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Abstract—Global Navigation Satellite System (GNSS) is the
widely used technology when it comes to outdoor positioning. But
it has severe limitations with regard to safety-critical applications
involving unmanned autonomous systems. Namely, the position-
ing performance degrades in harsh propagation environment
such as urban canyons. In this paper we propose a new algorithm
for GNSS navigation in challenging environments based on robust
statistics. M-estimators showed promising results in this context,
but are limited by some fixed hyper-parameters. Our main idea
is to adapt this parameter, for the Huber cost function, to the
current environment in a data-driven manner. Doing so, we
also present a simple yet efficient way of learning with satellite
data, whose number may vary over time. Focusing the learning
problem on a single parameter enables to efficiently learn with a
lightweight neural network. The generalization capability and the
positioning performance of the proposed method are evaluated
in multiple contexts scenarios (open-sky, trees, urban and urban
canyon), with two distinct GNSS receivers, and in an airplane
ground inspection scenario. The maximum positioning error is
reduced by up to 68% with respect to M-estimators.

Index Terms—Localization, Probability and Statistical Meth-
ods, Machine Learning for Robot Control.

I. INTRODUCTION

GLOBAL Navigation Satellite System (GNSS) techniques
play a decisive role in outdoor navigation. However,

it faces a number of critical shortcomings to meet the re-
quirements of new applications, such as autonomous vehicles
which evolve in complex environments. Indeed, the presence
of multipath or non-line-of-sight (NLOS) measurements can
produce severe outliers, which strongly affect the accuracy of
standard solutions. Various methods have been proposed to try
to tackle this problem [1]–[4].

Robust statistics were first developed for regression prob-
lems with outliers [5]–[7]. Since then, robust estimators have
been widely applied to various domains, including signal
processing [8], [9], and in particular GNSS [10]. Recently,
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the application of M-estimators has been proved to be much
useful to mitigate the impact of signal reflections, working
directly on the pseudoranges, inside the extended Kalman filter
(EKF) framework [11]–[13]. However, the main drawback is
that M-estimators rely on parameters, which encode a trade-
off between efficiency and robustness, and are usually fixed.
In this work, we propose a data-driven approach to adapt such
parameter to the dynamic navigation environment.

In parallel to robust estimation, various machine learning
(ML) methods were proposed to detect multipath or to estimate
measurement uncertainty, based on support vector machine
[14], decision trees [15], or neural networks [16], [17]. The
use of ML at the receiver level has also been investigated
[18], [19]. All of these studies relate to the GNSS signal.
If working at this level is more informative, it nevertheless
requires changing the architecture of the receiver itself, which
is a complex and time-consuming task. Therefore we focus
on GNSS observations (i.e. pseudoranges, Doppler frequency)
and other GNSS indicators e.g. the number of visible satellites,
constellation geometry.

In the observation domain, ML was used to learn specific
three-dimensional corrections to the state estimation, but this
highlighted a crucial challenge of this application: the number
of visible satellites changes with time, thus making it hard to
design an ML application taking them as inputs. Two solutions
were proposed: considering filtering estimates as a proxy of
the satellite information [20], or using set transformers which
are agnostic to changing input dimension [21]. The former
degrades the information brought by the satellites, while the
latter involves heavy computations.

To overcome these limitations, we propose in this work a
data-driven approach, in the observation domain, based on two
key ideas, in order to both simplify the learning problem at
hand, and improving its generalization potential.

• Only a single parameter is learned, the hyper-parameter
related to the M-estimator, here using the Huber loss
function.

• The satellite data is preprocessed with a standard sta-
tistical tool: the empirical probability density function
(PDF) of the residuals is considered, thus removing the
dependence to both the number and order of the satellites.

This learning-enhanced adaptive robust methodology is val-
idated on real-world data from a wheeled robot evolving
in different environments: multiple contexts on the ISAE-
SUPAERO campus (open-sky, trees, urban and urban canyon),
and in an aircraft ground inspection scenario. Tests include
different hardware and geometries of the GNSS constellation.
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The rest of the paper is organized as follows: Section II
recalls robust statistics-based GNSS navigation. Section III
introduces the proposed LEAR-EKF, and in particular the
considered learning problem. Then, experimental validation is
presented in Section IV for all considered navigation scenarios.
Section V concludes the paper.

II. ROBUST STATISTICS-BASED GNSS NAVIGATION

A. Considered Models for GNSS Navigation

In the context of GNSS navigation, the state vector is
commonly defined as xk =

[
p⊤
u,k v⊤

u,k bu,k du,k
]⊤

,
where pu,k =

[
xu,k yu,k zu,k

]⊤
is the user’s position,

vu,k =
[
ẋu,k ẏu,k żu,k

]⊤
its velocity, and bu,k and

du,k are referred as the receiver’s clock bias and clock drift,
respectively [22, p.473], [23, p. 264].

Assuming a single-frequency GNSS receiver in nominal
conditions, i.e. without multipaths, we can measure the pseu-
dorange, ρj,k, and the pseudorange rate, ρ̇j,k, for the jth

satellite at a given instant k, which can be modeled by[
ρk

ρ̇k

]
︸ ︷︷ ︸

zk

=

[
∥pu,k − pj,k∥2 + bu,k + ϵj,k
e⊤j,k(vu,k − vj,k) + du,k + ϵ̇j,k

]
︸ ︷︷ ︸

hk(xk)

+

[
nρ,k

nρ̇,k

]
︸ ︷︷ ︸

nk

,

(1)
where pj,k and vj,k are the jth satellite’s position and velocity
vectors respectively; ej,k is the line-of-sight (LOS) unit vector
from satellite j to the receiver; ϵj,k and ϵ̇j,k represent the
other elements which are known from broadcast navigation
message, i.e. satellite clock bias, clock drift, relativistic bias,
instrumental group delay as well as ionospheric and tropo-
spheric propagation delays; measurement noises are denoted
by nρ,k and nρ̇,k.

A robot with low dynamics is considered in this work, thus
a constant velocity process model is adopted

pu,k

vu,k

bu,k
du,k


︸ ︷︷ ︸

xk

=


I3 ∆t · I3
03 I3

06×2

02×6
1 0
0 ∆t


︸ ︷︷ ︸

Fk−1

xk−1 +wk−1. (2)

The process noise matrix is given by

Q = σ2
aGI3G

⊤, (3)

where σ2
a is the acceleration noise variance, I3 the 3×3 identity

matrix, G =

[
∆t2/2 · I3
∆t · I3

]
, ∆t being the sampling period.

If wk−1 and nk are distributed as Gaussians, then the well-
known EKF provides an accurate estimate of xk. However, in
the case of challenging GNSS environment, this assumption
does not hold and faulty measurements will consequently have
a non-negligible impact on the estimation if not accounted for.
This is why recent studies relied on filters based on robust
statistics [11], [13], which we recall thereafter.

B. Robust M-Estimation

Many estimation problems, such as linear regression, are
classically solved by the least-squares (LS) estimator, mini-
mizing the sum of the l2-norm of residuals (ri)1≤i≤n

x̂LS = argmin
x

n∑
i=1

(
ri(x)

σi

)2

= argmin
x

n∑
i=1

(ri(x))
2
, (4)

where σi is a known or previously estimated scale parameter
of the corresponding observation, and ri(x) = ri(x)/σi. The
LS estimator is optimal under Gaussian assumption (and yields
the standard EKF [24]). However, it loses its efficiency when
the normality assumption is not satisfied, which is generally
the case when dealing with outliers in the measurements. The
key idea behind M-estimation is to generalize the maximum
likelihood estimator by minimizing the sum of a general loss
function ρ(·)

x̂M = argmin
x

n∑
i=1

ρ (ri(x)) . (5)

It can be shown [25, p.179] that x̂M satisfies

n∑
i=1

w (ri(x̂M)) ri(x̂M)
∂ri(x)

∂x

∣∣∣∣∣
x=x̂M

= 0, (6)

where w(·) is the weight function derived from ρ(·). Equation
(6) can be solved by an iterative reweighted least-square
(IRLS) process where the weights are given by w(ri(x̂)),
updated at each IRLS iteration. In the following we write

x̂M
IRLS
= argmin

x
∥r(x)∥2W(x)−1 , (7)

where W(x) is the weighting diagonal matrix defined for each
iteration n of the IRLS as (we drop the dependency on x(n),
redundant with (n), for the sake of readability)

W(n) = diag
[
w
(
r(x(n))

)]
. (8)

In the literature there exists several loss functions [26],
we focus on the Huber loss in this paper. It is a com-
promise between the l1-norm (less sensitive to outliers, but
not differentiable at zero) and the l2-norm (differentiable
everywhere, but highly sensitive to outliers) loss functions,
behaving quadratically for small residuals and linearly for
large ones. The Huber loss is formulated as

ρ(α) (r) =

{
r2/2 if |r| ≤ α

α|r| − α2/2 if |r| > α
, (9)

w(α) (r) = min
{
1,

α

|r|

}
, (10)

where α ∈ R+ is a hyper-parameter which controls the
transition between l1-norm and l2-norm loss. Its standard
value is 1.345, which guarantees an efficiency of 95% under
Gaussian noise [27]. The Huber loss was used in a number of
studies related to robust GNSS navigation, e.g. [11], [28] and
[13]. Fig. 1 shows how α impacts the weight function.
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Fig. 1. Huber weight function w(α)(·) for different hyper-parameter values.
The limit case is equivalent to a l2-norm loss (LS).

C. M-Estimation EKF

In order to mitigate the influence of outliers, an M-
estimation EKF (M-EKF) was proposed [11], [13]. It does not
impact the prediction step, since the process model is linear,
given by

x̂k|k−1 = Fk−1x̂k−1|k−1, (11)

Σk|k−1 = Fk−1Σk−1|k−1F
⊤
k−1 +Qk−1. (12)

The M-EKF update is based on the M-estimator presented in
Section II-B, obtained using an IRLS. As the M-esitmation
is defined for LS, the update step is first rewritten in an
equivalent augmented batch LS form via linearization [24]

z̃k = H̃kxk + ñk, (13)

where Hk is the Jacobian of hk about x̂k|k−1

z̃k =

[
x̂k|k−1

zk − hk(x̂k|k−1) +Hkx̂k|k−1

]
, H̃k =

[
I
Hk

]
,

and the covariance of ñk is given by

E
{
ñkñ

⊤
k

}
= R̃k =

[
Σk|k−1 0

0 Rk

]
= LkL

⊤
k ,

where Lk can be obtained by the Cholesky decomposition.
Similarly to (4), the regression problem (13) is normalized

L−1
k z̃k︸ ︷︷ ︸
zk

= L−1
k H̃k︸ ︷︷ ︸
Hk

xk + L−1
k ñk︸ ︷︷ ︸
nk

, (14)

so that E
{
nkn

⊤
k

}
= I. While the EKF would define the a

posteriori state through a standard LS in the form of (4), the
M-EKF is based on (5), which in turn brings

x̂k|k
IRLS
= argmin

xk

∥∥zk −Hkxk

∥∥2
Wα(xk)−1 , (15)

where Wα(xk) is given by (8). Thus for each iteration n

W(n)
α = diag

[
w(α)

(
zk −Hkx̂

(n)
k

)]
. (16)

Equation (15) can thus be solved by the following succes-
sive weighted LS estimator

x̂
(n+1)
k =

(
Hk

⊤
W(n)

α Hk

)−1

Hk
⊤
W(n)

α zk, (17)

Σ
(n+1)
k =

(
Hk

⊤
W(n)

α Hk

)−1

. (18)

The convergence criterion is
∥∥x̂(n+1) − x̂(n)

∥∥ /∥∥x̂(n)
∥∥ ≤ δ,

with δ > 0.
A limitation of the Huber loss function in the GNSS

navigation framework is that the hyper-parameter α is set as
fixed, which may not be suitable for a given environment,
making the robust M-EKF perform poorly. Indeed, it could be
more appropriate to have a strong aggressive down-weighting
in a harsh environment context while fairly tolerant when the
environment is just slightly challenging. The adaptive robust
concept was inspired with the key idea to automatically tune
α allowing the model to adapt the robustness according to
the environment in which the robot operates. The achieved
performance improvement with such methodology is assessed
in section IV through real-world data obtained during mea-
surement campaigns.

III. MACHINE LEARNING FOR ROBUST GNSS
NAVIGATION

A. Methodology: Learning a single parameter

The adaptive robust GNSS navigation method proposed in
this work revolves around a main idea: adapting α used in the
M-EKF in order to handle changing navigation conditions.
As these conditions are hard to model in a dynamic context,
we resorted to data-driven methods to infer this parameter.
This results in the Learning-Enhanced Adaptive Robust EKF
(LEAR-EKF), illustrated in Fig. 2, in which the update pa-
rameter α of the M-EKF is inferred at each step from the
received information. This means that, compared to (15), the
navigation estimate at step k is given by

x̂LEAR
k|k

IRLS
= argmin

xk

∥∥zk −Hkxk

∥∥2
Wαk

(xk)
−1 , (19)

where αk is inferred from the available data. Compared to
other works trying to directly infer position corrections [20],
[21], the rationale of the proposed approach is to get the best
from both robust statistics and data-driven methods. As it was
already successfully shown in other navigation problems [29],
estimating only α simplifies the problem, which should help
generalization, while still benefiting from the good properties
of the M-EKF.

Fig. 2. Diagram of the LEAR-EKF, where the hyper-parameter α is inferred
then applied to the Huber loss function within the M-estimation update step.
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B. Defining the Learning Problem

This work focuses on supervised methods. However, even
if one has access to a reference trajectory, there is no clear
reference for the parameter α which should be used at each
step. Keeping in mind that it should represent how challenging
the environment is, we propose to quantize its value, turning
the problem into a classification one. Let A = {α(1), . . . , α(p)}
denote the considered p different values. Considering the role
of α in the M-EKF update, a logarithmic scale was considered,
so that, for some α0, β1, . . . , βp:

∀1 ≤ m ≤ p, α(m) = α0 exp(βm). (20)

The reference value αGT
k is then computed following the

process illustrated on Fig. 3. An M-EKF is executed for which,
at each step, the best α ∈ A is chosen according to

αGT
k = argmin

α∈A
J (p̂u,k|k,α,p

ref
u,k, α

GT
k−1). (21)

The cost function J (·) focuses on the horizontal accu-
racy, while ensuring a certain stability of the parameter,
so that J (·) = ∥(x̂u,k|k, ŷu,k|k)α − (xu,k, yu,k)ref∥2 +
λ(log(α/αGT

k−1))
2, where λ is a regularization parameter and

((·)k|k)α represents the solution of (15) for a given α. See
Section IV-B for the values used herein.

Fig. 3. Process followed to generate the optimal Huber hyper-parameter. A
cost computation block to the reference was looped with the M-EKF.

C. Choice and Preprocessing of the Input Data

It was already shown that GNSS standard features can
be used to detect degraded conditions [15], [30]. Leveraging
learning methods, they can also improve localisation [20],
[21]. The latter studies highlight that implementation is not
trivial due to the varying structure of the problem: the number
of visible satellites varies, and the computations should be
invariant to their order. Several solutions were proposed to
tackle this problem, such as considering set-valued algorithms
[21], which are computationally intensive, or using the output
of a filter as a proxy [20], which may destroy information.

In this work, we propose to circumvent the problem by
using the empirical PDF of satellite related values. On top
of fixing the input size and discarding order issues, this has
the advantage to generate inputs in the form of probability
vectors, avoiding scale issues [31]. We consider the normalized
observation residuals by the corresponding satellite measure-
ment covariance root value, as rj,k = [Rk]

−1/2
j,j rj,k for the

jth satellite. This takes into account the signal quality of each
satellite, through their so called carrier-to-noise power density
ratios (C/N0), which do not need to be added to the inputs.
Their PDF is computed on K manually defined bins, where
the first and last ones are unbounded (i.e. gather all values
smaller and larger than its threshold respectively). The number
of satellites in view (NSV) is considered, as well as the quality
of their geometry through the horizontal dilution of preci-
sion (HDOP), computed as HDOPk =

√
Tr[

(
H⊤

k Hk

)−1

1:2,1:2
],

where Tr[·] represents the trace operator. Finally, since α
links the predicted state x̂k|k−1 and the observation residuals,
we also consider the lower triangular values of the prior
covariance Σk|k−1 related to the horizontal position. The
inputs, along with their domain of definition, are reported in
Table I, where the total input dimension is K+5. The rationale
is as follows: the empirical PDF information is completed with
the values classically used to estimate the residual distribution.

TABLE I
CHOSEN LEARNING INPUTS

Variables Dimension
Empirical PDF of normalized residuals K

Prior horizontal position covariance 3
Horizontal dilution of precision (HDOP) 1

Number of satellites in view (NSV) 1

IV. EXPERIMENTAL VALIDATION ON A WHEELED ROBOT

A. Experimental Setup

The proposed LEAR-EKF was evaluated on experimental
data acquired by a wheeled inspection robot evolving in
challenging and diverse scenarios. For GNSS navigation, the
diversity of data comes from three sources: the 3D environ-
ment, the hardware, and the satellite configuration (constel-
lation geometry, visible satellites number and IDs). In this
regard, measurements from five trajectories were collected:
Three trajectories recorded on the ISAE-SUPAERO campus
in a multi-contexts scenario recorded at t0, t0+30 minutes,
t0+3 hours, denoted “Multi-contexts(A)”, “(B)” and “(0)”
respectively. This is the red path on Figure 4. One trajectory
which loops five times around the same building, marked by
“D” on Figure 4, denoted “Loops” and recorded at another
date. Finally an aircraft inspection scenario, demonstrated
in Fig. 5, with an Airbus A320 parked in an open apron.
The aeroplane has a strong reflective curved metal surface
with wide wingspan and high tail, which could easily generate
multipaths and NLOS conditions. Multi-contexts(B) recorded
observations using the MSR, the others relied the u-blox.

Multi-contexts(0) and Loops trajectories were used as train-
ing set, the three others formed the test set. This allowed test-
ing generalization against a different constellation geometry
(Multi-contexts(A)), a different receiver (Multi-contexts(B)),
and a different environment (aircraft).

A positioning reference system was set up consisting of two
NovAtel PwrPak7-E1 GNSS+IMU and a dedicated Waypoint
offline post-processing software. One of the combined systems
was configured as the base station (connected to an antenna
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Fig. 4. Up: The ISAE-SUPAERO campus on which the measurements were
obtained. In red: the multi-contexts scenario. The building marked with ”D” is
the one around which the Loops trajectory was acquired; Down: representative
fish-eye views of the environments (from the left): open-sky, trees, urban and
urban canyon with suspended walkways.

Fig. 5. Left: aircraft ground inspection by robot, with a real A320 airplane
at the open apron, Aéroscopia, France; Right: inspection trajectory with stop
points to be performed by the rover.

Fig. 6. Rover employed for the measurement campaigns.

mounted on the rooftop of our laboratory and having a well
known position) and the second as the mobile station (set up
on the rover), thus enabling to perform DGNSS (Differential
GNSS) corrections. Both antennas used in the experiments are
active and high precision NovAtel antennas. The combination
of DGNSS and IMU provides continuously available position,
velocity and attitude even through short periods of time when
satellite signals are blocked or unavailable, with an accuracy
of the solution up to centimeter-level thanks to offline post-
processing. The rover, shown in Fig. 6, was equipped with a
u-blox M8T commercial receiver, providing GPS and Galileo
data (pseudorange, Doppler frequency, C/N0) at 5 Hz and a
USRP-X310 (Universal Software Radio Peripheral) from Ettus
used as a front-end. The latter provides combined 32-bit in-
phase and quadrature samples of the GNSS signal at 4 MHz.
These samples are then post-processed by a homemade GNSS
software receiver (MSR) [32]. This software receiver is based
on a generic bi-constellation (GPS and Galileo) receiver [22]
which has been developed in Matlab within our laboratory.
The mobile NovAtel PwrPak7-E1, the u-blox M8T and the
USRP-X310 are connected to the same antenna through a
signal splitter.

B. Implementation Details

Four levels for the value of α were considered around 1.345
, i.e. p = 4 in (20), with α0 = 1.345, and β1, . . . , β4 =
{−2,−1, 0, 1}. In (21), the regularization parameter λ was set
to 0.5, meaning that a jump between two consecutive levels of
α would require a positioning improvement of about a meter.
The PDF of the normalized residuals was computed on K =
32 bins, the thirty central ones being equally spaced between
−4 and 10.

Data augmentation was carried out on the training set, both
on the multi-contexts(0) and the Loops trajectories. A second
set of input-output pairs was obtained as follow: at each up-
date, white noise was added to the prior horizontal position and
the measurements, which became p̂2D

u,k|k−1+εp2D
k , and zk+εzk

respectively. They were distributed as εp2D
k ∼ N (0, γΣ2D

k|k−1)
and εzk ∼ N (0, γRk), with γ = 0.12. Σk|k−1 and Rk were
adjusted accordingly.

A multilayer perceptron (MLP) with 2 hidden layers, of re-
spective size 83 and 248, and hyperbolic tangent (Tanh) hidden
layer activations [33] were used as the learning algorithm. The
full implementation was done in Matlab.

The acceleration noise variance was set as σ2
a = 1.05

m2·s−4. The variances of nρ,k and nρ̇,k are based on the
sigma-ε model [34], which links the C/N0 measurement to
the observation variance, defined by σ2

ρj
= σ2

ρ · 10−(C/N0j)/10,
σ2
ρ̇j

= σ2
ρ̇ ·10−(C/N0j)/10, where σρ = 200 m and σρ̇ = 30 m/s.

The state and covariance estimates were initialized by a LS
estimator (weighted by GNSS measurement covariance Rk)
after convergence, through a single point positioning procedure
in an open-sky environment.

C. Results

1) Classifier performance: Since the LEAR-EKF is funda-
mentally a recursive algorithm, we considered the following
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metric to evaluate the trained classifier: at each update step,
the inferred αk was compared to the one defined by (21) with
the current data. The obtained classification performances are
reported in Table II, where we can see that the learned model
was able to generalize well for the trajectories recorded with
the u-blox, with over 74% of correct optimal α class inference.
The accuracy is slightly degraded for the MSR receiver, down
to 68.9%, but is still satisfactory.

As mentioned at the end of Section III-C, the inputs can be
seen a made of two parts, the empirical distribution (the K first
inputs of the PDF), and the estimated one (given by the last
five inputs). To assess the importance of considering both, we
have trained two classifiers, each having only one of the parts
as learning inputs. In both cases the classification accuracy
dropped under 40%. This thus confirms that the interaction
between both parts of the learning inputs defined in Table I
plays a key role for this study.

TABLE II
CLASSIFICATION ACCURACY

Type Dataset Receiver # samples Accuracy
Training validation u-blox 21548 77.5%

Test
Multi-contexts(A) u-blox 4719 79.0%
Multi-contexts(B) MSR 4386 68.9%
Aircraft inspection u-blox 2493 74.2%

2) Positioning performance: We are primarily interested
in the output trajectory. Thus the main considerations are:
is this classification score enough to ensure positioning as
accurate or better than that of the M-EKF? And how does
it compare to a commercial off-the-shelf GNSS navigator,
such as the u-blox M8T solution? In order to answer these
questions, the estimation results of the classical EKF, the
standard M-EKF(α(3)) with fixed α(3) = α0 exp(0) = 1.345,
a more conservative one, denoted, M-EKF(α(1)) with fixed
α(1) = α0 exp(−2) = 0.182, the u-blox M8T navigation
solution and the proposed LEAR-EKF are compared to the
reference system. To assess their performances, the two-
dimensional root-mean-square error (RMSE) in the North-East
frame covering all the trajectory, the horizontal root-square
error (RSE) at each step k, and the empirical cumulative
distribution function (CDF) of their errors were computed.

The results for the three test trajectories are given respec-
tively in Fig. 7, Fig. 8 and Fig. 9. In each case, the 2D posititon
error over time, the inferred α at each step, and the empirical
CDF are shown. The overall 2D RMSE, the error at 95% of
the CDF and the maximum error are reported in Table III.
The standard EKF is strongly degraded in terms of maximum
error, showing how challenging these environments are. It is
interesting to notice that all the other three methods perform
similarly for the first 90% of the CDF, thus showing robustness
in most cases. However, the LEAR-EKF stands out in the most
difficult parts.

For the multi-contexts(A) trajectory, the LEAR-EKF re-
duces the maximum 2D RSE by 14.5% and 11.2% compared
to the M-EKF(α(3)) and M-EKF(α(1)) respectively. It occurred
when passing under the suspended walkways between 550-
700s (urban canyon). One can also notice that the LEAR-EKF
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Fig. 7. Performances with the multi-contexts (A) trajectory: Up: 2D RSE
over time; Middle: applied α over time ; Down: empirical CDF with zoom.
Sections (roughly): before 150s: open-sky, 150-400s: trees, 400-550s: urban,
550-700s: urban canyon, after 700s: canyon.
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Fig. 8. Performances with the multi-contexts (B) trajectory using raw
measurements provided by Ettus receiver: Up: 2D RSE over time; Middle:
applied α over time ; Down: empirical CDF with zoom. Sections (roughly):
before 150s: open-sky, 150-350s: trees, 350-500s: urban, 500-600s: urban
canyon, after 600s: canyon.

 



DING et al.: LEARNING-ENHANCED ADAPTIVE ROBUST GNSS NAVIGATION IN CHALLENGING ENVIRONMENTS 7

TABLE III
POSITIONING PERFORMANCES

Multi-contexts(A) Multi-contexts(B) Aircraft inspection
raw measurements by u-blox raw measurements by MSR raw measurements by u-blox

2D RMSE 2D RSE (m) 2D RMSE 2D RSE (m) 2D RMSE 2D RSE (m)
(m) 95% CDF Maximum (m) 95% CDF Maximum (m) 95% CDF Maximum

EKF 1.40 2.84 5.92 1.65 3.06 4.37 2.89 6.06 10.75
M-EKF(α(3)) 1.30 2.53 5.10 1.48 2.70 3.61 2.46 3.97 10.29
M-EKF(α(1)) 1.51 3.06 4.91 1.48 3.07 4.02 1.53 2.56 3.33
u-blox M8T 1.43 2.49 3.58 1.61 3.28 4.56 1.85 3.11 4.16
LEAR-EKF 1.37 2.67 4.36 1.43 2.80 3.41 1.51 2.56 3.28
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Fig. 9. Performances with the aircraft inspection trajectory: Up: position
estimates ; Second: 2D RSE over time ; Third: applied α over time ;
Down: empirical CDF with zoom. The starting and finishing points are both
5-6 meters in front of the nose of the airplane. The section of 230-250s
corresponds to the inspection point totally under the right wing, between the
main landing gear and the engine nacelle.

alleviates the loss of efficiency of the M-EKF(α(1)) between
50-100s (open-sky) and 250-350s(trees). We can notice that,
during challenging sections, where the M-EKF(α(3)) shows
strong errors, weaker values of αk are preferred which ap-
propriately penalize the outliers, and larger ones are inferred
in nicer environments. The u-blox M8T solution also gives
comparable performances.

For the multi-contexts(B) trajectory with raw measurements
provided by the MSR, similar results are observed. The LEAR-
EKF reduces the maximum 2D error by 5.5%, 15.2% and
25.2% compared to the M-EKF(α(3)), M-EKF(α(1)) and u-
blox M8T solution. This happens between 500-600s (urban
canyon), where small αk are inferred. Meanwhile, between
200-250s (trees), the M-EKF(α(1)) performs badly, while the
LEAR-EKF chooses intermediate values for αk and alleviates
this breakdown. This shows the generalization capability of
the learned hyper-parameter adapter with respect to the GNSS
receiver and satellite configuration.

The aircraft inspection trajectory is a more challenging
scenario with entirely different environment and satellite con-
figuration. The LEAR-EKF mitigates the breakdowns of the
M-EKF(α(3)) by enforcing small αk values most of the time,
thus having the same performances as the M-EKF(α(1)).
The maximum 2D error is reduced by 68% and 21% when
compared to the M-EKF(α(3)) and the u-blox M8T solution
respectively. Thus, the LEAR-EKF is able to generalize to
another 3D environment.

Finally, the proposed LEAR-EKF proved to be a more
robust positioning solution in various situations, in different
environments, with different satellites configurations, and us-
ing different hardware.

V. CONCLUSION

This paper proposes to enhance robust statistics-based es-
timators for GNSS navigation with data-driven methods to
better handle challenging and changing environments. The in-
troduced LEAR-EKF infers the hyper-parameter of the Huber
loss function from the available satellite data, whatever their
number, yielding a more conservative behavior in the presence
of many outliers. In real-world scenarios, including multiple
contexts (open-sky, trees, urban and canyon) trajectories with
different GNSS receivers, and an airplane ground inspection by
a robot, the LEAR-EKF performs better or equally well than
the M-EKF with different fixed hyper-parameters, and as well
as the u-blox M8T commercial GNSS solution. In particular,
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it manages to avoid their largest breakdowns. This validates
a methodology which is simple and lightweight, the resulting
neural network has about twenty-five thousand parameters. In
future works, we will explore the extension of the LEAR-EKF
to a broader set of problems.
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