair is

(y∂ ,u∂) = (−γt (H) , πt (E)) . (7)
These controls are vectors tangent to Γ. The alternative
choice (y∂ ,u∂) = (πt (E) ,−γt (H)) is equally valid;
however in this work we choose (7) due to our interest
in IBCs formulated as (2), for which πt(E) is the natural
input.

Stokes-Dirac structure. The system (1) defines the fol-
lowing ports

{(∂tαD, eD), (∂tαB, eB), (fj , ej), (−y∂ ,u∂)} , (8)
where (∂tαD, eD) and (∂tαB, eB) are distributed energy
storage ports, (fj , ej) is a distributed damping port associ-
ated with Ohm’s law (6), and (−y∂ ,u∂) is the boundary
external port defined by (7). The corresponding Stokes-
Dirac structure “f = Je” is[

∂tαD

∂tαB

fj

]
=

[
0 ∇× −I

−∇× 0 0
I 0

][
eD
eB
ej

]
, (9)

where the interconnection operator J is formally skew-
adjoint. The power balance (3) reads

(∂tαD, eD)L2(Ω) + (∂tαB, eB)L2(Ω) +

(fj , ej)L2(Ω) + (−y∂ , u∂)L2
t (Γ)

= 0,

and the constitutive relations (4,6) are reduced to the
algebraic closures

αD = εeD, αB = µeB, ej = σfj . (10)



3. STRUCTURE-PRESERVING DISCRETIZATION
USING PARTITIONED FINITE ELEMENT METHOD

A key feature of the pHs formalism is the separation
between physical (9) and empirical (10) laws. However, a
canonical discretization of (9,10) would lead to solving on
six vector fields in Ω, which is overly costly. We therefore
choose to combine (9) and (10) in order to solve on only
two fields.

The discretization methodology is based on PFEM, which
consists in using mixed finite element spaces to approx-
imate a partitioned weak formulation. There are sev-
eral possible partitioned weak formulations, depending on
which fields are being solved on and which equation is
integrated by parts (i.e. on whether a primal or dual
formulation is chosen in the terminology of (Joly, 2003)).

This section lays out the four possible partitioned weak for-
mulations and highlights that only two of them naturally
preserve the Stokes-Dirac structure. Section 3.1 gathers
the two primal formulations while Section 3.2 gathers the
two dual formulations. Section 3.3 summarizes the finite
elements chosen to approximate the formulations.

3.1 Primal partitioned weak formulations

We call primal a formulation that integrates by part on
Maxwell-Ampère (1a). There are two possible partitioned
formulations, based on the choice of unknowns: (E,H) or
(E,B) .

Formulation (a). Find (E(t),H(t),y∂(t),u∂(t)) ∈ Va
such that for all (ϕE(t),ϕH(t),v∂,1(t),v∂,2(t)) ∈ Va,

(ε∂tE,ϕE)Ω = + (H,∇× ϕE)Ω + (y∂ , πt(ϕE))Γ
− (j,ϕE)Ω

(µ∂tH,ϕH)Ω =− (∇×E,ϕH)Ω
(−u∂ ,v∂,1)Γ = (−πt(E),v∂,1)Γ ,

where
Va := H(curl)×

[
L2

]3 × L2
t (Γ)× L2

t (Γ).

The system is closed by enforcing a passive boundary
condition using the second boundary test function v∂,2.
For example, the IBC (2) reads

(u∂ ,v∂,2)Γ = − (z ⋆ y∂ ,v∂,2)Γ . (11)
Alternatively, an interconnection with another pHs can
also be enforced. In this formulation the output y∂ , defined
in (7), appears as a Lagrange multiplier associated with
the IBC (2). As a result, spatial discretization will lead to
a pHDAE (Beattie et al., 2018). The formulation (a) was
first studied in (Monk, 1993). Since it solves on the co-
energy variables, it preserves the skew-adjointness of the
interconnection operator.

Formulation (b). This formulation solves on (E,B) in-
stead: find (E(t),B(t),y∂(t),u∂(t)) ∈ Vb such that for all
(ϕE(t),ϕB(t),v∂,1(t),v∂,2(t)) ∈ Vb,

(ε∂tE,ϕE)Ω = +
(
µ−1B,∇× ϕE

)
Ω
+ (y∂ , πt(ϕE))Γ

− (j,ϕE)Ω
(∂tB,ϕB)Ω = − (∇×E,ϕB)Ω
(−u∂ ,v∂,1)Γ =(−πt(E),v∂,1)Γ ,

where
Vb := H(curl)×H(div)× L2

t (Γ)× L2
t (Γ).

This formulation was introduced in the seminal paper
(Nédélec, 1980, § 3.1), which first defined curl-conforming
finite elements, and is by far the most popular choice,
see e.g. (Makridakis and Monk, 1995; Rieben et al., 2005;
Anees and Angermann, 2019). It yields the Yee scheme
(Yee, 1966) when mass-lumped linear curl-conforming and
div-conforming elements are used (Monk, 1993, § 4.2) (Co-
hen, 2002, § 13.1). However this formulation does not pre-
serve the pHs structure due to solving on a mix of energy
and co-energy variables. To preserve the pHs structure, the
second equation needs to be substituted by(

µ−1∂tB,ϕB

)
Ω
= −

(
∇×E, µ−1ϕB

)
Ω
,

which is not numerically desirable if µ is discontinuous.

3.2 Dual partitioned weak formulations

A dual formulation is obtained by integrating by parts
on Maxwell-Faraday (1b), which leaves two possibilities:
solving on (E,H) or (D,H).

Formulation (c). Find (E(t),H(t),y∂(t),u∂(t)) ∈ Vc
such that for all (ϕE(t),ϕH(t),v∂,1(t),v∂,2(t)) ∈ Vc,

(ε∂tE,ϕE)Ω = + (∇×H,ϕE)Ω − (j,ϕE)Ω
(µ∂tH,ϕH)Ω =− (E,∇× ϕH)Ω − (u∂ , γt (ϕH))Γ
(−y∂ ,v∂,1)Γ = (γt(H),v∂,1)Γ ,

where
Vc :=

[
L2

]3 ×H(curl)× L2
t (Γ)× L2

t (Γ).

The system is closed with the IBC (11). This formulation
is used in e.g. (Monk, 1991; Li, 2007). Similarly to (a)
it preserves the Stokes-Dirac structure due to solving on
co-energy variables. In contrast to (a), this formulation
does not involve a Lagrange multiplier so that spatial
discretization will lead to an ODE under port-Hamiltonian
form.

Formulation (d). Find (D(t),H(t),y∂(t),u∂(t)) ∈ Vd
such that for all (ϕD(t),ϕH(t),v∂,1(t),v∂,2(t)) ∈ Vd,

(∂tD,ϕD)Ω = + (∇×H,ϕD)Ω − (j,ϕD)Ω
(µ∂tH,ϕH)Ω =−

(
ε−1D,∇× ϕH

)
Ω
− (u∂ , γt (ϕH))Γ

(−y∂ ,v∂,1)Γ = (γt(H),v∂,1)Γ ,

where
Vd := H(div)×H(curl)× L2

t (Γ)× L2
t (Γ).

This formulation is not widespread and does not preserve
the Stokes-Dirac structure. Preserving the Stokes-Dirac
structure requires substituting ϕD by ε−1ϕD which de-
grades the scheme when ε is discontinuous.

3.3 Semi-discrete approximation space

Approximating the spaces V⋆ involves using both domain
and boundary finite elements. On the boundary, we use
either discontinuous polynomials or Lagrange elements to
build a conformal approximation of L2

t (Γ). In the domain,
we always use a conformal approximation of the spaces
H(curl), H(div), and

[
L2

]3. Crucially, the polynomial



degrees of each finite element is chosen to ensure that the
de Rham sequence (Monk, 2003, § 3.7)

H1 (Ω) /R ∇−→ H(curl)
∇×−→ H(div)

∇·−→ L2 (12)
is preserved at the semi-discrete level. In this work we use
the approximation spaces

Lh
k

∇−→ N h
k−1

∇×−→ RT h
k−1

∇·−→ Ph
k−1,

where the superscript h indicates the dependency on
the chosen triangulation Th of Ω. Lh

k is the Lagrange
continuous approximation of H1 (maximum degree k),
N h

k−1 relies on first-kind Nédélec elements (maximum
degree k) (Nédélec, 1980), RT h

k−1 uses Raviart-Thomas
elements (maximum degree k), and Ph

k−1 is the space
of discontinuous polynomials of degree k − 1 on each
element. For background and other possible choices, see
(Monk, 2003, Chaps. 5& 6), (Boffi et al., 2013, § 2.6) and
(Campos Pinto and Sonnendrücker, 2016, (5.11)).

Preserving this sequence enables to avoid spurious modes
but is also necessary to ensure long-time stability by sat-
isfying the divergence constraints. In the primal formula-
tions, the divergence constraint (1d) is satisfied strongly
in H(div) provided that it is satisfied initially. A weak
form of Gauss’s law (1c) is satisfied at all times provided
that: (i) it is satisfied initially; (ii) the current j satisfies
a weak variant of the continuity equation ∂tρ = −∇ · j.
(Condition (ii) is not an issue when j is known analyti-
cally, but requires care when j comes from e.g. a particle
solver). The dual formulations exhibit similar properties,
with (1c) satisfied strongly and (1d) satisfied weakly. We
refer to (Campos Pinto et al., 2016; Campos Pinto and
Sonnendrücker, 2016) for details.

4. NUMERICAL APPLICATIONS

This section provides implementation details in Section 4.1
and results in Section 4.2.

4.1 Implementation

The implementation is carried out in the Python pro-
gramming language. Unstructured mesh generation is done
with gmsh (Geuzaine and Remacle, 2009). Assembly is
done using multiphenics (Ballarin et al., 2022), a package
that extends fenics (Alnæs et al., 2015) by implementing
restrictions of function spaces; this is crucial to define
the collocated boundary controls (y∂ ,u∂). Sparse finite
element matrices are in the PETSc format (Bueler, 2020).

Time integration is done using PETSc TS (Abhyankar
et al., 2018) under the implicit form:

F (t, z, ż) = 0 (t > 0) , z(0) = z0 ∈ RN , (13)
where z concatenates the discrete fields and boundary con-
trols. Note that ∇żF is not invertible due to the presence
of algebraic equations on the boundary (involving u∂ for
formulation (a,b) and y∂ for formulation (c,d)). A cheaper
alternative is available for formulation (a) (resp. (c)) since
the mass matrix associated with H (resp. E) is block
diagonal, which makes it possible to use a leapfrog scheme
(Monk, 1991). This constitutes a computational advantage
of using discontinuous polynomials. Linear systems are
solved using the sparse direct solver MUMPS (Amestoy
et al., 2019), which delivers satisfactory performance for
the values of N considered here.

4.2 Numerical applications

4.2.1 3D cavity. Let us first consider the cubic cavity
Ω1 =

∏3
i=1(0, Li) with (L1, L2, L3) = (0.5, 1.4, 1.2). For

validation purposes, Figure 1 plots a comparison between
the exact cavity eigenvalues for z = 0 and the eigenvalues
computed with SLEPc (Hernandez et al., 2005) using the
dual formulation (c). A satisfactory agreement is achieved.

7.5 5.0 2.5 0.0 2.5 5.0 7.5
( )

1

0

1

(
)

Cube with z=0.0, N=136589, k=1

FEM Exact

Fig. 1. Spectrum obtained with formulation (c) on Ω1 with
ε = µ = 1, z = 0, and degree k = 1.

Keeping the same formulation, Figure 2 plots time-domain
results obtained with the Crank-Nicolson scheme, j = 0,
and the smooth initial condition

E0 = G(x)

[
sin y sin z
sinx sin z
sinx sin y

]
, H0 = G(x)

[
sinx
sin y
sin z

]
, (14)

with G(x) = exp
[
− (∥x−xc∥/σ)

2
]
, σ = L1/2, and xc the

center of Ω1. Figure 2a compares the Hamiltonian obtained
for z = 0 (energy conservation) and z = 1 (energy
decay due to boundary dissipation). Figure 2b plots the
evolution of divergence and shows that ∇ · D(t) = ∇ ·
D0 is discretized significantly more accurately than ∇ ·
B(t) = ∇ · B0. This is justified by the discussion at the
end of Section 3.3: ∇·D is conserved strongly while ∇·B
is only satisfied weakly in the dual of ∇Lh

k . The influence
of k can be seen on Figure 2b.

4.2.2 2D waveguide. Let us now consider the primal
formulation (a) on the bidimensional waveguide Ω2 =∏2

i=1(0, Li) with L1 = 7 and L2 = 0.1, sketched in
Figure 3a. Since Ω2 ⊂ R2, primal formulations yield a
transverse electric field (E, H, y∂ , u∂), where E is a 2D
vector field. The equations of Section 3.1 hold with the
alternative definitions (Assous et al., 2018, § 9.2) (Haine
and Matignon, 2021)

∇×H = grad⊥H :=

[
∂yH
−∂xH

]
,

∇×E = curl2D E := ∂xEy − ∂yEx,

πt(E) := (E · t) t, and γt(H) := H t, where t is a
unit normal vector. For smooth fields, the transverse
differential operators satisfy the Green formula(
grad⊥H,E

)
Ω2

= (H, curl2D E)Ω2
+ (πt(E), γt (E))∂Ω2

.

The following Figure 3b plots the Hamiltonian computed
using the smooth input

u∂(t) = e−(
t−tc

σ )
2

, (15)
with tc = 3 and σ = 1. It illustrates the non-reflective
nature of the outlet boundary x = L1.
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(a) Hamiltonian H(t) with z = 0 and z = 1.

0 5 10 15 20
t

0.05

0.00

0.05

||
d
iv
B
||
2

Cube with z=0, dt=0.1

0 5 10 15 20
t

2

0

2

||
d
iv
D
||
2

1e 13

k=2 (N=123476) k=3 (N=125367)

(b) Relative variation of the L2 (Ω1)-norm of the divergence of
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Fig. 2. Formulation (c) on Ω1 with initial condition (14),
ε(x) = µ(x) = 1 + x, and degree k ∈ {1, 2, 3}.

5. OUTLOOK

Let us mention two extensions of this work of practical
interest. Firstly, the discretization of L2

t (Γ) for 2D bound-
aries could be further investigated. In our experiments,
using

[
L2(Γ)

]3 with a weak normal constraint induces
spectral pollution, especially on curved geometries. This
is why Section 4.2 shows no results using a primal formu-
lation on Ω1. Secondly, a port-Hamiltonian formulation
of high-order non-reflecting boundary conditions would be
useful to tackle scattering problems.
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