
Verification of machine learning based
cyber-physical systems: a comparative study

Arthur Clavière

Collins Aerospace

Toulouse, France

Laura Altieri Sambartolomé

Collins Aerospace

Toulouse, France

Eric Asselin

Collins Aerospace

Toulouse, France

Christophe Garion

ISAE-SUPAERO

Toulouse, France

Claire Pagetti

ONERA

Toulouse, France

ABSTRACT
In this paper, we conduct a comparison of the existing formal meth-

ods for verifying the safety of cyber-physical systems with ma-

chine learning based controllers. We focus on a particular form

of machine learning based controller, namely a classifier based on

multiple neural networks, the architecture of which is particularly

interesting for embedded applications. We compare both exact and

approximate verification techniques, based on several real-world

benchmarks such as a collision avoidance system for unmanned

aerial vehicles.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Security and privacy → Logic and verifi-
cation.

KEYWORDS
Neural networks, Safety, Formal methods

ACM Reference Format:
Arthur Clavière, Laura Altieri Sambartolomé, Eric Asselin, Christophe Gar-

ion, and Claire Pagetti. 2022. Verification of machine learning based cyber-

physical systems: a comparative study. In 25th ACM International Conference
on Hybrid Systems: Computation and Control (HSCC ’22), May 4–6, 2022, Mi-
lan, Italy. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/

3501710.3519540

1 INTRODUCTION
In recent years, neural networks have emerged as a promising tech-

nology for the development of new avionic systems. They are a

key enabler for advanced decision-making algorithms (e.g., smart

sensors), helping to provide enhanced performances and to reduce

energy consumption [29]. However, their use in safety-critical sys-

tems (e.g., aircraft) raises several issues in terms of confidence,

performance, safety and certification. Indeed, in the worst case

https://doi.org/10.1145/3501710.3519540

situation (e.g., vision based applications), there is no proper defini-

tion for the expected behaviour of the neural network and thus no

complete specification against which verifying and validating the

system.

1.1 Context
In this paper, we do not tackle general machine learning based sys-

tems but we focus on neural network based cyber-physical systems,
such as self-driving cars [8, 9, 23] or unmanned aerial vehicles [17].

For such systems, a system-level analysis is feasible. The idea is to

model the behaviour of the whole system and to verify whether

it enters in a non desired state or not. There are multiple papers

and tools in the literature to propose reachability analysis [2, 3, 10].
The problem still remains complex as a neural network constitutes

a highly non-linear, non-convex function, with high-dimensional

input space and an exponentially large number of execution traces,

making it difficult to analyze (verifying properties of a neural net-

work is a NP-hard problem [18]).

In practice, the system is seen as the combination of a physi-

cal, continuous-time system with a discrete-time, neural network

based controller. Thus, it can be modelled as a hybrid system [4].

Additionally, we focus on a particular type of neural network based

controller, which we call a classifier based on multiple networks. The
controller could be implemented as a unique neural network, but it

can also be made of several neural networks with a switch between

them.

1.2 Contributions
The purpose of the paper is to review the formal methods available

in the literature to identify the most suited ones to tackle a given

verification problem. For that, we have selected:

• 3 state-of-the-art tools, namely NNV [19, 26], VENMAS [1]

and SAMBA [11].

• 3 benchmarks that are representative of the domain, namely

the Vertical Collision Avoidance System (VCAS) [1, 16], the

Airborne Collision Avoidance System (ACAS) [17] and the

Cartpole [20].

The contributions of this paper are threefold. First, we have

formalized the problem of ensuring the safety of a set of cyber-

physical systems, each one equipped with a classifier based on

multiple networks. In practice each system is abstracted as a hy-

brid automaton with a single location and a single transition. The

dynamics within the location consists of an ordinary differential

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3501710.3519540
https://doi.org/10.1145/3501710.3519540
https://doi.org/10.1145/3501710.3519540

HSCC ’22, May 4–6, 2022, Milan, Italy Clavère, et al.

equation. The overall system, composed of multiple cyber-physical

systems, is the product of the hybrid automata, with random off-

set. To ensure the safety of this system, the verification problem

consists in demonstrating that no dangerous state can be reached.

For instance, for a drone fleet, we want to ensure that no collision

can happen. Because the general problem is highly complex, we

tackle – as everyone in the literature – a simpler problem where the

cyber-physical systems are assumed to be synchronized. Indeed,

this hypothesis reduces the exploration space.

The second contribution is a thourough and fair comparison be-

tween the verification tools. The comparison relies on the three

selected use cases which present different types of dynamics, linear

or non-linear, and involve neural networks of different sizes. The

tools are compared based on their capacity to solve a large variety

of verification problems.

The third contribution are the lessons learned from this comparison.

We discuss the applicability of formal methods and we propose a

verification strategy. We show that the verification effort mainly

lies in the analysis of the dynamics of the physical system, the

nature of which highly influences the performance of the different

methods.

1.3 Organization
The paper is organized as follows. Section 2 describes our model

of a machine learning based cyber physical system and defines the

associated verification problem as a reachability problem. Section

3 presents the applicable formal verification techniques and sec-

tion 4 describes our methodology for comparing these methods.

Sections 5-7 describe the benchmarks and present the results of

the experiments. Section 8 discusses the lessons learned from the

experiments.

2 PROBLEM STATEMENT
2.1 Cyber-physical system with periodically

scheduled controller

Physical system

Sample hold

Controller

Zero order hold

Figure 1: Block diagram representation of a CPS with peri-
odically scheduled controller.

Let us consider a Cyber-Physical System (CPS). Such a system

combines a physical system, with continuous dynamics, and a soft-

ware controller, with discrete dynamics. Let us also assume that

the software controller is executed periodically, with a period T .
At the beginning of the period, the controller samples the state of

the physical system. Then, based on this sample, it computes an

actuation command for the physical system. This new actuation

command is applied at the end of the period, allowing the controller

to finish its execution at any point within the period. It is important

to note that the physical system has continued to evolve between

the beginning and the end of the period: when the command is

applied, the state of the physical system has changed compared to

the state sampled by the controller. This behaviour is equivalent

to having a controller that is executed instantaneously, at the end

of the period, and which takes as input a record of the state of the

physical system at the beginning of the period.

A hybrid automaton (HA) is a common representation for this

type of system, exhibiting both continuous and discrete dynamics.

The general definition of a HA can be found in [4]. In order to

model the CPS of interest, we consider a particular HA, showed in

Figure 2 and described in definition 2.1.

Ûxp = f (xp, xc)
Ûxc = 0

Ûxs = 0

Ûc = 1

Inv: c ≤ T

G : c = T ?
xc := controllerUpdate(xs , xc)

xs := xp
c := 0

xp0 , xs0 ,
xc0 , c0

Figure 2: Hybrid automaton representation of a CPS with
periodically-scheduled controller.

Definition 2.1. (Hybrid automaton representation of a CPS with

periodically scheduled controller) [6] A hybrid automaton repre-

senting a CPS with periodically scheduled controller is a tuple

H = (l , x, Invl , Flowl ,δ ,X0) where:

• l is the unique location, modelling the continuous dynamics

of the physical system,

• x = (xp , xs , xc , c) are the variables: xp ∈ Rm is the state

of the physical system; xs ∈ Rm and xc ∈ Rq are the vari-

ables of the controller, representing the sampled state of the

physical system and the actuation command respectively;

c ∈ R≥0 is a clock, used to ensure the periodic execution of

the controller,

• Invl is the invariant in location l , defined as Invl : c ≤ T .
Indeed, within the location l , time elapses until the period

T is reached i.e., until the variables of the controller are

updated,

• Flowl is a set of ordinary differential equations (ODEs) defin-
ing the time evolution of the variables in location l . The time

evolution of the physical system depends on the actuation

command from the controller. Hence the associated ODE

Ûxp = f (xp , xc) where f : Rm ×Rq → Rm is a Lipschitz con-

tinuous function to ensure the existence and uniqueness of

a solution [22]. The variables xc and xs are updated periodi-

cally and remain constant between two updates. Therefore,

the associated ODEs are Ûxc = 0 and Ûxs = 0. The variable c is
a clock with rate 1 hence Ûc = 1,

• δ = (l ,G,M, l) is the unique discrete transition, from and to

the location l . It represents the periodic update of the vari-
ables of the controller. The guard is defined as G : c = T ?.
Regarding the update function M, we want the actuation

command to be updated based on the previously sampled

Verification of machine learning based cyber-physical systems: a comparative study HSCC ’22, May 4–6, 2022, Milan, Italy

state of the physical system and the previous actuation com-

mand. A transition in a HAmust not use any memory. There-

fore, we circumvent the problem by using the variables xs
and xc which remain constant between two transitions, al-

lowing to keep track of the previously sampled state and the

previous command respectively. The corresponding update

function is xc := controllerUpdate(xs , xc), where xs and
xc are actually the previously sampled state and the previous

command. Once the command is updated, xs is assigned the

value of the current state xp and the clock is reseted to 0:

xs := xp and c := 0.

• X0 is the set of the possible initial values of the variables.

It is defined as X0 = {(xp0 , xc0 , xs0 , c0) | xp0 ∈ Xp0 , xs0 =
xp0 , xc0 ∈ Xc0 , c0 = 0} where Xp0 ⊂ Rm is the set of the

possible initial states of the physical system and Xc0 ⊂ Rq

is the set of the possible initial actuation commands. We

have xs0 = xp0 since xs0 is the sampled state of the physical

system at instant 0, and c0 = 0 since the clock initially equals

0.

2.2 Network of cyber-physical systems with
periodically scheduled controller

The model of definition 2.1 represents a single CPS. If we are inter-
ested in representing a network of n CPSs (e.g., a drone fleet), the
corresponding model is the product of n hybrid automata of type

H (see Figure 3).

ODE1

controllerUpdate1

c0,1 = t1 ODEn

controllerUpdaten

c0,n = tn. . .

Figure 3: Model of a network of n CPSs.

In the general case, the start times t1, . . . , tn are non-determistic,
making the analysis of the model quite complicated. To ease the

reasoning about this model, we consider the following assumption,

as all research papers do to our knowledge:

Assumption 1. The controllers of the n CPSs are synchronized i.e.,
t1 = . . . = tn .

Under assumption 1., the model becomes a single hybrid au-

tomaton, where the flow relation (resp the update function) is the

composition of the ODEs (resp the update functions) of the n CPSs.

The corresponding HA is showed in Figure 4.

ODE1

.

.

.

ODEn

controllerUpdate1

.

.

.

controllerUpdaten

c0 = 0

Figure 4: Model of a network of n CPSs with synchronized
controllers.

2.3 Neural network based controller
This section focuses on the definition of the controllerUpdate

function when the controller is a classifier based on multiple net-
works. Such a controller produces a command from a finite set of
possible commands, hence the name classifier. Moreover, it disposes

of several neural networks, among which only one is used at each

execution. The neural network to be used is selected based on the

previous actuation command.

Definition 2.2. (Classifier based on multiple networks) A classi-

fier based on multiple networks is a controller defined by a tuple

(U,N , λ, Pre, Post) where:
• U is a finite set of actuation commands, the size of which is

denoted by d i.e., card(U) = d ,
• N is a finite set of deep feedforward ReLU neural networks.

The networks in N all have the same input space and the

same output space. The function computed by a network N

in N is denoted by FN : Rp → Rd ,
• λ : U → N maps every command inU to a neural network

in N ,

• Pre : Rm → Rp is a pre-processing function (e.g., normaliza-

tion),

• Post : Rd → U is a post-processing function, defined as

Post(y) = π (argmaxi yi) or Post(y) = π (argmini yi), where
π : ⟦1,d⟧ → U is a bijection and yi denotes the ith compo-

nent of vector y, with i ∈ ⟦1,d⟧.
One execution of the controller consists of the following steps:

(i) it takes as inputs the previously sampled state xs ∈ Rm and

the previous actuation command xc
(ii) it executes the Pre function, which transforms the sampled

state xs into a vector z ∈ Rp i.e., z = Pre(xs),
(iii) it selects the network N to be used, depending on the previ-

ous actuation command i.e., N = λ(xc),
(iv) it executes the selected network, which yields an output

y ∈ Rd : y = FN (z),
(v) it executes the Post function, which gives the new actuation

command xc = Post(y).
Overall, the corresponding function is defined as:

controllerUpdate

{
Rm ×U → U

(xs , xc) 7→ Post ◦ Fλ(xc) ◦ Pre(xs)
(1)

2.4 Reachability problem
Let HNN be a HA representing a CPS with periodically-scheduled

controller and where the controller is a classifier based on multiple

networks. Let us assume that the set of the possible initial states

of the physical system Xp0 is a m-box i.e., the cartesian product

ofm intervals, and that the set of the possible initial commands

is Xc0 = {u0} where u0 ∈ U. Let us also consider a m-box Ep
representing a set of unsafe states of the physical system, leading

to a failure of the CPS e.g., a collision in a drone fleet.

We are interested in deciding ifHNN has a safe behaviour, which

we express as the following reachability problem: decide if HNN
can reach a state where xp ∈ Ep within a bounded time horizon

t
end
= KT , where K ∈ N∗.

To formalize this reachability problem, we need to describe the

possible behaviours ofHNN . Usually, the behaviours of a HA are

HSCC ’22, May 4–6, 2022, Milan, Italy Clavère, et al.

described as runs. The general definition of a run can be found in

[7]. In the case of HNN , a run alternates between time intervals

of length T , where the HA is in location l and the variables evolve

according to the associated ODEs, and discrete transitions, which

update the variables through the mappingM.

Definition 2.3. (Run of HNN) A run of size K of the hybrid

automatonHNN is a sequence:

(l , xp0 , xs0 , xc0)
T
−→ (l , xp1 , xs0 , xc0)

δ
−→ (l , xp1 , xs1 , xc1)

. . .
δ
−→ (l , xpK , xsK , xcK)

where:

• xp0 ∈ Xp0 and xc0 = u0,
• for all k ∈ ⟦0,K⟧, xsk = xpk
• for allk ∈ ⟦0,K−1⟧, xpk+1 is the value at t = T of the solution

of the ODE Ûxp = f (xp , xck) with the initial condition xp (t =
0) = xpk ,

• for all k ∈ ⟦0,K − 1⟧, xck+1 = controllerUpdate(xsk , xck)

Based on the above definition, we define the reachability problem

as follows:

Definition 2.4. (Reachability problem) The reachability problem

consists in deciding if there is a run of HNN of size K such that

(l , xpk , xsk , xck) belongs to this run and xpk ∈ Ep .

3 FORMAL VERIFICATION TECHNIQUES
Several techniques can handle the reachability problem described in

Definition 2.4. In the following, we distinguish between exact and
approximate verification techniques. Both provide a sound result: a

no answer to the reachability problem means thatHNN actually

has a safe behaviour i.e., no state in Ep can be reached. However,

exact techniques are completewhile approximate techniques are not.

Indeed, exact techniques answer either yes or no to the reachability
problem, while approximate techniques cannot answer yes due to
approximation.

3.1 Exact verification
An exact representation of the reachability problem can be con-

structed using Mixed Integer Linear Programming (MILP), under

the following assumptions:

Assumption 2. For all xpinit ∈ R
m , xc ∈ U, the unique solution of

the ODE Ûxp = f (xp , xc) with the initial condition xp (t = 0) = xpinit
is a function t 7→ д(xpinit , xc , t) where д is linear or piecewise linear
in xpinit and xc

Assumption 3. The Pre function of the controller is linear or
piecewise linear.

The MILP encoding of the reachability problem consists of a

collection of K feasibility problems: (Pk)1≤k≤K . The problem Pk
is to decide if there is a run of size k ofHNN such that xpk ∈ Ep ,
where xpk is the state of the physical system at the end of the run.

More formally, given the definition of a run ofHNN and the above

assumptions, the problem Pk is defined as follows:

find xpj , xsj , ∈ R
m , xc j ∈ U

s.t. xp0 ∈ Xp0 ∧ xc0 = u0
xpk ∈ Ep

∀j ∈ ⟦0,k⟧, xsj = xpj
∀j ∈ ⟦0,k − 1⟧, xpj+1 = д(xpj , xc j ,T)
∀j ∈ ⟦0,k − 1⟧, xc j+1 = controllerUpdate(xsj , xc j)

(2)

where

• xc j+1 = controllerUpdate(xsj , xc j) can be encoded as

MILP constraints since controllerUpdate is piecewise lin-

ear in xsj and xc j : linear constraints can be used for the linear
components of the function (e.g., the connections between
the layers of the neural networks) and big-M encoding can

be used for the piecewise linear components of the function

(e.g., the ReLU activation functions in the neural networks),

• xp0 ∈ Xp0 and xpk ∈ Ep can be encoded as MILP constraints

since Xp0 and Ep both consist ofm-boxes,

• xpj+1 = д(xpj , xc j ,T) can be encoded as MILP constraints

since д is linear or piecewise linear in xpj and xc j .
If there is k∗ ∈ ⟦1,K⟧ such that Pk∗ is feasible, thenHNN can

reach a state in Ep and the answer to the reachability problem is

yes. Otherwise, the answer is no: HNN has a safe behaviour.

A similar MILP approach was implemented in the VENMAS

tool [1], which aims at verifying strategic properties of neural-

symbolic multi-agent systems. In this tool, the choice of the ac-

tuation command is partially non-deterministic, which we mod-

ified to reproduce the deterministic behaviour described in sec-

tion 2.3. Additionally, VENMAS assumes that the controller is exe-

cuted instantaneously, which we did not modify. Practically, this

makes the problem a bit simpler than the one described in equa-

tion (2): the decision variables xsj and the constraints xsj = xpj
are removed. Moreover, xsj is replaced by xpj in the constraints

xc j+1 = controllerUpdate(xsj , xc j).

3.2 Approximate verification
An approximate verification of the reachability problem can

be performed by constructing an over-approximating flowpipe,
containing all the possible runs of HNN (and potentially more).

Unlike exact verification, there is no restrictive assumption for

constructing this flowpipe.

The over-approximating flowpipe consists of a tree, an example

of which is showed in Figure 5. This tree can be built inductively,

based on the definition of a run.

Algorithm 1. (Reachability tree construction) The construction
of the reachability tree consists of the following steps:

step (i) The root of the tree is the tuple (l ,Xp0 ,Xs0 , xc0) where
Xs0 = Xp0 and xc0 = u0,

step (ii) This root has a single child, (l ,Xp1 ,Xs0 , xc0), where Xp1
is an over-approximation of the possible solutions at t =
T of the ODE Ûxp = f (xp , xc), with the initial condition

xp (t = 0) ∈ Xp0 . The node (l ,Xp1 ,Xs0 , xc0) is thus an over-

approximation of the reachable states of HNN at the end of

the first period T ,

Verification of machine learning based cyber-physical systems: a comparative study HSCC ’22, May 4–6, 2022, Milan, Italy

(l ,Xp0 ,Xs0 , xc0) (l ,Xp1 ,Xs0 , xc0)
T

(l ,Xp1 ,Xs1 , x
(1)
c1)

(l ,Xp1 ,Xs1 , x
(2)
c1)

δ

δ

(l ,Xp2 ,Xs1 , x
(1)
c1)

(l ,X ′
p2 ,Xs1 , x

(2)
c1)

T

T

(l ,Xp2 ,Xs2 , x
(1)
c2)

(l ,X ′
p2 ,X

′
s2 , x

(2)
c2)

(l ,X ′
p2 ,X

′
s2 , x

(3)
c2)

δ

δ

δ

. . .

. . .

. . .

Figure 5: An example reachability tree ofHNN .

step (iii) The node (l ,Xp1 ,Xs0 , xc0) can have several children,

namely (l ,Xp1 ,Xs1 , x
(1)
c1), . . . (l ,Xp1 ,Xs1 , x

(n)
c1), representing

the reachable states of HNN after the first discrete tran-

sition. These children result from the update of xs i.e.,
Xs1 = Xp1 , and the propagation of (Xs0 , xc0) through the

controllerUpdate function. The set Xs0 is propagated

through the Pre function, yielding a set Z ⊂ Rp . Then, the
network N to be executed is selected as N = λ(xc0) and
the set Z is propagated through the associated function FN ,

yielding the setY ⊂ Rd . Given thatY is a set, its propagation

through the argmax (or argmin) function involved in Post
may not yield a unique element. We denote by x(1)c1 , . . . , x

(n)
c1

the possible actuation commands resulting from the prop-

agation of Y through the Post function. As the actuation

command drives the selection of the neural network at next

execution, several paths are created, as many as the number

of possible commands, hence the tree representation.

step (iv) Each node (l ,Xp1 ,Xs1 , x
(1)
c1), . . . (l ,Xp1 ,Xs1 , x

(n)
c1) is con-

sidered as the root of a tree that is constructed by applying

stages (ii) and (iii). This is repeated until the height of the

node (l ,Xp0 ,Xs0 , xc0) equals K i.e., the time horizon t
end

is

reached.

If each node (l ,Xp ,Xs , xc) in the tree satisfies Xp ∩ Ep = ∅,

then the answer to the reachablility problem is no:HNN has a safe

behaviour. Otherwise, due to the approximation process - we may

not be able to calculate the exact set of the reachable solutions of the

ODE nor the exact output set of the controllerUpdate function -

one cannot conclude about the reachability problem.

To the best of our knowledge, there exist two complete imple-

mentations of this approach:

• a MATLAB framework [19, 21] based on the Neural Network

Verification tool (NNV) [26], which we refer to as NNV for

simplicity. Altough the code was originally dedicated to the

analysis of the ACAS Xu system, we adapted it to handle

any system of the type ofHNN ,

• the Safety Assessment of Machine learning Based Au-

tonomous systems tool (SAMBA) [11].

There are other tools which can calculate an over-approximating

flowpipe for CPSs with neural network based controllers

[12, 14, 15, 28]. However, these tools assume that the controller

is a unique neural network and do not tackle the case where the

controller is a classifier based on multiple networks. There is also

an ad hoc reachability method, dedicated to the verification of

the VCAS and the ACAS systems [16], where the controller is a

classifier based on multiple networks. This method, instead of

constructing a reachability tree, explores the entire state space: it

discretizes the state space and calculates all the possible behaviours

of the controller in each of the resulting cells.

In the following, we focus on NNV and SAMBA. Both implement

the algorithm given in definition 1. Steps (i) and (iv) do not require

any specific implementation. For steps (ii) and (iii), they work as

follows:

step (ii), in NNV, Xp0 is represented as a zonotope i.e., a centrally
symmetric convex polytope. The CORA tool [3] is used to approx-

imate the reachable solutions of the ODE, yielding the zonotope

Xp1 . In SAMBA, Xp0 is represented as am-box. The DynIBEX tool

[2] is used, yielding them-box Xp1 .
Due to the use of zonotopes, NNV keeps track of the relations

between the state variables, which SAMBA does not. Taking

account of these relations makes the successive approximations

of the dynamics more precise. However, it is more expensive,

particularly for non-linear ODEs, due to the addition of noise

symbols and new relations.

step (iii), in NNV and SAMBA, Xs0 is propagated through the

controllerUpdate function by using abstract interpretation. To
this end, the following abstract transformers are used: Pre# and Post#

approximate the reachable outputs of the Pre and Post functions.
They are based on interval abstraction in both NNV (more precisely

our adaptation of NNV) and SAMBA. The abstract transformers

F #N , with N ∈ N , approximate the reachable outputs of the neural

networks. In NNV, they are based on star set abstraction, which is

an effective representation of high-dimensional polytopes[5, 27].

In SAMBA, they are based either on zonotope abstraction, imple-

mented by the DeepZono tool [13], or on a mixed interval-polytope
abstraction, implemented by the DeepPoly tool [24].

In NNV and SAMBA, the abstract transformers F #N rely on an

approximation of the ReLU function, defined as σ (x) = max(0,x).
In particular, they propose an approximation in the pathological

case where the two segments σ (x) = 0 and σ (x) = x are reachable.

These approximations are illustrated in Figure 6. One can notice

that the star based approximation used in NNV is the most precise.

Moreover, contrary to the star based and the polytope based ap-

proximations, the zonotope based approximation does not capture

the fact that σ (x) ≥ 0.

HSCC ’22, May 4–6, 2022, Milan, Italy Clavère, et al.

x

σ (x)

(a)

x

σ (x)

(b)

x

σ (x)

(c)

Figure 6: ReLU approximation with star set (NNV) (a), zono-
tope (SAMBA) (b) and polytope (SAMBA) (c) [27].

4 COMPARISON METHODOLOGY
To evaluate the verification methods against a large variety of

verification problems, we considered four criteria:

Criterion #1: Use case We evaluated the tools against three

use cases that fit into the model of section 2, namely the VCAS,

the ACAS and the Cartpole. These use cases were chosen as they

correspond to real-world systems and they have been widely stud-

ied in the literature [20]. Moreover, they present different degrees

of complexity in terms of verification. The VCAS has a simple lin-

ear dynamics but it involves large-sized networks and it has many

possible commands (card(U) = 81). The difficulty in verifying the

VCAS lies in (1) the analysis of the neural networks and (2) the large

number of constraints (for exact techniques) or the large size of

the reachability tree (for approximate techniques) due to the large

number of possible commands. The ACAS uses neural networks of

similar size, but it has a more complex, non-linear dynamics and

it has fewer possible commands. For the ACAS, the difficulty of

the verification is more balanced between (1) the analysis of the

neural networks and (2) the analysis of the dynamics. Finally, the

Cartpole has a quite more complex, highly non-linear dynamics,

but it has only 2 possible commands and it involves small neural

networks. The difficulty of the verification lies essentially in the

analysis of the dynamics. The characteristics of the different use

cases are summarized in table 1.

of possible size of the dynamics

commands networks

VCAS 81 large linear

ACAS 25 or 5 large non-linear

Cartpole 2 small highly non-linear

Table 1: Comparison of the use cases.

Criterion #2: Type of the verification problem For these

three use cases, we did not consider the entire set of the possible

initial states. Indeed, due to the large size of this initial set, a com-

plete verification would have been very costly [11, 16]. Moreover,

such a verification may require a heuristic for partitionning the set

of the possible initial states [11], which all tools do not implement.

Instead, for each use case, we created a set of verification prob-

lems. A verification problem is a tuple (xp0 , xc0 ,unc, tend) where
xp0 ∈ R

m
is an initial state of the physical system, xc0 ∈ R

q
is an

initial command, unc ∈ Rm is an uncertainty on the initial state

and t
end

is a time horizon. It corresponds to the reachability prob-

lem defined in section 2.4 where the set Xp0 is the box with upper

bound xc0 + unc and lower bound xc0 − unc. Such a verification

problem can be of different types, depending on the form of the

uncertainty unc. Uncertainties on position variables are easy to

propagate through the dynamics. Indeed, position variables do not

drive the time evolution of any state variable. On the contrary, han-

dling uncertainties on angle or velocity variables is more complex

since such variables drive the time evolution of other state variables.

Moreover, uncertainties on angle or velocity variables can make the

set of the reachable states grow very fast, making the verification

task harder. As a consequence, uncertainties on angle or velocity

variables may demand more accuracy for the verification tools,

especially for the analysis of the dynamics. Finally, uncertainties

on all state variables require an accurate approximation of both the

dynamics and the neural networks. They correspond to the most

complex problems. In our experiments, we considered the three

following types of problems:

problem type description

A uncertainties on position variables only

B uncertainties on angle/velocity variables only

C uncertainties on all state variables

Table 2: Types of verification problems.

Criterion #3: Time horizon the larger the time horizon t
end

is, the more complex the verification problem becomes. Indeed, for

exact techniques, increasing the time horizon adds a large number

of decision variables and constraints. For approximate techniques,

in case of a loose approximation, the repeted approximations may

lead to a false negative: the over-approximation is too large to an-

swer to the verification problem. A loose approximation can also

lead to a large reachability tree: more commands are considered to

be reachable, resulting in more branches in the tree and making

the analysis increasingly expensive with larger time horizons. On

the contrary, an accurate approximation can also result in a very

expensive analysis, due to the repeted cost of a precise approxima-

tion. A large time horizon thus requires to provide a good balance

between accuracy and scalability.

Criterion #4: Criticity of the verification problem the ini-

tial state xp0 can be such that the verification problem is either

non-critical or critical. Non-critical problems are such that, without

any command from the controller i.e., with xc0 constantly equal

to zero, the system will remain in a safe state for the time interval

[0, t
end

]. Critical problems are such that, without any command

from the controller, the system will reach an unsafe state at t = t
end

.

Critical problems are expected to be more complex to solve and

to require a certain level of accuracy for the verification tools. In

the following we denote by NC a non-critical problem and by C a

critical problem.

Experiments description For each use case, we considered

problems of types A, B and C. We also considered three different

time horizons and we created nNC non-critical problems and nC
critical problems. Overall, we evaluated each use case on 3 × 3 ×

(nNC + nC) problems. The results are shown in Table 3 which

shows the percentage of problems solved versus the cumulative
verification time, depending on the different criteria. As an example,

a 100% / 52s result in the column B means that all the problems of

Verification of machine learning based cyber-physical systems: a comparative study HSCC ’22, May 4–6, 2022, Milan, Italy

type B could be solved in a total time of 52s. Additionally, figure 8

compiles the results for the totality of the problems, independently

of the criteria. Note that we considered a timeout of 1h and that a

timeout is considered as a failure to solve the verification problem.

5 BENCHMARK 1: VERTICAL COLLISION
AVOIDANCE SYSTEM (VCAS)

5.1 Description
The VCAS system consists of two aircraft, both equipped with a

collision avoidance controller. This controller periodically provides

a vertical maneuver advisory, based on a classifier with multiple

networks. We assume that the two controllers are synchronized,

so that the system can be represented by a single automaton, as

explained in section 2.2. The verification problem consists in demon-

strating that no collision can happen, starting from a given set of

configurations.

Variables: if the first aircraft is called the ownship and the second
aircraft is called the intruder, then the state of the physical system is

the vector xp = (h, Ûhown, Ûhint,τ) where h is the altitude of intruder

relative to ownship (in ft),
Ûhown and

Ûhint are the vertical rates of
the two aircraft (in ft/s), and τ is the time before loss of horizontal

separation between the two aircraft. The actuation command is

the vector xc = (xcown ,xcint) where xcown and xcint are the vertical
accelerations of the ownship and the intruder respectively (in ft/s2).

Flow relation: the ODE Ûxp = f (xp , xc) is given in equation (3).

Ûhown

Ûhint

τ

h
Ø

Ø


Ûh = Ûhint − Ûhown

Ühown = xcown
Ühint = xcint
Ûτ = −1

(3)

Figure 7: Dynamics of the VCAS.

Controller of the ownship: the controller of the ownship has a

period T = 1s . It produces a command among a set of 9 possible

commands. The Preown is the identity function. The controller dis-

poses of a collection of 9 neural networks N = {N (1), . . . ,N (9)},

available at [25]. These networks all have 5 hidden layers of 45

nodes each. They yield a 9 dimensional output, on which the func-

tion Postown : y 7→ π (argmaxi yi) is applied.

Controller of the intruder: the controller of the intruder is the
same as the one of the ownship, except that Preint returns the vector
(−h, Ûhint, Ûhown,τ), where −h is the altitude of ownship relative to

intruder. Indeed, the intruder observes the system from its own

point of view.

Overall, the product of the two CPSs has 9
2 = 81 possible

commands.

It is worth noting that both the Assumptions 2. and 3. for using VEN-

MAS are satisfied (see section 3.1). Indeed, the solution of the ODE

(3) with the initial condition xp0 = (hown,0,hint,0, Ûhown,0, Ûhint,0,τ0)

and the initial command xc0 = (xcown,0 ,xcint,0) is the function

t 7→ (h0 − Ûhown,0 · t − 0.5 · xcown,0 · t
2 + Ûhint,0 · t + 0.5 · xcint,0 ·

t2, Ûhown,0 +xcown,0 · t ,
Ûhint,0 +xcint,0 · t ,τ0 − t), which is linear in xp0

and xc0 . Moreover, Preown and Preint are linear functions.

Verification problems: the set of the unsafe states is Ep =
{xp | |h | < 100.0 ∧ |τ | < ϵ} i.e., the cases where the two air-

craft collide. The problems of type A consist of an uncertainty of

±5ft onh0, the problems of type B consist of an uncertainty of±1ft/s

on
Ûhint,0, and the problems of type C consist of an uncertainty of

±5ft on h0 and ±1ft/s on Ûhint,0 and Ûhown,0. The time horizons are

t
end

∈ {5s, 8s, 25s}. Finally, we created 2 non-crititical and 4 critical
verification problems, yielding a total of 54 problems.

5.2 Results
Table 3 and page12 show the results. NNV and SAMBA (polytope)

can solve all the verification problems while SAMBA (zonotope)

cannot solve the problems of type C and VENMAS can only solve

simple problems (type A or B and small t
end

), often reaching time-

outs for complex problems. In terms of performance, VENMAS is

significantly slower than approximate methods: the large number

of possible commands and the large size of the neural networks

make the number of decision variables and constraints quite impor-

tant. Regarding approximate techniques, SAMBA (polytope) always

outperforms SAMBA (zonotope). SAMBA (polytope) is faster than

NNV for simple problems (type A or B) while NNV outperforms

SAMBA for complex problems (type C). Such problems are more

costly, hence the overall better performance of NNV (see figure 8).

Interpretation. Compared to SAMBA (polytope and zonotope),

NNV offers a more precise approximation of the neural networks,

which is also faster in average. However, its approximation of the

dynamics does not provide significantly tighter bounds and it is

more costly. This higher cost is due to keeping track of the relations

between the state variables and the tool used, which is different

to SAMBA. Overall, the approximation of SAMBA is less costly

but it is also less precise, especially for the networks. This leads

to a larger reachability tree: some commands are considered to be

reachable although they are not. This phenomenon is accentuated

by the large number of possible commands. Indeed, in the worst

case, the width of the reachability tree grows exponentially, at a rate

equal to the number of possible commands. As a comparison, NNV

constructs reachablity trees with at most 9 branches for the VCAS

while SAMBA (polytope) builds trees with at most 707 branches.

The balance between a costly approximation (NNV) and a large

reachability tree (SAMBA) is in favor of SAMBA (polytope) for sim-

ple problems while it is in favor of NNV for more complex problems.

Similarly, SAMBA (polytope) is faster than SAMBA (zonotope) be-

cause the zonotope approximation is less precise and leads to larger

trees.

6 BENCHMARK 2: AIRBORNE COLLISION
AVOIDANCE SYSTEM (ACAS)

6.1 Description
The ACAS benchmark is similar to the VCAS. It involves two air-

craft: an ownship, equipped with a collision avoidance controller,

HSCC ’22, May 4–6, 2022, Milan, Italy Clavère, et al.

10
2

10
3

10
4

10
5

10
6

0

50

100

VENMAS

NNV

SAMBA (poly)

SAMBA (zono)

verif.time in s

%
o
f
p
r
o
b
l
e
m
s
s
o
l
v
e
d

VCAS

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

·105

0

50

100

NNV

SAMBA (poly)

verif.time in s
%
o
f
p
r
o
b
l
e
m
s
s
o
l
v
e
d

ACAS (o+i)

4,000 5,000 6,000 7,000 8,000

0

50

100 NNV

SAMBA (poly)

verif.time in s

%
o
f
p
r
o
b
l
e
m
s
s
o
l
v
e
d

ACAS (o)

0 1,000 2,000 3,000

0

50

100 NNV

SAMBA (poly)

verif.time in s

%
o
f
p
r
o
b
l
e
m
s
s
o
l
v
e
d

Cartpole

Figure 8: Performances of the verification tools. The best tool is at the top left hand corner.

VCAS benchmark

NC problems C problems t
end
= 5.0 t

end
= 8.0 t

end
= 25.0 A B C

VENMAS 44% / 36347s 50% / 69843s 94% / 4947s 44% / 40043s 6% / 61200s 61% / 26913s 56% / 31291s 28% / 47985s

NNV 100% / 165s 100% / 318s 100% / 77s 100% / 104s 100% / 303s 100% / 154s 100% / 160s 100% / 170s

SAMBA (poly) 100% / 125s 100% / 4544s 100% / 80s 100% / 204s 100% / 4385s 100% / 29s 100% / 82s 100% / 4557s

SAMBA (zono) 89% / 7356s 83% / 22241s 94% / 3918s 83% / 11081s 78% / 14598s 100% / 45s 100% / 176s 56% / 29376s

ACAS (o+i) benchmark

NC problems C problems t
end
= 16.0 t

end
= 32.0 t

end
= 56.0 A B C

NNV 67% / 22137s 64% / 59567s 71% / 21891s 43% / 43485s 81% / 16329s 90% / 8530s 76% / 18715s 29% / 54459s

SAMBA (poly) 100% / 242s 89% / 17326s 95% / 802s 95% / 5452s 86% / 11314s 100% / 224s 95% / 5251s 81% / 12093s

ACAS (o) benchmark

NC problems C problems t
end
= 16.0 t

end
= 32.0 t

end
= 56.0 A B C

NNV 100% / 671s 98% / 6460s 100% / 318s 100% / 1230s 95% / 5583s 100% / 705s 100% / 1014s 95% / 5412s

SAMBA (poly) 100% / 214s 98% / 4544s 100% / 95s 100% / 357s 95% / 4306s 100% / 292s 100% / 315s 95% / 4151s

Cartpole benchmark

NC problems C problems t
end
= 0.2 t

end
= 0.5 t

end
= 1.0 A B C

NNV 100% / 1363s 100% / 934s 100% / 297s 100% / 561s 100% / 1439s 100% / 760s 100% / 773s 100% / 764s

SAMBA (poly) 48% / 170s 50% / 108s 100% / 31s 40% / 69s 7% / 179s 47% / 75s 53% / 48s 47% / 155s

Table 3: Performances of the tools, depending on the characteristics of the verification problems. Legend: a green cell indicates
the best verification tool.

and an intruder, equipped or not with a collision avoidance con-

troller. The case where both the ownship and the intruder are

equipped with the controller is denoted (o+i) and the case where

only the ownship has a controller is denoted (o). The case (o) is inter-

esting: it may demand less computational efforts (the controller of

the intruder is not executed) but a collision is more likely to happen,

potentially requiring more precision to solve the reachability prob-

lem. Moreover, the case (o) does not require any synchronization

hypothesis (only one controller is used).

Variables: for cases (o+i) and (o), the state of the physical sys-

tem is the vector xp = (xown,yown,xint,yint,vown,vint,ψown,ψint)
where (xown,yown) and (xint,yint) are the 2D cartesian coordinates

of the two aircraft (in ft), vown and vint are their horizontal ve-

locities (in ft/s),ψown andψint are their heading angles (measured

counter clockwise in rad). In the case (o+i), the actuation com-

mand is xc = (xcown ,xcint) while in the case (o), the command is

xc = xcown .

Flow relation: In the case (o+i), the ODE Ûxp = f (xp , xc) is given
in equation (4), where the two aircraft are assumed to have a con-

stant horizontal velocity. In the case (o), the ODE is the same but

xcint = 0 is a constant: the intruder has a uniform rectilinear dis-

placement.

xown

yown

vown

ψown

xint

yint

vint

ψint

Ø

Ø



Ûxown = −vown ·sin(ψown)

Ûyown = vown ·cos(ψown)

Ûxint = −vint ·sin(ψint)

Ûyint = vint ·cos(ψint)

Ûvown = 0

Ûvint = 0

Ûψown = xcown
Ûψint = xc

int

(4)

Figure 9: Dynamics of the ACAS.

Verification of machine learning based cyber-physical systems: a comparative study HSCC ’22, May 4–6, 2022, Milan, Italy

Controller of the ownship: the controller of the ownship has a

period T = 1s . It produces a command among a set of 5 possi-

ble commands. The Preown function returns the cylindrical coor-

dinates of the intruder relative to ownship: it yields the vector

(ρ,θint/own,vown,vint,ψint/own) where ρ is the distance between

the two aircraft, θint/own is the angle of the intruder relative to the

ownship heading direction andψint/own is the heading angle of the

intruder relative to the ownship heading direction. The controller

disposes of a collection of 5 neural networksN = {N (1), . . . ,N (5)},

available at [18]. These networks all have 6 hidden layers of 50

nodes each. They yield a 5 dimensional output, on which the fun-

tion Postown : y 7→ π (argmini yi) is applied.

Controller of the intruder: in the case (o+i), the controller of the

intruder is the same as the one of the ownship, except that the

Preint function returns the cylindrical coordinates of the ownship

relative to intruder.

In the case (o+i), the product of the two CPSs has 5
2 = 25 possible

commands.

It is important noting that VENMAS could not be evaluated

on this use case as the necessary assumptions for its use are not

satisfied: nor the function f neither the function Pre has the correct
form. We also did not evaluate SAMBA (zono), given the better

performance of SAMBA (polytope) on the VCAS use case. In the

following, SAMBA (polytope) is referred to as SAMBA.

Verification problems: the unsafe states are the cases where the
two aircraft collide i.e., the cases where the distance between the

two aircraft is less than 500.0ft. The problems of type A consist of

an uncertainty of ±10ft on xint,0 and yint,0, the problems of type

B consist of an uncertainty of ±0.1◦ on ψint,0, and the problems

of type C consist of an uncertainty of ±10ft on xint,0 and yint,0,
±0.1◦ on ψint,0 and ψown,0, and ±1ft/s on vint,0 and vown,0. The
time horizons are t

end
∈ {16s, 32s, 56s}. Finally, we created 2 non-

crititical and 5 critical verification problems, following the approach

in [19], yielding a total of 63 problems.

6.2 Results
Table 3 and pages14–15 show the results. Overall, for both the

case (o+i) and the case (o), SAMBA (polytope) can solve 95% of

the verification problems while NNV can only solve 82% of the

verification problems (essentially due to timeouts). SAMBA always

solve more problems than NNV, regardless of the different criteria.

Both NNV and SAMBA have more difficulties to prove problems

with large time horizons and uncertainties of type C. In terms of

performance, SAMBA always outperforms NNV, independently of

the criteria. However, the ratio between the verification time of

NNV versus the verification time of SAMBA reduces with large

t
end

and problems of type C. As an example, this ratio equals 3.3

for the case (o) and t
end
= 16.0 while it equals 1.30 for the same

case and t
end
= 56.0.

Interpretation. Compared to the VCAS, the non linearity of the

ODE makes the approximation of the dynamics more expensive.

This is particularly true for NNV, as explained in section 3.2. More-

over, keeping the reachability tree small is less critical, due to the re-

duced number of possible commands. The trade off between a costly

approximation (NNV) versus a large reachability tree (SAMBA) is

always in favor of SAMBA.

7 BENCHMARK 3: CARTPOLE
7.1 Description
The cartpole consists of a pole attached to a cart moving along

a frictionless track. The cart is equipped with a controller that

periodically provides a translation command: either move left or

move right. The goal of the controller is to keep the cart-pole

balanced i.e., keep θ close to zero (see figure 10).

Variables. the state of the physical system is the vector xp =
(x Ûx θ Ûθ) where x is the position of the cart along the track (in m),

Ûx is the velocity of the cart (in m/s), θ is the angle of the pole with

respect to the vertical axis (in rad) and
Ûθ is the rotational speed of

the pole, in rad/s (see Fig. 10). The actuation command is the scalar

xc that is the acceleration of the cart along the track (in m/s2).

Flow relation: the ODE Ûxp = f (xp , xc) describing the dynamics

of the physical system is given in [20].

x

θ

Figure 10: The Cartpole system.

Controller. the controller has a period T = 0.02s. It produces a

command among a set of 2 possible commands. The Pre function
is the identity function. The controller disposes of a collection of

2 neural networks, that we trained with reinforcement learning.

These networks all have 2 hidden layers of 48 and 24 neurons respec-

tively. They yield a 2 dimensional output, on which the function

Post : y 7→ π (argmaxi yi) is applied.
As for the ACAS, VENMAS could not be evaluated on this use

case.

Verification problems: the unsafe states are the cases where the
angle θ is greater than 24

◦
. The problems of type A consist of an

uncertainty of ±10cm on x , the problems of type B consist of an

uncertainty of ±0.1◦ on θ , and the problems of type C consist of an

uncertainty of ±10cm on x , ±10cm/s on Ûx , ±0.1◦ on θ and ±0.1◦/s

on
Ûθ . The time horizons are t

end
∈ {0.2s, 0.4s, 1.0s}. Finally, we

created 3 non-crititical and 2 critical verification problems, yielding

a total of 45 problems.

7.2 Results
Table 3 and page 16 show the results. NNV can solve all the verifi-

cation problems while SAMBA can only solve 49% of the problems

(essentially due to false negatives). The time horizon has a significa-

tive influence on the capacity of SAMBA to solve the verification

problems: SAMBA can solve all the problems where t
end
= 0.2

while it can solve only 7% of the problems where t
end
= 1.0, which

HSCC ’22, May 4–6, 2022, Milan, Italy Clavère, et al.

still represents a small time horizon. In terms of verification time,

SAMBA is always faster than NNV.

Interpretation. Compared to the VCAS or the ACAS, the high

complexity of the dynamics requires the solver to be able to con-

struct a precise approximation of the reachable solutions of the

ODE. SAMBA fails to build a precise enough approximation. It ana-

lyzes the system faster but its loose approximation of the dynamics

leads to unknown results.

8 LESSONS LEARNED
On the applicability of formal methods. A first lesson is that for-

mal techniques can be used for verifing the safety of real-world

CPSs with controllers that are classifiers based on multiple net-

works: 97.3% of the totality of the 225 verification problems could

be solved by at least one tool. However, this conclusion mainly

applies to approximate methods. Exact methods present two issues:

(1) they are not applicable to systems with non-linear dynamics

and (2) they do not scale well to complex verification problems. To

overcome the first issue, a possible approach could be to approx-

imate the non-linear dynamics with a piecewise linear function

and calculate the associated error, but the scalability issues would

remain.

VCAS ACAS (o+i) ACAS (o) Cartpole

NNV 95.6% 98.0% 98.8% 99.9%

SAMBA (poly) 65.9% 83.6% 83.6% 97.1%

Table 4: Percentage of verification time spent on analysing
the dynamics.

A second lesson regarding the applicability of formal methods is

the need for an appropriate model of the dynamics. A same system

can have its dynamics represented by different models (all correct),

depending on the coordinates used e.g., cylindrical, cartesian. Choos-
ing the coordinates that yield the simplest model can drastically

reduce the verification time, making the analysis of the dynamics

easier. Indeed, as Table 4 shows, the main verification effort always

lies in the analysis of the dynamics. For instance, the dynamics of

the ACAS with cartesian coordinates is quite more simple than its

dynamics in cylindrical coordinates. Due to the high cost of using

cylindrical coordinates, no further experiments were conducted to

characterize the difference of performance: an increase by a factor

greater than 10 of the verification time was observed when trying

to verify simple problems with such a representation.

About possible optimizations. In the case of the VCAS, a loose

approximation (e.g., SAMBA) yields a large reachability tree, re-

sulting in a more expensive analysis compared to a more precise

approximation (e.g., NNV). To overcome this issue, two directions

can be investigated: (1) improving the precision of the approxima-

tion or (2) keeping the size of the reachability tree below a certain

threshold Γ. The second direction can be implemented through a

heuristic that merges the closest nodes when the size of the tree

exceeds the threshold Γ. We tested such a strategy on the VCAS

use case, by choosing Γ = 81 (this is a heuristic choice, given that Γ
needs to be greater than the number of possible commands). The

results are shown in page 13. The merging strategy yields many un-

known results, making the approximation too imprecise. Therefore,

it appears that improving the precision would be a better direction

to follow.

Choosing the best approach. Based on the experiments, we pro-

pose a heuristic for choosing the best approximate technique, de-

pending on the CPS of interest and the nature of the verification

problem:

(i) If the CPS has many possible commands, a precise approxi-
mation of both the neural networks (e.g., star set abstraction
in NNV) and the dynamics (e.g., NNV) is to be preferred.

Despite a costly approximation, especially for the dynamics,

it would keep the reachability tree reasonably small while a

loose approximation would construct a larger tree, making

the overall analysis more expensive.

(ii) If the CPS has a complex, higly non-linear dynamics, a pre-
cise approximation of the dynamics (e.g., NNV) is necessary.
A loose approximation (e.g., SAMBA) would not be more

expensive but simply not be precise enough to achieve the

proof.

(iii) In other cases, when the difficulty of the verification is more

balanced between the complexity of the dynamics and the

number of possible commands, a very precise approximation

is not necessary. Tools such as SAMBA would allow a fast

analysis while not becoming too imprecise with large time

horizons.

This conclusion heavily depends on the form of the controller:

without any switching mechanism between networks, building a

tree would not be necessary.

About system-level verification. The last lesson is about the ben-

efits and pitfalls of a system-level verification. Such an approach

allows to circumvent the problem of the specification of neural

networks. However, it appears to be quite more expensive than

verifying neural networks in isolation: Table 4 shows that the time

spent on analyzing the dynamics is always significantly greater

than the time needed for the analysis of the neural networks.

9 CONCLUSION
This paper presented a comparative study of different formal tech-

niques for verifying cyber-physical systems with multi-networks

based classifiers as controllers. To fairly compare the different meth-

ods, we defined a unified model that expresses the verification ob-

jective as a reachability problem over a hybrid automaton. Based

on three representative use cases, we could show the applicability

of formal methods for this type of verification problem. We also

proposed some heuristics for choosing the best method for a given

problem and presented some possible optimizations.

As a future work, an interesting direction is to achieve a ver-

ification that does not assume synchronized controllers, which

constitutes a common yet very restrictive hypothesis.

REFERENCES
[1] Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, and Alessio Lomuscio.

2020. Verifying Strategic Abilities of Neural-symbolic Multi-agent Systems.

In Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning (KR’20). 22–32.

Verification of machine learning based cyber-physical systems: a comparative study HSCC ’22, May 4–6, 2022, Milan, Italy

[2] Julien Alexandre dit Sandretto and Alexandre Chapoutot. 2016. Validated Explicit

and Implicit Runge-Kutta Methods. Reliable Computing electronic edition 22 (July

2016).

[3] Matthias Althoff. 2015. An Introduction to CORA 2015. In ARCH14-15. 1st and
2nd International Workshop on Applied veRification for Continuous and Hybrid
Systems (EPiC Series in Computing, Vol. 34), Goran Frehse and Matthias Althoff

(Eds.). 120–151.

[4] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger,

Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine.

1995. The Algorithmic Analysis of Hybrid Systems. Theoretical Computer Science
B 138 (1995), 3–34.

[5] Stanley Bak and Parasara Sridhar Duggirala. 2017. Simulation-Equivalent Reacha-

bility of Large Linear Systems with Inputs. In Computer Aided Verification, Rupak
Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham,

401–420.

[6] Stanley Bak and Taylor T. Johnson. 2015. Periodically-Scheduled Controller

Analysis Using Hybrid Systems Reachability and Continuization. In 2015 IEEE
Real-Time Systems Symposium. 195–205.

[7] Sergiy Bogomolov, Goran Frehse, Amit Gurung, Dongxu Li, Georg Martius, and

Rajarshi Ray. 2019. Falsification of Hybrid Systems Using Symbolic Reachability

and Trajectory Splicing. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control (HSCC ’19). 1–10.

[8] Mariusz Bojarski, David W. del Testa, Daniel Dworakowski, Bernhard Firner,

Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller,

Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning

for Self-Driving Cars. ArXiv abs/1604.07316 (2016).

[9] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. DeepDriving:

Learning Affordance for Direct Perception in Autonomous Driving. In 2015
IEEE International Conference on Computer Vision (ICCV). 2722–2730. https:

//doi.org/10.1109/ICCV.2015.312

[10] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An

Analyzer for Non-linear Hybrid Systems. In Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and
Helmut Veith (Eds.). Springer, 258–263.

[11] Arthur Clavière, Eric Asselin, Christophe Garion, and Claire Pagetti. 2021. Safety

Verification of Neural Network Controlled Systems. In 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and NetworksWorkshops (DSN-W).
47–54. https://doi.org/10.1109/DSN-W52860.2021.00019

[12] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachability

Analysis for Neural Feedback Systems Using Regressive Polynomial Rule Infer-

ence. In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control (HSCC 19). New York, NY, USA, 157–168.

[13] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat

Chaudhuri, and Martin Vechev. 2018. AI
2
: Safety and robustness certification of

neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP). 3–18.

[14] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. 2019. ReachNN:

Reachability Analysis of Neural-Network Controlled Systems. ACM Trans. Embed.
Comput. Syst. 18, 5s, Article 106 (Oct. 2019), 22 pages. https://doi.org/10.1145/

3358228

[15] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup

Lee. 2019. Verisig: Verifying Safety Properties of Hybrid Systems with Neu-

ral Network Controllers. In Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control (Montreal, Quebec, Canada)

(HSCC 19). Association for Computing Machinery, New York, NY, USA, 169–178.

https://doi.org/10.1145/3302504.3311806

[16] Kyle D. Julian and Mykel J. Kochenderfer. 2019. Guaranteeing Safety for Neural

Network-Based Aircraft Collision Avoidance Systems. In 2019 IEEE/AIAA 38th
Digital Avionics Systems Conference (DASC).

[17] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2019. Deep Neural

Network Compression for Aircraft Collision Avoidance Systems. Journal of
Guidance, Control, and Dynamics 42, 3 (2019), 598–608. https://doi.org/10.2514/1.

G003724

[18] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.

2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In

Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer

International Publishing, Cham, 97–117.

[19] Diego Manzanas Lopez, Taylor Johnson, Hoang-Dung Tran, Stanley Bak,

Xin Chen, and Kerianne L. Hobbs. [n.d.]. Verification of Neural Net-

work Compression of ACAS Xu Lookup Tables with Star Set Reacha-

bility. In AIAA Scitech 2021 Forum. https://doi.org/10.2514/6.2021-0995

arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2021-0995

[20] Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Souradeep Dutta, Tay-

lor J. Carpenter, Radoslav Ivanov, and Taylor T. Johnson. 2019. ARCH-COMP19

Category Report: Artificial Intelligence and Neural Network Control Systems

(AINNCS) for Continuous and Hybrid Systems Plants. In ARCH19. 6th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systemsi, part
of CPS-IoT Week 2019, Montreal, QC, Canada, April 15, 2019. 103–119.

[21] Diego Manzanas. 2020. ACAS Xu. https://github.com/mldiego/AcasXu.

[22] James D. Meiss. 2007. Differential Dynamical Systems. Society of Industrial and

Applied Mathematics (SIAM).

[23] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evan-

gelos A. Theodorou, and Byron Boots. 2018. Agile Autonomous Driving using

End-to-End Deep Imitation Learning. In Robotics: Science and Systems.
[24] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An

Abstract Domain for Certifying Neural Networks. Proc. ACM Program. Lang. 3,
POPL (2019).

[25] Stanford Intelligent Systems Laboratory (SISL). 2020. VCAS. https://github.com/

sisl/VerticalCAS.

[26] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,

Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. 2020.

NNV: The Neural Network Verification Tool for Deep Neural Networks and

Learning-Enabled Cyber-Physical Systems. In Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Pro-
ceedings, Part I. 3–17.

[27] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang,

Luan Viet Nguyen, Weiming Xiang, and Taylor T. Johnson. 2019. Star-Based

Reachability Analysis of Deep Neural Networks. In Formal Methods – The Next
30 Years, Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira (Eds.).

Springer International Publishing, Cham, 670–686.

[28] Hoang-Dung Tran, Weiming Xiang, and Taylor T. Johnson. 2020. Verification

Approaches for Learning-Enabled Autonomous Cyber-Physical Systems. IEEE
Design Test (2020), 1–1. https://doi.org/10.1109/MDAT.2020.3015712

[29] R.R. Zakrzewski. 2001. Fuel mass estimation in aircraft tanks using neural

nets. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat.
No.01CH37228), Vol. 4. 3728–3733 vol.4. https://doi.org/10.1109/CDC.2001.980443

https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/DSN-W52860.2021.00019
https://doi.org/10.1145/3358228
https://doi.org/10.1145/3358228
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.2514/1.G003724
https://doi.org/10.2514/1.G003724
https://doi.org/10.2514/6.2021-0995
https://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2021-0995
https://github.com/mldiego/AcasXu
https://github.com/sisl/VerticalCAS
https://github.com/sisl/VerticalCAS
https://doi.org/10.1109/MDAT.2020.3015712
https://doi.org/10.1109/CDC.2001.980443

HSCC ’22, May 4–6, 2022, Milan, Italy Clavère, et al.

A BENCHMARK RESULTS

Table 5: The table gives the verification results ("safe", "unsafe", "unknown" or "timeout") and the verification times (in s) for
the VCAS benchmark. Legend: a red cell hilights an unknown verification result or a timeout while a green cell indicates the
best verification time.

VCAS benchmark

VENMAS NNV SAMBA (polytope) SAMBA (zonotope)

Problem result time result time result time result time

t
end
= 5.0

NC1,A safe 0.82 safe 8.32 safe 0.46 safe 0.77

NC2,A safe 157.78 safe 3.98 safe 0.49 safe 2.47

NC1,B safe 0.89 safe 4.24 safe 0.51 safe 0.84

NC2,B safe 0.31 safe 4.17 safe 0.49 safe 1.06

NC1,C safe 186.74 safe 4.26 safe 1.95 safe 4.99

NC2,C timeout 1h safe 4.43 safe 12.31 timeout 1h

C1,A safe 0.17 safe 4.26 safe 0.68 safe 0.99

C2,A safe 0.13 safe 3.56 safe 0.86 safe 1.11

C3,A safe 0.14 safe 3.68 safe 0.78 safe 0.85

C4,A safe 0.13 safe 3.90 safe 0.84 safe 1.20

C1,B safe 0.06 safe 3.88 safe 0.81 safe 0.80

C2,B safe 0.19 safe 3.81 safe 0.86 safe 1.24

C3,B safe 0.75 safe 3.67 safe 0.77 safe 0.96

C4,B safe 0.18 safe 3.65 safe 1.55 safe 5.64

C1,C safe 150.90 safe 4.03 safe 14.36 safe 22.01

C2,C safe 288.76 safe 4.15 safe 14.41 safe 125.58

C3,C safe 213.44 safe 4.39 safe 13.52 safe 21.33

C4,C safe 345.62 safe 4.23 safe 13.87 safe 125.73

t
end
= 8.0

NC1,A safe 0.64 safe 5.54 safe 0.73 safe 0.82

NC2,A safe 0.03 safe 5.96 safe 0.75 safe 0.95

NC1,B timeout 1h safe 5.94 safe 1.95 safe 3.22

NC2,B timeout 1h safe 5.78 safe 0.87 safe 0.99

NC1,C timeout 1h safe 6.11 safe 19.04 safe 40.76

NC2,C timeout 1h safe 6.40 safe 18.19 timeout 1h

C1,A timeout 1h safe 5.46 safe 1.96 safe 3.34

C2,A safe 982.62 safe 5.22 safe 1.25 safe 1.43

C3,A timeout 1h safe 5.95 safe 2.15 safe 3.54

C4,A safe 570.95 safe 5.42 safe 1.15 safe 2.00

C1,B safe 21.96 safe 5.65 safe 2.29 safe 3.29

C2,B safe 4.13 safe 5.67 safe 1.94 safe 3.91

C3,B safe 2460.15 safe 6.09 safe 2.21 safe 43.40

C4,B safe 2.86 safe 5.39 safe 3.87 safe 6.32

C1,C timeout 1h safe 6.10 safe 37.57 timeout 1h

C2,C timeout 1h safe 5.79 safe 36.05 safe 82.09

C3,C timeout 1h safe 5.78 safe 37.38 timeout 1h

C4,C timeout 1h safe 5.80 safe 34.57 safe 85.11

t
end
= 25.0

NC1,A safe 0.04 safe 15.69 safe 2.43 safe 3.84

NC2,A timeout 1h safe 15.54 safe 4.89 safe 6.73

NC1,B timeout 1h safe 16.13 safe 2.58 safe 3.62

NC2,B timeout 1h safe 17.00 safe 11.20 safe 16.12

NC1,C timeout 1h safe 17.65 safe 11.08 safe 22.04

NC2,C timeout 1h safe 18.35 safe 35.47 safe 46.64

C1,A timeout 1h safe 15.34 safe 2.50 safe 3.70

C2,A timeout 1h safe 15.34 safe 2.27 safe 3.73

C3,A timeout 1h safe 15.53 safe 2.58 safe 3.55

C4,A timeout 1h safe 15.49 safe 2.37 safe 3.73

C1,B timeout 1h safe 17.86 safe 15.74 safe 25.63

C2,B timeout 1h safe 16.81 safe 10.65 safe 16.24

C3,B timeout 1h safe 17.21 safe 10.83 safe 29.78

C4,B timeout 1h safe 16.86 safe 13.28 safe 12.54

C1,C timeout 1h safe 17.76 safe 656.60 timeout 1h

C2,C timeout 1h safe 18.16 safe 1529.93 timeout 1h

C3,C timeout 1h safe 18.46 safe 548.99 timeout 1h

C4,C timeout 1h safe 17.95 safe 1522.13 timeout 1h

the experiments were run on a CentOS 7 machine with 2 Intel
®
Xeon

®
processors E5-2670 v3 @ 2.30GHz of 12 cores (24 threads) each and 64 GB RAM, using the monolithic

encoding for the VENMAS tool, which was shown to offer the best performance [1].

Verification of machine learning based cyber-physical systems: a comparative study HSCC ’22, May 4–6, 2022, Milan, Italy

Table 6: The table gives the verification results ("safe", "unsafe", "unknown" or "timeout") and the verification times (in s) for
the VCAS benchmark. Legend: a red cell hilights an unknown verification result or a timeout while a green cell indicates the
best verification time.

VCAS benchmark

SAMBA (polytope) SAMBA (polytope & merge)

Problem result time result time

t
end
= 5.0

NC1,A safe 0.46 safe 0.54

NC2,A safe 0.49 safe 0.63

NC1,B safe 0.51 safe 0.59

NC2,B safe 0.49 safe 0.60

NC1,C safe 1.95 safe 1.97

NC2,C safe 12.31 safe 13.47

C1,A safe 0.68 safe 0.79

C2,A safe 0.86 safe 1.05

C3,A safe 0.78 safe 0.83

C4,A safe 0.84 safe 1.02

C1,B safe 0.81 safe 0.76

C2,B safe 0.86 safe 0.95

C3,B safe 0.77 safe 0.75

C4,B safe 1.55 safe 1.62

C1,C safe 14.36 safe 8.87

C2,C safe 14.41 safe 9.08

C3,C safe 13.52 safe 8.95

C4,C safe 13.87 safe 9.23

t
end
= 8.0

NC1,A safe 0.73 safe 0.88

NC2,A safe 0.75 safe 0.91

NC1,B safe 1.95 safe 2.26

NC2,B safe 0.87 safe 0.84

NC1,C safe 19.04 safe 20.45

NC2,C safe 18.19 safe 20.11

C1,A safe 1.96 safe 2.19

C2,A safe 1.25 safe 1.19

C3,A safe 2.15 safe 2.43

C4,A safe 1.15 safe 1.36

C1,B safe 2.29 safe 2.34

C2,B safe 1.94 safe 2.23

C3,B safe 2.21 safe 2.17

C4,B safe 3.87 safe 4.20

C1,C safe 37.57 safe 34.98

C2,C safe 36.05 safe 36.49

C3,C safe 37.38 safe 33.56

C4,C safe 34.57 safe 34.57

t
end
= 25.0

NC1,A safe 2.43 safe 2.38

NC2,A safe 4.89 safe 4.63

NC1,B safe 2.58 safe 2.42

NC2,B safe 11.20 safe 11.28

NC1,C safe 11.08 safe 11.75

NC2,C safe 35.47 safe 40.23

C1,A safe 2.50 safe 2.61

C2,A safe 2.27 safe 2.65

C3,A safe 2.58 safe 2.65

C4,A safe 2.37 safe 2.17

C1,B safe 15.74 safe 17.07

C2,B safe 10.65 safe 11.94

C3,B safe 10.83 safe 10.53

C4,B safe 13.28 safe 13.83

C1,C safe 656.60 unknown 2474.68

C2,C safe 1529.93 timeout 1h

C3,C safe 548.99 unknown 2429.05

C4,C safe 1522.13 timeout 1h

the experiments were run on a CentOS 7 machine with 2 Intel
®
Xeon

®
processors E5-2670 v3 @ 2.30GHz of 12 cores (24 threads) each and 64 GB RAM, using the monolithic

encoding for the samba tool, which was shown to offer the best performance [1].

HSCC ’22, May 4–6, 2022, Milan, Italy Clavère, et al.

Table 7: The table gives the verification results ("safe", "unsafe", "unknown" or "timeout") and the verification times (in s) for
the ACAS (o+i) benchmark. Legend: a red cell hilights an unknown verification result or a timeout while a green cell indicates
the best verification time.

ACAS (o+i) benchmark

NNV SAMBA (polytopes)

Problem result time result time

t
end
= 16.0

NC1,A safe 17.35 safe 3.54

NC2,A safe 21.40 safe 4.75

NC1,B safe 12.64 safe 4.43

NC2,B safe 21.82 safe 4.90

NC1,C safe 17.75 safe 4.68

NC2,C safe 22.75 safe 14.13

C1,A safe 16.57 safe 6.16

C2,A safe 13.54 safe 5.26

C3,A safe 28.42 safe 7.40

C4,A safe 14.01 safe 6.64

C5,A safe 23.82 safe 8.75

C1,B safe 17.71 safe 6.25

C2,B safe 14.50 safe 5.38

C3,B safe 33.51 safe 7.27

C4,B safe 14.76 safe 6.13

C5,B timeout 1h safe 41.70

C1,C timeout 1h safe 105.48

C2,C timeout 1h unknown 225.40

C3,C timeout 1h safe 121.27

C4,C timeout 1h safe 128.24

C5,C timeout 1h safe 84.52

t
end
= 32.0

NC1,A timeout 1h safe 8.00

NC2,A timeout 1h safe 9.01

NC1,B timeout 1h safe 8.26

NC2,B timeout 1h safe 9.31

NC1,C timeout 1h safe 9.09

NC2,C timeout 1h safe 34.30

C1,A safe 27.51 safe 9.01

C2,A safe 27.16 safe 9.36

C3,A safe 28.17 safe 8.77

C4,A safe 30.30 safe 8.93

C5,A safe 52.32 safe 8.00

C1,B safe 30.79 safe 15.21

C2,B safe 28.92 safe 9.36

C3,B safe 28.45 safe 9.09

C4,B safe 31.23 safe 8.77

C5,B timeout 1h safe 1384.06

C1,C timeout 1h safe 45.66

C2,C timeout 1h safe 209.39

C3,C timeout 1h safe 16.12

C4,C timeout 1h safe 32.41

C5,C timeout 1h timeout 1h

t
end
= 56.0

NC1,A safe 53.54 safe 12.97

NC2,A safe 79.38 safe 13.95

NC1,B safe 51.63 safe 13.42

NC2,B safe 77.27 safe 14.30

NC1,C safe 68.92 safe 14.92

NC2,C safe 92.56 safe 57.84

C1,A safe 55.91 safe 26.50

C2,A safe 663.93 safe 23.66

C3,A safe 45.24 safe 15.12

C4,A safe 45.35 safe 15.01

C5,A safe 85.97 safe 13.37

C1,B safe 51.87 safe 48.31

C2,B safe 197.20 safe 13.61

C3,B safe 51.92 safe 13.98

C4,B safe 50.87 safe 26.77

C5,B timeout 1h timeout 1h

C1,C timeout 1h safe 62.37

C2,C timeout 1h timeout 1h

C3,C safe 124.72 safe 34.23

C4,C safe 132.57 safe 93.29

C5,C timeout 1h timeout 1h

the experiments were run on a CentOS 7 machine with 2 Intel
®
Xeon

®
processors E5-2670 v3 @ 2.30GHz of 12 cores (24 threads) each and 64 GB RAM, using the monolithic

encoding for the VENMAS tool, which was shown to offer the best performance [1].

Verification of machine learning based cyber-physical systems: a comparative study HSCC ’22, May 4–6, 2022, Milan, Italy

Table 8: The table gives the verification results ("safe", "unsafe", "unknown" or "timeout") and the verification times (in s) for
the ACAS (o) benchmark. Legend: a red cell hilights an unknown verification result or a timeout while a green cell indicates
the best verification time.

ACAS (o) benchmark

NNV SAMBA (polytopes)

Problem result time result time

t
end
= 16.0

NC1,A safe 13.23 safe 2.79

NC2,A safe 21.84 safe 5.43

NC1,B safe 9.93 safe 2.59

NC2,B safe 10.82 safe 2.85

NC1,C safe 12.27 safe 3.27

NC2,C safe 39.94 safe 8.08

C1,A safe 10.53 safe 3.69

C2,A safe 10.57 safe 3.52

C3,A safe 10.31 safe 3.86

C4,A safe 9.79 safe 3.19

C5,A safe 10.16 safe 3.68

C1,B safe 10.95 safe 3.83

C2,B safe 10.75 safe 3.57

C3,B safe 11.41 safe 3.47

C4,B safe 11.23 safe 3.69

C5,B safe 29.88 safe 6.95

C1,C safe 12.57 safe 3.89

C2,C safe 12.46 safe 4.16

C3,C safe 12.63 safe 4.49

C4,C safe 12.38 safe 4.29

C5,C safe 33.87 safe 13.30

t
end
= 32.0

NC1,A safe 17.91 safe 5.75

NC2,A safe 42.04 safe 11.85

NC1,B safe 18.95 safe 5.45

NC2,B safe 21.33 safe 6.63

NC1,C safe 24.76 safe 7.54

NC2,C safe 75.09 safe 27.67

C1,A safe 21.78 safe 7.86

C2,A safe 38.82 safe 14.30

C3,A safe 22.85 safe 7.89

C4,A safe 22.27 safe 7.66

C5,A safe 21.74 safe 7.44

C1,B safe 64.37 safe 7.99

C2,B safe 22.39 safe 14.73

C3,B safe 22.91 safe 8.25

C4,B safe 32.30 safe 10.99

C5,B safe 63.60 safe 22.93

C1,C safe 72.52 safe 12.36

C2,C safe 115.59 safe 52.78

C3,C safe 44.47 safe 13.90

C4,C safe 243.16 safe 47.55

C5,C safe 221.48 safe 55.87

t
end
= 56.0

NC1,A safe 33.76 safe 11.32

NC2,A safe 77.16 safe 23.39

NC1,B safe 34.06 safe 11.52

NC2,B safe 39.92 safe 12.93

NC1,C safe 43.22 safe 13.29

NC2,C safe 134.47 safe 51.45

C1,A safe 37.01 safe 12.12

C2,A safe 37.27 safe 32.61

C3,A safe 37.22 safe 13.31

C4,A safe 37.31 safe 12.83

C5,A safe 171.33 safe 97.79

C1,B safe 38.73 safe 13.85

C2,B safe 38.18 safe 33.93

C3,B safe 38.55 safe 13.31

C4,B safe 39.10 safe 12.94

C5,B safe 444.66 safe 112.33

C1,C safe 43.29 safe 14.61

C2,C safe 468.94 safe 149.72

C3,C safe 82.53 safe 28.20

C4,C safe 106.61 safe 34.58

C5,C timeout 1h timeout 1h

the experiments were run on a CentOS 7 machine with 2 Intel
®
Xeon

®
processors E5-2670 v3 @ 2.30GHz of 12 cores (24 threads) each and 64 GB RAM, using the monolithic

encoding for the VENMAS tool, which was shown to offer the best performance [1].

HSCC ’22, May 4–6, 2022, Milan, Italy Clavère, et al.

Table 9: The table gives the verification results ("safe", "unsafe", "unknown" or "timeout") and the verification times (in s) for
the Cartpole benchmark. Legend: a red cell hilights an unknown verification result or a timeout while a green cell indicates
the best verification time.

Cartpole benchmark

NNV SAMBA (polytopes)

Problem result time result time

t
end
= 0.2

NC1,A safe 25.42 safe 2.17

NC2,A safe 22.11 safe 2.10

NC3,A safe 21.17 safe 1.88

NC1,B safe 18.43 safe 1.77

NC2,B safe 21.91 safe 1.67

NC3,B safe 19.72 safe 1.75

NC1,C safe 19.32 safe 1.84

NC2,C safe 18.67 safe 5.19

NC3,C safe 19.33 safe 1.77

C1,A safe 18.19 safe 1.71

C2,A safe 18.25 safe 1.67

C1,B safe 18.55 safe 1.74

C2,B safe 18.17 safe 1.63

C1,C safe 18.72 safe 1.70

C2,C safe 18.82 safe 1.90

t
end
= 0.5

NC1,A safe 39.95 unknown 2.66

NC2,A safe 38.75 safe 9.70

NC3,A safe 39.14 unknown 2.07

NC1,B safe 38.39 unknown 2.07

NC2,B safe 37.45 safe 3.76

NC3,B safe 38.51 unknown 2.31

NC1,C safe 37.48 unknown 2.16

NC2,C safe 35.77 safe 19.50

NC3,C safe 35.82 unknown 2.15

C1,A safe 35.70 unknown 3.14

C2,A safe 36.62 safe 3.95

C1,B safe 36.87 unknown 2.69

C2,B safe 36.77 safe 3.48

C1,C safe 36.79 unknown 2.66

C2,C safe 36.75 safe 6.50

t
end
= 1.0

NC1,A safe 94.09 unknown 2.55

NC2,A safe 93.53 unknown 21.98

NC3,A safe 94.28 unknown 2.21

NC1,B safe 94.78 unknown 2.32

NC2,B safe 91.40 safe 12.14

NC3,B safe 91.04 unknown 2.12

NC1,C safe 92.71 unknown 2.14

NC2,C safe 91.39 unknown 56.06

NC3,C safe 92.20 unknown 2.42

C1,A safe 89.13 unknown 2.94

C2,A safe 93.52 unknown 14.01

C1,B safe 119.63 unknown 2.12

C2,B safe 91.17 unknown 6.85

C1,C safe 91.36 unknown 2.47

C2,C safe 118.97 unknown 46.88

the experiments were run on a CentOS 7 machine with 2 Intel
®
Xeon

®
processors E5-2670 v3 @ 2.30GHz of 12 cores (24 threads) each and 64 GB RAM, using the monolithic

encoding for the VENMAS tool, which was shown to offer the best performance [1].

	Abstract
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.3 Organization

	2 Problem statement
	2.1 Cyber-physical system with periodically scheduled controller
	2.2 Network of cyber-physical systems with periodically scheduled controller
	2.3 Neural network based controller
	2.4 Reachability problem

	3 Formal verification techniques
	3.1 Exact verification
	3.2 Approximate verification

	4 Comparison methodology
	5 Benchmark 1: Vertical Collision Avoidance system (VCAS)
	5.1 Description
	5.2 Results

	6 Benchmark 2: Airborne Collision Avoidance System (ACAS)
	6.1 Description
	6.2 Results

	7 Benchmark 3: Cartpole
	7.1 Description
	7.2 Results

	8 Lessons learned
	9 Conclusion
	References
	A Benchmark results

