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Abstract—In this paper, we consider the problem of designing
sparse signal representation (SSR) amid colored noise. Two
processing architectures are examined under a Bayesian frame-
work: i) a two-stage processing with a prewhitening operation
followed by SSR assuming a perfect white noise ii) a joint
approach estimating at the same time the sparse signal and
the colored noise. Both approaches are compared; performance
is numerically studied in case of conventional radar scenarios.
Results show that the joint algorithm outperforms to some
extent the prewhitened approach but at the expense of a higher
complexity.

I. INTRODUCTION

These last few years a plethora of sparse signal repre-
sentation techniques have been developed and advocated for
to estimate radar target scene [1]. Quite often, they have
been developed assuming a sparse signal of interest (i.e.,
target signatures) amid white noise. To adapt the algorithms
to practical radar scenarios where diffuse clutter and hence
colored noise arises, it is usually recommended to apply a
prewhitening operation to filter the clutter component before
performing SSR assuming a perfect white noise, e.g., [1],
[2]. However, since the noise covariance matrix (CM) is
not known, it is replaced in practice by an estimate thereby
rendering the assumption of white noise incorrect.

Alternatively, a very few techniques are considering a joint
estimation approach in which the colored noise is jointly
estimated with the sparse signal [3]–[5]. This processing
architecture bypasses de facto the white noise approximation
encountered in the previous architecture.

One may thus wonder which approach yields better per-
formance and, more particularly, if the perfect white noise
assumption usually recommended is that deleterious compared
to the joint approach. A similar question was addressed
in [6] but investigation was conducted outside the framework
of sparse representation. In this paper, we try to give first
elements of response to this question considering Bayesian
SSR. Particularly, an important task is first to clearly ask
the question by i) defining the signal model considered; ii)
describing both processing architectures; iii) defining outputs
of interest to our processing as well as performance metrics.
Then, since no closed-form estimation can be performed with
our Bayesian model, numerical simulations need to be run
to compare both architectures on specific scenarios. Hence,

results obtained can determine only partially if, and how far,
one architecture outperforms the other.

In the remaining of the paper, Section II describes the
Bayesian signal model used to design both SSR architectures
presented in Section III and detailed in Section IV. Numerical
simulations are provided in Section V while the last Section
includes some concluding remarks.

II. BAYESIAN SIGNAL MODEL

In this work, we consider a Gaussian and homogeneous
environment for the data while prior information is injected
about the sparse signal and the noise CM.

A. Observation vectors

We assume to have primary and secondary data. Primary
data consists of the sum of a sparse signal of interest plus
colored Gaussian noise. The associated sparsifying dictionary
is supposed to be known. Secondary data consists of colored
Gaussian noise only with the same distribution as the primary
noise. This is summarized by

for n ∈ {0, . . . , Np − 1}
y(p)
n = Hxn + n(p)

n with n(p)
n ∼ CNM (0,R) (1a)

for n ∈ {0, . . . , Ns − 1}
y(s)
n = n(s)

n with n(s)
n ∼ CNM (0,R) (1b)

with
Np, Ns the number of primary and secondary data;
y

(p)
n , y(s)

n the primary and secondary observation vectors
of length M ;

H the sparsifying dictionary of size M×M̄ where
M̄ is the length of the sparse signal to be
reconstructed (usually M̄ �M );

xn’s the M̄ -length sparse vectors to be estimated;
R the unknown noise covariance matrix.

We assume statistical independence between the xn, n(p)
n and

n
(s)
n ’s. In the following, matrix expressions are sometimes

favored to describe the observation model (1), i.e.,

Y (p) = HX +N (p) (2a)

Y (s) = N (s) (2b)



where matrix notations are generically defined as Y ,[
y1 . . . yNp

]
. The likelihood function is given by

f(Y (p),Y (s)|X,R) ∝ f(Y (p)|X,R)f(Y (s)|R)

with

f(Y (p)|X,R) ∝ etr{−R−1(Y (p)−HX)(Y (p)−HX)H}
|R|Np

(3)

f(Y (s)|R) ∝ |R|−Ns etr
{
−R−1Y (s)Y (s)H

}
(4)

where ∝ means proportional to, |.| is the determinant of a
matrix and etr {.} is the exponential of the trace.

In radar, the model (2) can represent the signal received
from a narrowband waveform in a homogeneous environment
with y(p)

n the signal from a range gate where targets are likely
present and y(s)

n the signal from a range gate known to be
target-free. For a pulse Doppler radar, H can typically be a(n)
(oversampled) Fourier dictionary and X the target amplitude
matrix in the (primary) range-Doppler map.

In any event, a Bayesian framework is further assumed,
meaning that each unknown parameter (i.e., X and R) is
considered as random with a given prior as described next.

B. Prior model

1) Sparse signal: A sparsity-inducing prior is assigned to
the signal of interest X1. As an example to answer to our
central question, we assume the elements of X independent
and identically distributed according to a Bernoulli-Student-t
law, i.e.,

π(X) =

Np−1∏
n=0

M̄−1∏
m̄=0

π([xn]m̄) (5)

where each element [xn]m̄ has a two-stage hierarchical prior

π([xn]m̄) =

∫ ∫
π([xn]m̄|w, σ2

x)π(w)π(σ2
x)dwdσ2

x (6)

and

π([xn]m̄|w, σ2
x) = (1− w)δ([xn]m̄) + wCN

(
[xn]m̄|0, σ2

x

)
(7a)

π(w) = I[0,1](w) (7b)

π(σ2
x) = IG

(
σ2
x|β0, β1

)
(7c)

with CN (|, ) the complex Gaussian pdf probability density
function (pdf) with given mean and variance, IG (|, ) the
inverse gamma pdf with given shape and scale parameters,
δ() the Dirac delta function and I(.) the indicator function on
a given set. The distributions described by the pdfs (7a), (7b)
and (7c) are respectively Bernoulli-Gaussian, Beta and inverse
Gamma; they are denoted respectively by BerCN

(
w, 0, σ2

x

)
,

Be (1, 1), IG (β0, β1).
Going back to our former pulse Doppler radar example,

the prior (5)-(6)-(7) actually assumes that a target is likely
present for each range gate n and each Doppler bin m̄ with
an unknown probability w and, if so, its amplitude is Gaussian

1On the contrary, in [6] the prior on X is assumed noninformative and
chosen uniform.

distributed with an unknown power σ2
x. This prior has proved

to be adequate to recover sparse target scene, e.g., [5]. Note
that in practice, the radar operator has only to set the values
of β0, β1 (recommendations can be found e.g., in [5]).

2) Noise covariance matrix: As in [6] we restrict the study
to a specific family of priors defined as

π(R) ∝ 1

|R|ν+M
etr
{
−R−1A

}
. (8)

We assume that ν ≥ 0 and A is a positive-semidefinite
Hermitian matrix. The family of prior (8) enables not only
mathematical tractability but also includes well known priors.
In particular, it reduces to a so-called Jeffrey’s prior when
ν = 0 and A = 0 [7], i.e.,

πJ(R) ∝ |R|−M (9)

and to an inverse complex Wishart prior when ν > M and A
is positive definite [8], i.e.,

πIW (R) =
|A|ν

|R|ν+M

etr
{
−R−1A

}
πM(M−1)/2

∏M
m=1 Γ(ν −m+ 1)

(10)

with Γ() the Gamma function. The distribution described
by (10) is denoted as R ∼ CW−1

M (A, ν). The Jeffrey’s prior is
known as an noninformative prior whereas the inverse complex
Wishart prior can be made very informative according to the
degree of freedom ν.

III. OVERVIEW OF TWO SSR ARCHITECTURES

In the following, we focus on two SSR architectures that
can be designed from the Bayesian signal model described in
Section II. They are represented in Figs. 1 and 2 and tagged
by “preW-SSR” and “C-SSR”, respectively.

The first considered architecture preW-SSR is often rec-
ommended in the literature. In this approach, secondary data
Y (s) are used only to estimate the noise CM R (or more
precisely the inverse R−1) to further whiten the primary data
Y (p). Assuming then a perfect whitening, an SSR algorithm is
applied to estimate the sparse signal X amid white noise. The
second architecture C-SSR has not been intently investigated
so far in the framework of sparse representation. In this
approach, primary and secondary data are used jointly to
estimate both the covariance matrix R and the sparse signal
X .

Some important differences appear between both architec-
tures especially since we consider a Bayesian framework.
• In the preW-SSR architecture, primary data is whitened

by an estimate of the noise CM. This means that one
has to choose a specific estimator whereas in the C-SSR
architecture no such hard decision is made within the
processing. Using only a point estimate to whiten the
data (instead of the full posterior) may lead to a loss of
information about the noise CM. In this paper, we choose
the MMSE (Minimum Mean Square Error) estimator as
a point estimate.
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Fig. 1. Flowchart of Bayesian SSR architecture with prewhitening (preW-SSR).
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Fig. 2. Flowchart of Bayesian SSR architecture with joint estimation in colored noise (C-SSR).

• In the preW-SSR architecture only Ns data are used to
estimate the noise CM whereas Ns+Np are used in the C-
SSR approach. If only a few secondary data is available,
the preW-SSR architecture may thus be detrimental to the
estimation of the noise CM and hence to prewhitening.

• In the preW-SSR architecture, the first-stage processing
assumes perfect whitening. Though in practice, since an
estimate is used rather than the true noise CM, this
assumption is erroneous (for both the whitened noise and
dictionary) and may lead to performance degradation in
the subsequent SSR in white noise.

• Finally, each architecture leads to a posterior pdf of the
sparse vector. A question arises then on how comparing
the performance of both architectures. To that end, we
choose in this work to focus on a specific Bayesian
estimator of X , namely the MMSE estimator, and use a
specific performance metrics described later in Section V.

IV. BAYESIAN SSR ALGORITHMS

In this Section, we detail the SSR algorithms implemented
in both studied architectures.

A. Principle of Bayesian SSR algorithm

To estimate the sparse signal X , we need to derive first its
posterior distribution. Given the Bayesian model of Section II,
the latter has an intricate expression which prevents from
obtaining conventional Bayesian estimators in closed form.
We thus turn to a numerical method dubbed Gibbs sam-
pling [9]. Let denote θ the set of unknown random variables

in the estimation problem. The Gibbs sampler is an iterative
algorithm that generates for each parameter ζ ∈ θ samples
distributed according to its full conditional, i.e., f(ζ|θ−ζ ,Y )
where θ−ζ is θ deprived of ζ and Y represents the data
available in the problem (Y is clarified for each architecture in
what follows). After a burn in period, the iterative procedure
is known to produce samples according to their posterior
f(ζ|Y ). Particularly, the Gibbs sampling technique allows us
to obtain the empirical posterior of X and consequently its
MMSE estimator as an empirical mean, viz

X̂mmse =
1

Nr

Nr∑
t=1

X(t+Nbi) (11)

where
X(t) is the sample of X generated at the t-th iteration;
Nbi is the burn in period of the sampler;
Nr is the number of useful samples.

The Gibbs sampling strategy is used in both SSR architectures.

B. SSR with prewhitening (preW-SSR)

1) Covariance estimation: In the preW-SSR architecture,
the noise CM is first estimated with the secondary data only.
Using Bayes theorem with (4) and (8), the posterior of R can
be expressed as

f(R|Y (s)) ∝ f(Y (s)|R)π(R)

∝ 1

|R|Ns+ν
etr
{
−R−1

[
Y (s)Y (s)H +A

]}



where we recognize an inverse complex Wishart distribution
R|Y (s) ∼ CW−1

M

(
Y (s)Y (s)H +A, Ns + ν

)
. As discussed

in Section III, we choose to whiten the data with the MMSE
estimator of R−1, i.e., [8]

R̂−1 = E
{
R−1|Y (s)

}
=

[
Y (s)Y (s)H +A

Ns + ν

]−1

. (12)

With this choice and in case of a Jeffrey’s prior (9), we
recognize in (12) the conventional sample covariance matrix
defined by N−1

s Y (s)Y (s)H as in [6].
2) Pre-whitening: Once the (inverse) noise CM estimated,

primary data can be filtered as Y̆
(p)

= R̂−1
1/2

Y (p) and the
observation model becomes

Y̆
(p)

= H̆X + N̆
(p)

(13)

where the breve mark .̆ designates the whitening operation via

R̂−1
1/2

. In practice, an important assumption is then usually
made in the preW-SSR architecture. Namely, the whitened
primary noise is supposed to be perfectly white, meaning here
that for n ∈ {0, . . . , Np − 1},

n̆(p)
n ∼

approx.
CNM (0, I) . (14)

3) SSR in assumed white noise: The sparse signal X
is then estimated assuming the signal model (13)-(14). As
explained in Section IV-A, a Gibbs sampling strategy is used.
To determine the full conditionals required to implement each
Gibbs move, we express the joint posterior of θ ,

{
X, w, σ2

x

}
as

f(X, w, σ2
x|Y̆

(p)
) ∝ f(Y̆

(p)
|X)π(X|w, σ2

x)π(w)π(σ2
x). (15)

Full conditionals are then determined by fixing all but one
parameter in (15). Similar calculations have been conducted
in [5] and lead here to the following 3 Gibbs moves

w|Y̆
(p)
,θ−w ∼ Be

(
1 +

∑Np−1
n=0 ‖xn‖0, 1 +NpM̄ −

∑Np−1
n=0 ‖x‖0

)
σ2
x|Y̆

(p)
,θ−x ∼ IG

(∑Np−1
n=0 ‖x‖0 + β0,

∑Np−1
n=0 ‖x‖

2
2 + β1

)
[xn]m̄|Y̆

(p)
,θ−[xn]m̄ ∼ BerCN

(
w̆n,m̄, µ̆n,m̄, η̆

2
m̄

)
where ‖‖2 is the Frobenius norm, ‖‖0 is the number of nonzero
elements and

w̆n,m̄ =

[
1− w
w

σ2
x

η̆2
m̄

exp

{
−|µ̆n,m̄|

2

η̆2
m̄

}
+ 1

]−1

η̆2
m̄ =

{
1

σ2
x

+ ‖h̆m̄‖22
}−1

and µ̆n,m̄ = η̆2
m̄h̆

H

m̄ĕn,m̄

with h̆m̄ the m̄th colon of H̆ and ĕn,m̄ = y̆n −∑
m̄′ 6=m̄[xn]m̄′h̆m̄′ .

C. SSR with joint estimation (C-SSR)
In the C-SSR architecture, full conditionals are determined

using the joint posterior of θ ,
{
X, w, σ2

x,R
}

, i.e.,

f(X, w, σ2
x,R|Y

(p),Y (s)) ∝ f(Y (p)|X,R)f(Y (s)|R)

π(X|w, σ2
x)π(w)π(σ2

x)π(R). (17)

One can show that the Gibbs sampler is the same as described
previously for the preW-SSR architecture albeit an additional
Gibbs move defined by

R−1|Y (p),Y (s),θ−R ∼ CWM

(
M−1, Ns +Np + ν

)
with M = Y (s)Y (s)H + (Y (p)−HX)(Y (p)−HX)H +A
and CW (, ) denotes the complex Wishart distribution. Note
that this Gibbs move is highly computationally intensive.

V. NUMERICAL RESULTS

A. Scenario
Herein, we assess performance of both architectures with

synthetic data generated according to (1). The dictionary
H is a Fourier matrix oversampled with zeropadding factor
nzp. The CM is built as R = Rc + Rn with Rn ∝ I
the thermal noise CM and Rc the clutter CM such that
[Rc]m,m′ ∝ exp

{
−1/2[2πσv(m−m′)]2

}
where σv is the

standard deviation of the velocity of internal clutter motion
(expressed in ambiguous velocity) [10]. The clutter-to-noise
ratio (CNR) is defined as CNR = Tr {Rc}/Tr {Rn}. A single
target with constant amplitude is present in the primary data
with signal-to-interference-plus-noise-ratio (SINR) defined as
SINR = |[xn]m̄|2h

H
m̄R

−1hm̄ with n and m̄ the range gate
and Doppler bin of the target.

B. Single run
Typical range-velocity maps obtained from the MMSE

estimators of the sparse signal X are represented in Fig. 3.
In this example, the number of secondary data is very low
and a noninformative Jeffrey’s prior (9) is chosen for the
noise CM R. Hence, the latter is badly estimated in the
preW-SSR architecture and leads to poor prewhitening. This
translates directly in many false estimations (cf. Fig. 3(b)).
On the contrary, the joint C-SSR approach clearly benefits
from the primary data as a source of information and/or the
absence of approximation about the noise to remove clutter.
Note also, that both architectures have difficulties to identify
if the contribution around zero velocity comes from a discrete
(conveyed in X) or a diffuse clutter (conveyed in R). The
target is identified in both structures.

C. Monte-Carlo simulations
To confirm and better apprehend trends observed in a single

run, we proceed via Monte-Carlo simulations and estimate,
as in [5], the power of the reconstructed MMSE scene after
whitening, i.e.,

PZ , E


∥∥∥∥∥∥R̂−1

1/2 ∑
(n,m̄)∈Z

hm̄ [̂xn]m̄

∥∥∥∥∥∥
2

2





where Z is the set of indices (n, m̄) defining a specific region
in the range-Doppler map. In particular, we define a white
noise zone as illustrated in Fig.3 (targets are excluded from
this zone). The powers of the target PT and the white noise
zone PW are depicted in Fig. 4 for the case Np = 5 and
Np = 1. In both architectures and with an increased number of
secondary data, PT (which is always overestimated) converges
to a value near to that of the true SINR, also the phenomenon
of false estimation in the white noise zone diminishes. PreW-
SSR and C-SSR techniques converge to the same performance.
Overall, C-SSR architecture outperforms that of preW-SSR but
only significantly with few secondary data and an increasing
number of primary data.

VI. CONCLUSION

In this work, we have specified two architectures to estimate
a sparse radar scene in colored noise under a Bayesian frame-
work. The first architecture is often prescribed in the literature
and entails a prewhitened stage assumed to be perfect. The
second architecture is a joint approach that estimates both the
sparse signal and the noise covariance matrix. To conduct a
performance analysis of both architectures, we have set the
limitations of our study (choice of specific noise environment,
priors, point estimators and performance metrics). Numerical
results indicate that the joint approach outperforms the con-
ventional prewhitening-based approach, particularly with few
secondary data and an increasing amount of primary data.
However this is obtained at the expense of a dramatically
increased computational load. Further work should be devoted
to the analysis of more scenarios.
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Fig. 3. Range-velocity map. Scenario: M = 8, Np = 5, Ns = M + 1,
CNR = 15 dB, σv = 0.01va (va is the ambiguous velocity), target (n =
1, m̄ = 3, SINR=20 dB). Processing: nzp = 2 (i.e., M̄ = 16), ν = 0,
A = 0, Nbi = 2E + 3, Nr = 500, β0 ≈ 1E3, β1 =≈ 10E6 (see [5]).
(a) Doppler processing. (b) preW-SSR architecture with sampler initialization
x = 0. (c) C-SSR architecture with sampler initialization x = 0 and R−1 =

(Ns+ν)(Y (s)Y (s)H +A)−1. Square markers indicate true target location.
Diamond markers indicate estimated targets. Doppler processing depicted as
a transparent background in (b) and (c).
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Fig. 4. Power of reconstructed scene after whitening. Scenario is that of Fig. 3 except from Np value and a varying number of secondary data Ns. 2E + 3
Monte-Carlo runs. Scenario with Np = 5: (a) Power of reconstructed target and (c) Power of reconstructed white noise zone. Scenario with Np = 1: (b)
Power of reconstructed target. (d) Power of reconstructed white noise zone.


