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On the Equivalence between
Kalman Filter at Steady State and DPLL

Stéphanie Bidon, Senior Member, IEEE and Sébastien Roche

Abstract—Fundamental results in the literature previously
showed that a class of Kalman filter converges to a digital phase
lock loop (DPLL) structure at the second and third order. We
generalize these results at any order and give the closed-form
linear relation, and its inverse, between the steady-state Kalman
gains and the loop filter constants. Both relations are simple and
only involve Stirling numbers of the first and second kind. This
new result may help in a deeper understanding of the equivalence
between Kalman filter and DPLL and be of practical interest in
high dynamic scenarios.

Index Terms—Carrier synchronization, digital phase lock loop
(DPLL), Kalman filter, Kalman gain, loop filter constant, phase
tracking, Stirling numbers of the second kind, unsigned Stirling
numbers of the first kind.

I. INTRODUCTION

PHASE lock loops (PLL) are traditionally used in receivers
to track the carrier phase of a signal. They are found

in many domains of application including communications,
localization, navigation, sonar, radar, etc. Initially designed in
the analog domain, it is common today to implement them
as digital PLL (DPLL) [1]–[6]. An abundant literature exists
regarding their performance; a glimpse of them can be found,
e.g., in [5]–[7].

Despite their popularity, DPLLs are not robust in chal-
lenging conditions (e.g., complex dynamics), partly since
their constant loop bandwidth prevents them from adaptivity
in changing scenarios. Alternate techniques have thus been
conceived; many of them are surveyed in [8]. Among them
Kalman filter (KF) based techniques have been considered
for their ability to optimally—in a mean-squared error sense
(MSE)—address time-varying scenarios owing to their adap-
tive loop bandwidth, e.g., [9]–[11].

Important results in the communications field actually
showed a strong relation between DPLL and KF-based tech-
niques. In [12]–[14], the authors firstly proved that applying
nonlinear state estimation theory to angle-modulated commu-
nication signals results in a quasi-optimum DPLL structure
at any order. Twenty years later, the comparison went one
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step further at the second order [15], [16]. In [15], KF was
shown to have the structure of a second-order DPLL with time-
varying loop filter gains equal to the Kalman gains. In [16],
KF was studied at steady state, i.e., once the Kalman gains
have converged. The resulting closed-loop transfer function
was shown to be equivalent to that of a second-order DPLL
with a simple relation between the steady-state Kalman gains
and the loop filter constants. Twenty more years later, the
authors in [17] extended this result to the third order. Nonethe-
less, slow dynamics was considered and the equivalence was
established via an analog PLL formulation.

Studying KF at convergence is of utmost importance. As
underlined in [18], KF behaves at steady state as a time-
invariant filter so that it is particularly relevant to compare
it with traditional tracking techniques. Pros and cons of
time-varying bandwidth loop filters can then be convincingly
demonstrated; deep insight can also be gained to design a
fair tuning of both approaches. As an illustration, in [15]
the authors compare the performance of KF and DPLL at
the second order. They set the DPLL loop filter constants
equal to the steady-state Kalman gains—so as to obtain the
same steady-state performance—and showed the improved
acquisition performance of the KF compared to the DPLL.
Further studies can be found on the performance of steady-
state KF about the convergence time [19], [20], the asymptotic
MSE [17], [21] and lower bounds [22].

Nonetheless, the op. cited results (aside that in [19]) have
only been established at the second order or at the third
order with approximation. In challenging applications, high-
order dynamics are at play, for instance in missile tracking
systems, in deep space communications [23]–[25], or in global
navigation satellite system (GNSS) for highly maneuvering
airborne or space-borne platforms [26]–[28]. Higher-order
loops have the potential then to track high dynamics without
increasing the loop bandwidth and thus may address weaker
signals [4], [24]. Studying steady-state KF performance at
high-order is thus of practical interest.

In this paper, we attempt to contribute in this direction. To
this end, we study the equivalence at any order between a
class of KF at steady state and a class of DPLL. Two main
theorems are enunciated to interpret the KF as a DPLL, and
reciprocally, while given the closed-form relations between
steady-state Kalman gains and loop filter constants. These
relations are exemplified till the fifth or sixth order so as to be
directly used in practical high dynamic scenarios. Interestingly,
our approach assumes an ideal phase discriminator as in [4],
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Fig. 1. (a) DPLL architecture. (b) KF-based tracking architecture (KFPLL).

hence it addresses also other locked loops like delay locked
loop [29].

The class of DPLL considered is detailed in Section II.
Similarly, the class of KF considered for phase tracking is
detailed in Section III where an emphasis is made on the
transfer function at steady state. The two main results about
the equivalence between DPLL and steady-state KF are then
enunciated in Section IV. Demonstrations of these results
are gathered in Section V while Section VI includes some
concluding remarks.

Notations. IK , {0, . . . ,K − 1} is a set of finite integers.
Z {xk} (z) is the z-transform of the discrete-time signal xk.(
n
k

)
= n!/[(n− k)!k!] is the binomial coefficient for n ≥ k ≥

0; the definition is extended to
(
n
k

)
= 0 if k > n or k < 0.

δn,k is the Kronecker delta.

II. THE CONVENTIONAL DPLL WITH PHASE AND
PHASE-RATE FEEDBACK

In this Section we recall the architecture of the DPLL of
interest as depicted in Fig. 1a. Particularly, we assume a so-
called phase and phase-rate feedback without any computation
delay as defined in [4], [30]. We further give the equivalent
linear model.

A. Architecture

A standard DPLL is designed to receive a noisy input signal
as

yk = αejφk + nk (1)

with α the amplitude of the component that carries the phase
of interest φk at instant k and nk the noise input.

The received signal (1) is then correlated with a local replica
that carries the estimated phase φ̂k at the same instant. In prac-
tice, this correlation can stem from the integration of several
complex input samples so as to increase the signal-to-noise
ratio (SNR) or decrease the computational complexity [30,
p.2-1]. In any event, we denote by T the loop update rate.

The residual phase, namely the error between the actual
phase and that just estimated, is extracted via a so-called
phase discriminator [29, Sec. 8.6.1], [8]. This predetection
stage ideally outputs, in absence of noise, the phase error

φ̃k = φk − φ̂k. (2)

The model (2) can be inaccurate partly due to the phase
discriminator that intrinsically is nonlinear outside a given

operating range. We discard any possible imperfections to
develop our linear model in what follows.

In practice, the phase residual (2) contains noise that is
removed (at least partially) by a loop filter. The latter is usually
low-pass and based on proportional-integral gains. The filter
output can be seen as the estimated phase rate at time k + 1
multiplied by the update interval T such as

̂̇
φk+1T = Kd

1φ̃k +Kd
2

k∑
i1=1

φ̃i1 +Kd
2

k∑
i1=1

i1∑
i2=1

φ̃i2

+ . . .+Kd
N

k∑
i1=1

i1∑
i2=1

. . .

iN−2∑
iN−1=1

φ̃iN−1
(3)

where Kd
n is the nth filter constants assuming a N th order loop

(N ≥ 1). Note that we have assumed here integration via the
rectangular method [31, Sec. 1.5]. Alternate techniques like
the trapezoidal or Simpson’s rule would result in a different
relation than in (3) [32, Ch. 5].

Finally, the estimate phase at the next instant k+ 1 is built
assuming a loop with phase and phase-rate feedback [4], [30],
namely

φ̂k+1 = φ̂k +
̂̇
φk+1T. (4)

This updated value is used to generate the next replica to be
correlated with the new received signal samples. The loop is
hence closed.

B. Linear Model

In linear regime, the DPLL is tantamount to a filter with
transfer function in the z-domain such as

Hd(z) ,
Φ̂(z)

Φ(z)
(5)

with Φ(z) , Z {φk} (z) and Φ̂(z) , Z
{
φ̂k

}
(z). For a N th

order DPLL, it is shown in [4, eqs. (36)-(37)] that (5) has the
form

Hd(z) =
Dd(z)− (z − 1)N

Dd(z)
(6)

with

Dd(z) = (z − 1)N +Kd
1(z − 1)N−1 +Kd

2z(z − 1)N−2

+Kd
3z

2(z − 1)N−3 + . . .+Kd
Nz

N−1. (7)
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For a comprehensive view, the transfer function of the loop
filter only is finally

LF (z) , Z
{̂̇
φk+1T

}
(z)/Z

{
φ̃k

}
(z)

= Kd
1 +Kd

2

1

1− z−1
+ . . .+Kd

N

1

(1− z−1)N−1
.

III. THE CONVENTIONAL KFPLL WITH NEWTONIAN
TRANSITION MATRIX

In this Section we describe the architecture of the KF
of interest as depicted in Fig. 1b. We particularly choose
a transition matrix stemming from a so-called kinematic or
Newtonian model [31], [33]. We derive from it the equivalent
loop transfer function at steady state and at any order. Similar
calculations can be found in [16] and [17] but were restricted
to the second and third order, respectively.

A. State-Space Model

In a phase tracking problem, the KF algorithm is usually
based on the following state-space model, assuming a perfect
linearization of the phase error by the discriminator, [15]–[17],
[34]

xk = Fxk−1 + wk−1 (8a)
ỹk = Hxk + ñk (8b)

where

xk =
[
φk φ̇k . . .

N − 1

φ̇k

]>
(9a)

H =
[
1 0 . . . 0

]
(9b)

with
xk the N × 1 state-space vector whose elements are the

phase and its derivatives till the (N − 1)th order
discretized at the time instant kT ;

F the N ×N state transition matrix;
wk the Gaussian process noise;
ỹk the noisy phase on receive;
H the 1×N measurement matrix;
ñk the phase noise assumed Gaussian distributed with

known power [35]–[37].
In practice, ỹk is not directly measured instead the discrimi-
nator output is used as a measurement residual as seen later
in (11) and discussed in [38].

In this work we focus on a particular class of transition
matrix that we are referring to as Newtonian transition matrix
(adopting a similar terminology as in [31, p. 132]), i.e.,

F =



1 T
1!

T 2

2! . . . TN−1

(N−1)!

0 1 T
1! . . . TN−2

(N−2)!

0 0 1 . . . TN−3

(N−3)!
...

...
...

. . .
...

0 0 0 . . . 1


. (10)

This choice is important to establish later the equivalence
with the previously described DPLL. (As will appear from
the derivations in Section V, (10) intrinsically confers to the

KF an architecture of DPLL with rectangular integration.) No
specific assumptions is made about the covariance matrices
of the measurement and process noises. In that regards, our
state-space model (8)-(9)-(10) addresses conventional phase
dynamics such as described, e.g., in [17], [33], but may cover
a broader scope. In the remainder of the paper, this state-space
approach is dubbed KFPLL.

B. Architecture at Steady State

Kalman filtering aims at obtaining at each instant k the
posterior distribution of xk|Ỹ k from (8) where Ỹ k =[
ỹ1 . . . ỹk

]
gathers all measurements till instant k. To that

end, a two-stage scheme updates the moments of the prediction
and posterior distributions defined as [39]

xk|Ỹ k−1 ∼ N
(
xk|k−1,P k|k−1

)
xk|Ỹ k ∼ N

(
xk|k,P k|k

)
where N (m,P ) is the Gaussian distribution with mean m
and covariance matrix P .

The pair (F ,H) in (8) is completely observable1, hence
the KF converges here necessarily to a steady state [33, Sec.
5.25]. The filtering architecture is then driven by [40, Sec. 7.3]

xk|k = Fxk−1|k−1 + Kkfrk (11a)

rk = φk − φ̂k (11b)

φ̂k = HFxk−1|k−1. (11c)

where Kkf ,
[
Kkf

1 . . . Kkf
N

]>
is the asymptotic Kalman

gain vector and where, though not explicitly stated, the pre-
dicted state estimate is

xk|k−1 = Fxk−1|k−1. (12)

Similarly to the DPLL and as in [16], the phase estimate
φ̂k in (11c) is chosen as that carried by the replica and thus
directly depends on the predicted state estimate (12), viz

φ̂k = [xk|k−1]1. (13)

Interestingly, the output of a KF is conventionally the state
estimate xk|k so that another phase of interest could be
from (11a) [41, Fig. 1]

[xk|k]1 = φ̂k +Kkf
1 × rk. (14)

Finally, rk in (11b) is the conventional KF innovation term
and corresponds to the phase error at the discriminator output.
Note that to develop next the equivalent linear filter, rk is
written for a noise-free input ỹk = φk.

1Noting that HFn = HFn−1F , it can be shown by induction that
[HFn]n,p = npT p/p! for n, p ∈ IN so that the observability matrix is
full rank [33, eq. (1.3.8-5)].
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C. Linear Model at Steady State

Herein, we transpose the KF equations (11) in the z-domain
to obtain the equivalent transfer function at convergence. Let
us note [xk|k]n ,

n

ẋk|k. Then using (10), the state estimate
update (11a) can be expressed in the z-domain as N equations,
i.e., for n ∈ IN ,

(1− z−1)
n

Ẋ(z) = Fn(z)R(z) (15)

with
n

Ẋ(z) , Z
{ n

ẋk|k

}
(z), R(z) , Z {rk} (z) and

Fn(z) ,
1

z − 1

N−1−n∑
p=1

T p

p!
Fn+p(z) +Kkf

n+1 (16)

with FN−1(z) , Kkf
N when the sum in (16) is empty. The

innovation term (11b) and the phase estimate (11c) are also
transformed in the z-domain, using (9b), as

R(z) = Φ(z)− Φ̂(z) (17a)

Φ̂(z) = z−1
N−1∑
n=0

Tn

n!

n

Ẋ(z) (17b)

Injecting (15) in (17b) while using (17a), the phase esti-
mate (17b) becomes

Φ̂(z) = G(z)
(

Φ(z)− Φ̂(z)
)

(18)

where we have defined

G(z) ,
z−1

1− z−1
N−1∑
n=0

Tn

n!
Fn(z). (19)

Using (18), the transfer function of the KFPLL can be ex-
pressed as

Hkf(z) ,
Φ̂(z)

Φ(z)
=

G(z)

1 +G(z)
(20a)

=
Dkf(z)− (z − 1)N

Dkf(z)
(20b)

where, to ease our upcoming demonstrations, we have set in
the last line

Dkf(z) , (z − 1)N (1 +G(z)) . (21)

In what follows, we show that Dkf(z) has a similar functional
form as Dd(z) in (7) and explicit the induced relation of the
Kd
n’s wrt the Kkf

n ’s and reciprocally.

IV. RESULTS: EQUIVALENCE BETWEEN KFPLL AND
DPLL

The main results of this work are summarized in the two
following Theorems and demonstrated in Section V. They are
compared with that of the literature at the second and third
order.

A. Main Results
Theorem IV.1 (Convergence of KFPLL to DPLL and closed–
form linear relation between Kd

n and {Kkf
p }p=n,...,N ). Any

KFPLL as described in Section III is at convergence tan-
tamount to a DPLL as described in Section II with filter
constants given by, for n = 1, . . . , N ,

Kd
n =

N∑
p=n

(−1)p+nSp−1,n−1T
p−1Kkf

p (22)

with Sp,n defined in (23). For n = 1, (22) boils down to
Kd

1 = Kkf
1 .

Lemma IV.2 (Closed-form expression of Sp,n). The coeffi-
cients Sp,n are defined by

S0,0 = 1 (23a)
Sp,0 = 0 p ≥ 1 (23b)

Sp,n =
1

p!

n−1∑
q=0

(−1)q
(
n

q

)
(n− q)p 1 ≤ t ≤ p (23c)

which is summarized by, for p ≥ n ≥ 0,

Sp,n =
n!

p!
S(p, n) (24)

where S(p, n) are the Stirling numbers of the second kind [42,
p. 26], [43, Ch. 6.1].

Theorem IV.3 (Interpretation of a DPLL as a steady-
state KFPLL and closed-form relation between Kkf

n and
{Kd

p}p=n,...,N ). Any DPLL as described in Section II can be
seen as a steady-state KFPLL as described in Section III;
providing that values for the two covariance matrices involved
in the state-space model (8) can be found to result in2, for
n = 1, . . . , N

Tn−1Kkf
n =

N∑
p=n

cp−1,n−1K
d
p (25)

with cp,n defined in (26). For n = 1, (25) boils down to Kkf
1 =

Kd
1.

Lemma IV.4 (Closed-form expression of cp,n). The coeffi-
cients cp,n are defined by

cp,n =
n!

p!
c(p, n) (26)

where c(p, n) are the unsigned Stirling numbers of the first
kind [42, p. 29], [43, Ch. 6.1]. They can be numerically
obtained by the recurrence formula

c(0, 0) = 1

c(n, 0) = c(0, n) = 0 n > 0

c(p+ 1, n) = p c(p, n) + c(p, n− 1) n > 0.

Formula (22)-(26) are exemplified in Tables I-V, respec-
tively.

2The answer to this question is out of the scope of this paper. It would
require to study solutions to the discrete time algebraic Riccati equation [40,
Sec. 7.3]. Elements of answer are given in [34, eqs. (7),(9)] at the second
order where the Kkf

n ’s are expressed in closed-form wrt the noise parameters
and in [17] at the third order where Riccati equations are solved under some
approximations.
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TABLE I
EQUIVALENT LOOP FILTER CONSTANTS FOR A STEADY-STATE KFPLL

N = 1 N = 2 N = 3 N = 4 N = 5

Kd
1 = Kkf

1 Kd
1 = Kkf

1 Kd
1 = Kkf

1 Kd
1 = Kkf

1 Kd
1 = Kkf

1

Kd
2 = TKkf

2 Kd
2 = TKkf

2 −
T2

2!
Kkf

3 Kd
2 = TKkf

2 −
T2

2!
Kkf

3 + T3

3!
Kkf

4 Kd
2 = TKkf

2 −
T2

2!
Kkf

3 + T3

3!
Kkf

4 −
T4

4!
Kkf

5

Kd
3 = T 2Kkf

3 Kd
3 = T 2Kkf

3 − T 3Kkf
4 Kd

3 = T 2Kkf
3 − T 3Kkf

4 + 7
12
T 4Kkf

5

Kd
4 = T 3Kkf

4 Kd
4 = T 3Kkf

4 −
3
2
T 4Kkf

5

Kd
5 = T 4Kkf

5

TABLE II
EQUIVALENT STEADY-STATE KF GAINS FOR A DPLL

N = 1 N = 2 N = 3 N = 4 N = 5

Kkf
1 = Kd

1 Kkf
1 = Kd

1 Kkf
1 = Kd

1 Kkf
1 = Kd

1 Kkf
1 = Kd

1

TKkf
2 = Kd

2 TKkf
2 = Kd

2 + 1
2
Kd

3 TKkf
2 = Kd

2 + 1
2
Kd

3 + 1
3
Kd

4 TKkf
2 = Kd

2 + 1
2
Kd

3 + 1
3
Kd

4 + 1
4
Kd

5

T 2Kkf
3 = Kd

3 T 2Kkf
3 = Kd

3 +Kd
4 T 2Kkf

3 = Kd
3 +Kd

4 + 11
12
Kd

5

T 3Kkf
4 = Kd

4 T 3Kkf
4 = Kd

4 + 3
2
Kd

5

T 4Kkf
5 = Kd

5

TABLE III
COEFFICIENTS (−1)n+pSp,n FOR EQUIVALENT DPLL FILTER

CONSTANTS IN (22)

n

p
0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 0 1 − 1
2!

1
3!

− 1
4!

1
5!

- 1
6!

2 0 0 1 −1 7
12

− 1
4

31
360

3 0 0 0 1 − 3
2

5
4

− 3
4

4 0 0 0 0 1 −2 13
6

5 0 0 0 0 0 1 − 5
2

6 0 0 0 0 0 0 1

B. Comparison to Previous Results

Results of Theorem IV.1 agree with that presented in [16, eq.
(32)]3, and [34, eq. (19)] at the second order, and, implicitly
in [17, eq. (22)] at the third order. Indeed, for the latter, if we
had derived the closed-loop transfer function (20a) with input
equal to the phase estimate (14) instead of (13) we would have
obtained the same expression as in [17, eq. (22)]. Interestingly,
the authors of [17] do not reach the exact same conclusion.
Instead, they showed that their KFPLL is similar to a DPLL
but only under the approximation of a slow dynamics and
while considering the structure of an analog PLL. To further
ease the comparison between results found in the literature
and Theorems IV.1-IV.3, the expression of Dkf(z) in (21) is
specialized later in Lemma V.4 at the second and third order.

3To be exact, one needs to consider in [16] the clock delay equal to 1 and
the probability to make a correction equal to 1. In addition, Kalman gains
absorb the update interval Tn−1. Doing so, the transfer function [16, eq.
(32)] matches that in (20) with Lemma (V.4).

TABLE IV
CLOSED-FORM EXPRESSIONS OF SOME Sp,t

Sp,1 = 1
p!

p ≥ 1

Sp,2 = 2p−2
p!

p ≥ 2

Sp,3 = 3p−3×2p+3
p!

p ≥ 3

Sp,4 = 4p−4×3p+6×2p−4
p!

p ≥ 4

Sp,p−1 = p−1
2!

p ≥ 2

Sp,p = 1 p ≥ 1

TABLE V
COEFFICIENTS cp,n FOR EQUIVALENT KFPLL GAINS IN (25)

n

p
0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 0 1 1
2

1
3

1
4

1
5

1
6

2 0 0 1 1 11
12

5
6

137
180

3 0 0 0 1 3
2

7
4

15
8

4 0 0 0 0 1 2 17
6

5 0 0 0 0 0 1 5
2

6 0 0 0 0 0 0 1

V. DERIVATIONS

Herein we give the intermediate results followed by their
proofs that finally lead to that of Theorems IV.1 and IV.3.

A. Intermediate Elements of Demonstrations

First, Fn(z) defined by the recursion (16) is expressed in
closed-form via Lemmas V.1 and V.2. Injecting this explicit
expression in (19) and (21), Dkf(z) can be rewritten as
proposed in Lemma V.3. We then identify the polynomial
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coefficients of Dkf(z) with that of Dd(z) in Lemma V.5
and rewrite the obtained relation in matrix representation in
Lemma V.6. It relates via a linear relation the Kkf

n ’s and the
Kd
n’s. One of the two matrices involved can easily be seen

as invertible in Lemma V.7. Using two additional relations
established in Lemmas V.8 and V.9, we obtain a closed-form
expression of the latter matrix inverse times the second matrix
in Lemma V.10. This matrix product can be inverted then in
closed-form in Lemma V.11. Using all these previous Lemmas,
the main results in Theorems IV.1 and IV.3 can finally be
demonstrated.

Lemma V.1 (Closed-form expression of Fn(z)). The functions
Fn(z) in (16) can be expressed for n ∈ IN as

Fn(z) =

N−1−n∑
p=0

αp(z)T
pKkf

n+1+p (27)

where αp(z) are defined by the recursion

α0(z) , 1 (28a)

αp(z) ,
1

z − 1

p∑
r=1

αp−r(z)

r!
p ≥ 1 (28b)

that is noticeably independent of the order N .

Lemma V.2 (Closed-form expression of αp(z)). The term
αp(z) defined in (28) can be further developed for p ≥ 1
as

αp(z) =

p∑
t=1

Sp,t
(z − 1)t

(29)

where for 1 ≤ t ≤ p

Sp,t ,
∑

ij≥1/
∑t

j=1 ij=p

1∏t
j=1 ij !

(30)

with the special case Sp,1 = 1/p! for t = 1. According to [44,
Th. 2.2] and [45, eq. (27)], Sp,t can equivalently written as
in (23c) and (24), respectively.

Lemma V.3 (Closed-form expression of Dkf(z)). Dkf(z)
in (21) can be rewritten as

Dkf(z) = (z − 1)N +Kkf
1 (z − 1)N−1

+

N−2∑
t=0

(
N−1∑
p=t+1

Sp,t+1T
pKkf

p+1

)
z(z − 1)N−t−2. (31)

Lemma V.4 (Expressions of Dkf(z) for N = 2 and N = 3).
To ease the comparison with previous results in the literature
in Section IV-B, we specialize (31) as follows

Dkf(z) = (z − 1)2 + (z − 1)Kkf
1 + zTKkf

2 (N = 2)

Dkf(z) = (z − 1)3 + (z − 1)2Kkf
1

+ z(z − 1)

(
TKkf

2 −
T 2

2
Kkf

3

)
+ z2T 2Kkf

3 (N = 3).

Lemma V.5 (Formulation of Dkf(z) as Dd(z)). Dkf(z) in (31)
can be formulated as Dd(z) in (7) iff

Kkf
1 = Kd

1 (32a)

and for k = 1, . . . , N − 1,

N−1−k∑
t=0

(−1)t
(
N − 2− t
k − 1

)( N−1∑
p=t+1

Sp,t+1T
pKkf

p+1

)

=

k∑
p=1

(
N − 1− p
k − p

)
Kd
p+1. (32b)

Lemma V.6 (Matrix representation of the linear relation
between {Kkf

n }n=2,...,N and {Kd
n}n=2,...,N matrices). Without

a dedicated proof, we can simply rewrite the N − 1 equations
in (32b) as

M kf

 TKkf
2

...
TN−1Kkf

N

 = M d

Kd
2

...
Kd
N

 (33)

where for n, p = 1, . . . , N − 1

[M kf]n,p ,
p∑
t=1

(−1)t+1
(
N − 1− t
n− 1

) t!
p!
S(p, t) (34a)

[M d]n,p ,
(
N − 1− p
n− p

)
(34b)

with the usual convention S(p, t) =
(
p
t

)
= 0 if t > p. Elements

of the first column of M kf are simply
(
N−2
n−1

)
while that of the

last column are (−1)N−1−nE(N − 1, n − 1)/(N − 1)! with
E(n, k) the Eulerian numbers [43, eq. (6.40)].
M d is a lower triangular matrix with diagonal elements(
N−1−p

0

)
= 1 and thus invertible; it is actually the Pascal’s

triangle expressed as a matrix.

Lemma V.7 (Inverse of M d). The inverse of M d is a lower
triangular matrix such that for n, p = 1, . . . , N − 1

[M d−1]n,p = (−1)p−n
(
N − 1− p
n− p

)
. (35)

It is the same as M d but with alternate elements negated
starting with the first subdiagonal.

As become clear after, the two following Lemmas are useful
to prove the two last Lemmas.

Lemma V.8 (Sum over a product of binomial coefficients).
We have for n = 1, . . . , N − 1, t = 1, . . . , n,

n∑
q=1

(−1)q
(
N − 1− q
n− q

)(
N − 1− t
q − 1

)
= −

(
t− 1

n− 1

)
. (36)

Lemma V.9 (Sum of Lah numbers and Stirling numbers of
the second kind). We have for p ≥ n ≥ 1

p∑
t=n

(−1)t+pS(p, t)L(t, n) = S(p, n) (37)

where L(t, n) , t!/n!
(
t−1
n−1
)

is the unsigned Lah numbers [46].

Lemma V.10 (Closed-form expression of M d−1M kf). For
n, p = 1, . . . , N − 1

[M d−1M kf]n,p = (−1)n+pSp,n (38)

Lemma V.11 (Closed-form expression of M kf−1M d). For
n, p = 1, . . . , N − 1

[M kf−1M kf]n,p = cp,n (39)
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B. Proofs of Intermediate Elements of Demonstration

Proof of Lemma V.1. We use strong induction [47, Sec. 1.2.1].
Using (16), we have FN−1(z) = Kkf

N which proves the Lemma
for n = N − 1. Assuming the Lemma true for n, . . . , N − 1
with n ≤ 1 and using (16) yields

Fn−1(z) =
1

z − 1

N−n∑
p=1

T p

p!
Fn−1+p(z) +Kkf

n

=
1

z − 1

N−n∑
p=1

T p

p!

N−n−p∑
r=0

αr(z)T
rKkf

n+p+r +Kkf
n

=

N−n∑
s=1

{
1

z − 1

s∑
p=1

αs−p(z)

p!

}
T sKkf

n+s +Kkf
n

where a simple change of variables and an inversion of the
indices of summation have been made to obtain the last line.
We thus recognize the same functional form as in (27)-(28)
for the index n − 1 which proves the Lemma for n − 1 and
ends our demonstration.

Proof of Lemma V.2. We use strong induction. Using (28), we
have α1(z) = (z − 1)−1 which proves the Lemma for p = 1.
Assuming the Lemma true for 1, . . . , p and using (28) yields

αp+1(z) =
1

z − 1

p∑
r=1

αp+1−r(z)

r!
+

1

z − 1

α0(z)

(p+ 1)!
(40)

=

p∑
r=1

1

r!

p+1−r∑
t=1

Sp+1−r,t

(z − 1)t+1
+

1

(p+ 1)!

1

z − 1
(41)

=

p+1∑
t=2

p+2−t∑
r=1

Sp+1−r,t−1

r!

1

(z − 1)t
+

1

(p+ 1)!

1

z − 1

(42)

where a simple change of variables and an inversion of the
indices of summation have been made to obtain the last line.
Using (30), we can further write

p+2−t∑
r=1

Sp+1−r,t−1

r!
=

p+1−(t−1)∑
r=1

1

r!

∑
ij≥1/

∑t−1
j=1 ij=p+1−r

1∏t−1
j=1 ij !

=
∑

ij≥1/
∑t

j=1 ij=p+1

1∏t
j=1 ij !

= Sp+1,t. (43)

Injecting (43) in (42), we get αp+1(z) =
∑p+1
t=1 Sp+1,t which

ends our demonstration.

Proof of Lemma V.3. Injecting (27) and (29) in (19) yields

G(z)(z − 1)N =

N−1∑
n=0

Kkf
n+1

Tn

n!
(z − 1)N−1

+

N−1∑
n=0

N−1−n∑
t=1

N−1−n∑
p=t

Sp,t
Tn+p

n!
Kkf
n+p+1(z − 1)N−t−1.

We further isolate terms related to the index n = 0 and for
n ≥ 1 we inverse the indices of summation n and t in the
last sum. Then, we regroup terms indexed by (t, n) from n =

1, . . . , N − 1 with the term indexed by (t + 1, n = 0) and
obtain

G(N)(z)(z − 1)N = Kkf
1 N(z − 1)N−1

+

N−3∑
t=1

{
N−1∑
p=t+1

Sp,t+1T
pKkf

p+1(z − 1)N−t−2

+

N−1−t∑
n=1

N−1−n∑
p=t

Sp,t
Tn+p

n!
Kkf
n+p+1(z − 1)N−t−1

}

+

N−1∑
n=1

Kkf
n+1

Tn

n!

(
(z − 1)N−1 + (z − 1)N−2

)
+ TN−1Kkf

N (1 + z − 1)

Applying a change of variable at the third line (i.e., summation
on the sub-diagonals n + p) and using (43) (i.e., Sp,t+1 =∑p−1
r=t Sr,t/(p− r)!), we obtain

G(z)(z − 1)N = Kkf
1 (z − 1)N−1

+

N−2∑
t=0

(
N−1∑
p=t+1

Sp,t+1T
pKkf

p+1

)
z(z − 1)N−t−2. (44)

Injecting (44) in (21), we obtain Dkf(z) as in (31).

Proof of Lemma V.5. Applying binomial theorem in (31), we
obtain after some rearrangement on the indices of summation

Dkf(z)− (z − 1)N = Kkf
1

(
N − 1

0

)
(−1)N−1

+

N−1∑
k=1

(−1)N−1−k
[
Kkf

1

(
N − 1

k

)
+

N−1−k∑
t=0

(
N−1∑
p=t+1

Sp,t+1T
pKkf

p+1

)(
N − t− 2

k − 1

)
(−1)−t

]
zk.

Using the same arguments in (7), we obtain

Dd(z)− (z − 1)N =

N−1∑
k=0

(−1)N−1−k
k∑
t=0

Kd
t+1

(
N − 1− t
k − t

)
zk.

Dkf(z)−(z−1)N and Dd(z)−(z−1)N are thus both N−1th
order polynomials. They are identical iff there coefficients are
equal leading to (32).

Proof of Lemma V.7. We have for n, p = 1, . . . , N − 1

N−1∑
q=1

(
N − 1− q
n− q

)(
N − 1− p
q − p

)
(−1)q−p

=

N−1∑
q=1

(
N − 1− q
N − 1− n

)(
N − 1− p
N − 1− q

)
(−1)q−p

= (−1)−p+(N−1)
N−2∑
q=0

(
q

N − 1− n

)(
N − 1− p

q

)
(−1)q

=
(

0

p− n

)
= δn,p

where, to obtain the last line, we have used a classical identity
about the sum of products of binomial coefficients, i.e., [43,
eq. (5.24)].
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Proof of Lemma V.8. We first notice that negating the upper
index leads to [43, (5.14)](

[N − 2]− q
[n− 1]− q

)
= (−1)n−1−q

(
[n− 1]− [N − 2]− 1

[n− 1]− q

)
.

Then using Vandermonde’s convolution [43, eq. (5.27)] and
negating again the upper index successively yields

n−1∑
q=0

(−1)q+1
(
[N − 2]− q
[n− 1]− q

)(
[N − 2]− [t− 1]

q

)
=

n−1∑
q=0

(−1)q+n−q
(
[n− 1]− [N − 2]− 1

[n− 1]− q

)(
[N − 2]− [t− 1]

q

)
= (−1)n−1+1

(
[n− 1]− [t− 1]− 1

n− 1

)
= −

(
t− 1

n− 1

)
.

Proof of Lemma V.9. The matrix representation in [48, p. 423]
states that L(t, n) =

∑t
j=0 c(t, j)S(j, n). Observing that

L(t, n) = 0 if t < n, we have thus for p ≥ n ≥ 1

p∑
t=n

(−1)t+pS(p, t)L(t, n) =

p∑
j=0

p∑
t=0

(−1)t+pS(p, t)c(t, j)S(j, n)

=

p∑
j=0

(−1)j−pδpjS(j, n)

= S(p, n)

where we have used in the line before last the inversion
formula proposed in [49, Prop. 1.9.1], [43, Tab. 264]. To obtain
(37), it remains only to use the definition of Sp,n in (24).

Proof of Lemma V.10. Using (34a) and (35), we obtain for
n, p = 1, . . . , N − 1

[M d−1M kf]n,p

=

n∑
q=1

p∑
t=1

(−1)n+q+t−1
(
N − 1− q
n− q

)(
N − 1− t
q − 1

)
Sp,t

=

p∑
t=1

n∑
q=1

(−1)q
(
N − 1− q
n− q

)(
N − 1− t
q − 1

)
(−1)n+t−1

t!

p!
S(p, t)

=

p∑
t=1

(−1)n+t
(
t− 1

n− 1

) t!
p!
S(p, t) [Lemma V.8]

= (−1)n−p
n!

p!

p∑
t=n

(−1)t+pS(p, t)L(t, n)
[(

t

n− 1

)
= 0 if t ≤ n

]
= (−1)n−p

n!

p!
S(p, n) [Lemma V.9].

Using (24), we finally get (38).

Proof of Lemma V.11. Using (24)-(26), we have for n, p =
1, . . . , N − 1

N−1∑
k=1

(−1)n−kSk−1,n−1cp−1,k−1

=

N−2∑
k=0

(−1)n−k+1Sk,n−1cp−1,k

=
(n− 1)!

(p− 1)!
(−1)n−p

N−2∑
k=0

(−1)p−1−kc(p− 1, k)S(k, n− 1)

=
(n− 1)!

(p− 1)!
(−1)n−pδn,p = δn,p

where, to obtain the last line, we have used the inversion
formula proposed in [49, Prop. 1.9.1], [43, Tab. 264], which
ends our demonstration.

C. Proof of Main Theorems

Proof of Theorem IV.1. From Lemma V.7, we conclude first
that the system (33) is invertible by a left-multiplication with
M d−1. Considering also (32a) we conclude that the Kd

n’s
are determined by a unique linear relation to the Kkf

n ’s. A
closed-form expression of the latter can be obtained using
Lemma V.10.

Proof of Theorem IV.3. Using Lemma V.11 jointly with (32a),
we directly obtain that the Kkf

n ’s are determined by a unique
linear relation to the Kd

n’s. Nonetheless, for any values of Kd
n’s

nothing ensures—at least to our knowledge—that the values
obtained for Kkf

n ’s can be explained by a state-space model
as described in Section 8. Indeed, covariance matrices of the
process and measurement noises still need to be found.

VI. CONCLUSION

The equivalence between KF and DPLL has been consid-
ered for the problem of phase estimation. The study focused
on two specific architectures. For the DPLL, the feedback
stage is performed by a phase and phase-rate feedback without
computation delay while numerical integrators are imple-
mented via the rectangular method. For the KF, the state-
space model assumes a Newtonian transition matrix. Both
architectures were examined under the assumption of a perfect
linear regime. Two main results were then demonstrated at
any order. Firstly, the KF converges to a DPLL with filter
constants equal to a weighted sum of the KF gains; the latter
weights involve only the Stirling numbers of the second kind.
Secondly, the DPLL is a steady-state KF with Kalman gains
equal to a weighted sum of the filter constants; the latter
weights involve only the unsigned Stirling numbers of the
first kind. Nonetheless to be valid, the steady-state KF gains
still need to be explained by appropriate covariance matrices
involved in the state-space model.
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