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Abstract—Connected and Automated Vehicles (CAVs) repre-
sent one of the main verticals of 5G to provide road safety,
road traffic efficiency, and user convenience. As a key enabler of
5G, Network Slicing (NS) aims to create Vehicle-to-Everything
(V2X) network slices with different network requirements on
a shared and programmable physical infrastructure. However,
NS has generated new network threats that might target CAVs
leading to road hazards. More specifically, such attacks may
target either the inner functioning of each V2X-NS (intra-slice)
or break the NS isolation. In this paper, we aim to deal with
the raised question of how to detect intra-slice V2X attacks.
To do so, we leverage both Virtual Security as a Service (VSaS)
concept and deep learning (DL) to deploy a set of DL-empowered
security Virtual Network Functions (sVNFs) within V2X-NSs.
These sVNFs are in charge of detecting such attacks, thanks to
a DL model that we also build in this work. The proposed DL
model is trained, validated, and tested using a publicly available
dataset. The results show the efficiency and accuracy of our
scheme to detect intra-slice V2X attacks.

Index Terms—5G-V2X; Network Slicing; Security; Deep
Learning; Intra-slice attack detection

I. INTRODUCTION

Fifth-generation (5G) mobile systems came to address the
new stringent requirements brought by the different verticals
that aim to use these systems, such as transportation, manu-
facturing, energy, and e-Health, among others. As a key pillar
of Cooperative Intelligent Transportation Systems (C-ITS),
Connected and Autonomous Vehicles (CAVs) significantly
benefit from 5G advances to enhance further road safety,
traffic efficiency, and user convenience. As part of 3GPP
Release 16 [1], 5G-Vehicle-to-Everything (5G-V2X) commu-
nication technology is specified to enable not only direct
communication via the PC5 interface but also provides ultra-
low and ultra-reliable communications. On top of this, CAVs
are supported with a set of 5G enabling technologies, such
as Software Defined Networking (SDN), Network Function
Virtualization (NFV), Multi-access Edge Computing (MEC),
and Network Slicing (NS). The latter allows the creation of
independent virtual networks, targeting different requirements
built on the top of the same physical infrastructure. The NS
concept enables several V2X use-cases to operate together,
such as automated lane merging/splitting and overtaking, real-
time traffic flow regulation, and network-assisted vulnerable
road user protection [2]. This will expand the exploitation
degree from the 5G physical infrastructure while improving

the performance of CAVs’ applications and services. Besides,
5G-V2X communications are inherently vulnerable to various
internal and external attacks such as denial of service, false
information injection, and impersonation, leading to hazardous
situations for CAVs and putting users’ lives in danger. The
situation gets worse with the introduction of network slicing.
Indeed, combining 5G-V2X with NS will increase attack
severity and open up a network slicing attack vector to CAVs
[3]. We can classify these attacks into two main categories:
(i) intra-slice attacks in which the attacker(s) and the target(s)
belong to the same V2X Network Slice (V2X-NS), and (ii)
inter-slice attacks in which the attacker(s) and/or the target(s)
belong to different V2X-NSs. In this context, while cryp-
tography solutions are efficient against external active V2X-
NS attacks since attackers are not authenticated members of
the 5G-V2X network, mitigating internal V2X-NS attacks is
difficult using these solutions since the attackers are part of
the network.

Intrusion detection systems are considered an efficient se-
curity mechanism to detect internal attacks [4], especially
when taking advantage of the latest advances brought by ma-
chine/deep learning approaches. To this end, this paper focuses
on leveraging Deep Learning (DL) approaches to detect intra-
slice V2X attacks. More precisely, we design a new scheme
that leverages both the concept of Virtual Security as a Service
(VSaS) and DL for efficient intra-slice attack detection. VSaS
has shown to be a promising approach to address 5G security
concerns, thanks to the flexibility and elasticity support they
provide [5]. VSaS consists in integrating built-in security
Virtual Network Functions (sVNFs) in the slice life cycle.
To ensure end-to-end security, we propose to deploy several
sVNFs, within the V2X-NSs. Moreover, we build a new DL-
based model that targets detecting intra-slice attacks. This DL
model is executed on top of the deployed sVNFs. Our scheme
is evaluated on attack detection capabilities and deployment
performance.

The remainder of this paper is organized as follows. Sec-
tion II describes the main related work on attack detection in
5G-V2X networks. Our system model and targeted intra-slice
V2X attacks are presented in Section III. The design of the
DL model for intra-slice V2X attack detection is presented
in Section IV. Section V depicts the performance evaluation
results. Finally, Section VI concludes the paper.



II. RELATED WORK

Various Machine Learning (ML)-based schemes have been
proposed to detect attacks on 5G-V2X communications. Al-
heet et al. [6] proposed a centralized system based on su-
pervised learning to detect network-level attacks. This sys-
tem trains a multi-class classifier, using neural networks to
deal with different attack types. Alternatively, Ashraf et al.
[7] proposed a centralized attack detection system based on
unsupervised learning. Thus, an anomaly detection model
was trained based on Long Short-Term Memory (LSTM)
auto-encoder architecture to distinguish the suspicious traffic
from the normal one. Bangui et al. [8] proposed a hybrid
attack detection system. A multi-classifier model was trained
using Random Forest (RF) to detect known attacks, while an
anomaly detection model was built using a variation of K-
means to detect unknown attacks. Ghaleb et al. [9] proposed
a collaborative attack detection system consisting of four main
phases: (i) Individual ML model construction, (ii) ML models
exchanging, (iii) ML model evaluation, and (iv) Collaborative
system construction. The binary classification was used to
build the model using random forest, XGBoost, and Support
Vector Machine (SVM) algorithms. Shu et al. [10] proposed
also a collaborative attack detection system based on SDN.
This system enables multiple distributed SDN controllers to
train a binary classifier based on DL combined with a gener-
ative adversarial network. Yang et al. [11] proposed a multi-
tiered hybrid intrusion detection system. This uses multi-class
classification models to detect known attacks and anomaly
detection models to detect unknown attacks.

Although different attack detection systems with different
architectures (centralized, distributed) and different learning
methods (supervised, unsupervised, and hybrid) have been
proposed, intra-slice V2X attack detection is not addressed yet.
Thantharate et al. [12] and Kuadey et al. [13] proposed a DL-
based attack detection system for Distributed Denial of Service
(DDoS) attacks for 5G networks. However, these systems are
(i) only designed to detect DDoS against the core network
and (ii) do not consider attacks on the network access part,
including V2X and the MEC.

III. INTRA-SLICE V2X ATTACK DETECTION SCHEME

Figure 1 shows 5G-V2X NS architecture consisting of (i)
5G New Radio (NR) including CAVs and gNodeBs, (ii) MEC
nodes, and (iii) 5G Core networks. 5G-V2X NSs are created
and managed by the Network Slice Manager (NSM). During
the creation of the NSs, the NSM allocates the necessary
storage and processing resource to satisfy the requirements
defined in the Service-Level Agreement (SLA). The NSM also
implements all required VNF service chaining while ensuring
the isolation level defined in the SLA. The isolation level
allows specifying VNFs dedicated to a V2X-NS and VNFs
shared between V2X-NSs. Figure 1 presents two V2X-NSs
with different network requirements. These NSs share VNFs
at the core level and have dedicated VNFs at the MEC and
NR levels. Each CAV is equipped with a 5G network card to
communicate with other CAVs via the PC5 interface and C-
V2X applications via the Uu interface. To ensure end-to-end

Fig. 1: DL-based Intra-slice attack detection scheme in 5G-
V2X NS

security of V2X NSs, sVNF are also deployed within V2X-
NSs during their creation. Our DL-based model deployed on
top of sVNFs enables us to detect intra-slice V2X attacks
and report them to the Security Operations Center (SOC).
sVNFs are deployed at different levels of V2X-NSs. At the
5G NR level, sVNFs are deployed at some selected CAVs,
according to predefined policies. For example, the NSM can
obtain the list of most trusted vehicles from SOC. Thereby,
it can deploy sVNFs on the most trusted CAVs. From the
technical perspective, we expect that CAVs are equipped with
a hypervisor that can support one or more sVNFs. At the
MEC, sVNFs are deployed on the MEC nodes according to
the number of CAV subscribed to a V2X-NS using that MEC
node, and sVNFs can also be migrated from a MEC node to
another node according to the mobility of the vehicles. sVNFs
are also deployed at the core part of the network, according
to the isolation level defined by the SLA. In a complete V2X-
NS isolation scenario, each sVNF is dedicated to only one
V2X-NS. However, in our example, since V2X-NSs share the
core part, they also share the sVNF. As previously mentioned,
detected attacks are reported to SOC, which is in charge
of reacting to the detected attack and updating the list of
trusted vehicles. Besides, and as aforementioned, we focus on
detecting intra-slice V2X attacks. More precisely, two classes
of attacks are considered in this paper.

• Class 1 (Denial of service (DoS)): The attackers of this
class try to prevent V2X-NS members from having ordi-
nal access to V2X-NS services. DoS can target different
parts of V2X-NSs, ranging from the network access to the
5G core. Moreover, attackers can exploit many network
protocols at different levels of the protocol stack. UDP
flooding, HTTP DoS, and ARP flooding are examples of
DoS attacks that might be used. DDoS is a variant of the
DoS attack that involves multiple attackers belonging to
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the same NS, which can collaborate and synchronize to
perform the attack.

• Class 2 (NSM Impersonation): The NSM is the core
component of the 5G-network architecture, which is in
charge of the life cycle management of V2X-NSs. The
NSM ensures the end-to-end monitoring of V2X-NSs, by
continuous and dynamic interactions with the access and
core network elements. This causes an increase in the risk
of impersonation attacks. For example, an attacker can
pretend to be an NSM to monopolize the NS resources for
its own benefit. Impersonation is a multi-stage attack that
starts by infiltrating the networks by exploiting protocol
flaws.

IV. DEEP LEARNING MODEL FOR INTRA-SLICE ATTACK
DETECTION

This section describes the process used to build and deploy
our DL model on sVNFs. Figure 2 illustrates this process
consisting of four main steps. We selected the CSE-CIC-IDS-
2018 dataset [14] to train our DL model since it adequately
covers different types of intra-slice V2X attacks addressed in
this paper. During the dataset processing, we prepared the
dataset for the next steps. Thus, we performed dataset cleaning,
transformed features to a suitable format, performed data
scaling, and split the dataset into three sub-datasets: training,
validation, and test. The two following steps are aimed at
training and validating the DL model. These steps take as an
input previously processed sub-datasets. Moreover, they are
iteratively run until finding the best hyperparameter configu-
ration, which ensures the high accuracy of the classification
model. The hyperparameters consist of the DL architecture,
including the number of layers of DL and the number of
nodes on each hidden layer, the optimizer, the learning rate,
the batch size, and the number of epochs. After building the
best DL model that ensures the highest detection of intra-slice
V2X attacks. The DL model will be ready to be deployed
on sVNFs. The last step is thus to deploy the DL model on
top of sVNFs, which are distributed along the V2X-NS using
virtualization/containerization technologies, such as Docker.
This section focuses only on the dataset processing step. The
rest of the steps are detailed in the next section.

CSE-CIC-IDS-2018 dataset is a collaborative project be-
tween the Communications Security Establishment and the
Canadian Institute for Cybersecurity. This dataset was gen-
erated during 10 days of network traffic analysis. It includes
14 attack types divided into seven attack scenarios: (i) DoS (3
attacks), (ii) brute force (2 attacks), (iii) Heartbleed, (iv) web
attacks (2 attacks), (v) infiltration, (vi) botnet and (vii) Low
Orbit Ion Canon (LOIC). The dataset includes 80 features on
network flows. It also includes a timestamp, which is divided
into six features representing time in terms of the year, the
month, the day, the hour, minutes, and seconds respectively.
Thus, after converting the timestamp feature, the total number
of features becomes 85. To train our DL model, we have a
dataset containing a total of 9, 232, 943 instances (rows) with
85 features (columns). Table I shows the dataset distribution
per each attack type.

TABLE I: Dataset distribution per each attack type

Attack type Support

Benign 6484708
DDOS attack-HOIC 686012
DDoS attacks-LOIC-HTTP 576191
DoS attacks-Hulk 461912
Bot 286191
FTP-BruteForce 193360
SSH-Bruteforce 187589
Infilteration 161934
DoS attacks-SlowHTTPTest 139890
DoS attacks-GoldenEye 41508
DoS attacks-Slowloris 10990
DDOS attack-LOIC-UDP 1730
Brute Force -Web 611
Brute Force -XSS 230
SQL Injection 87

Thus, this dataset contains several features with different
scales, which slows down the training process. To address this
issue, we also rescaled the dataset using MinMaxScaler, which
normalizes dataset features to values in the range of [0,1].
Equation 1 gives the normalization done by MinMaxScaler.

xscaled =
xi − xmin

xmax − xmin
(1)

MinMaxScaler deducts the minimum value of the feature
from the original value and then divides the result by the
range. The range is the difference between the maximum and
minimum values of that feature. Before passing the dataset
to the next step, it is split into training, validation, and test
sub-datasets. Since this dataset contains more than 9 million
rows, which is in the order of big data, we thus apply
recommendations given in [15] by choosing 1% of the whole
dataset as a test dataset and 1% of the training dataset as a
validation dataset.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our DL
model, which will be embedded in sVNFs. Our model consists
of (i) an inputs layer with 84 neuron nodes and (ii) two hidden
layers with 128 and 84 nodes, respectively. An output layer
with 15 nodes based on one hot encoding to detect and identify
intra-slice V2X attacks. The ReLU activation function is used
for the hidden nodes, while the softmax function is used for
the output layer. The model was trained on the Google Colab
platform, using Compute Engine backend (TPU). Table II lists
the hyperparameters of the model. We have used the ADAM
optimizer with 0.01, as a learning rate for the gradient descent
algorithm. During the training, we consider mini-batches of
size 256, while the number of epochs is set to 50.

We considered a set of metrics to evaluate our DL model.
These metrics include optimization metrics, such as the accu-
racy and F1-score, and satisfactory metrics, such as inference
time and memory. Table III gives equations related to the
evaluation metrics, where TP, FP, TN, and FN are the True
Positive, the False Positive, the True Negative, and the False
Negative, respectively. Figure 3 (a) and Figure 3 (b) show
the loss and accuracy of the training and validation dataset,
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Fig. 2: The process to build and deploy the DL model for intra-slice V2X attack detection

Fig. 3: Training process

TABLE II: Training parameters of the DL model

Parameter Value

Optimizer ADAM
Learning rate 0.01
Number of epochs 50
Batch size 256
Ratio of validation dataset 1%
Ratio of test dataset 1%

TABLE III: Metrics

Metric Formula/Description

Accuracy
TP + TN

TP + TN + FP + FN

Precision
TP

TP + FP

Recall
TP

TP + FN

F1- score 2X
Precision ∗Recall

Precision+Recall

ROC the trade-off between the true
positive rate and the false positive

AUC the ability of a classifier to
distinguish between classes.

respectively. We can see that loss significantly decreases
since the first steps of training. We can also see that our
model is doing well on both the training and the validation
datasets. Indeed, the accuracy surpasses 98% both the training
and validation data set. Table IV shows the performance of

our model on the test dataset. As we can observe, our DL
performs better on the test dataset. We have obtained 99% for
both accuracy and F1-score. We also obtained 99% for The
Area Under the Curve (AUC). These results demonstrate the
efficiency of our model in detecting not previously seen attack
instances and distinguishing between attack classes.

TABLE IV: Attack detection results

Accuracy Precision Recall F1-score AUC
0.99 0.98 0.95 0.99 0.99

Table V shows the detection results of our DL model
per each type of attack. These results demonstrate the high
capability of our DL model, to distinguish the benign traffic
network from the malicious one. Indeed, our DL model with
99% of F1-score regarding identifying benign network traffic.
In addition, as shown in the Receiver Operator Characteristic
(ROC) curve, illustrated in inf Figure 3 (c), attack curves are
closer to the top-left corner, which further proves high perfor-
mance in classifying intra-slice V2X attacks. Note the backline
illustrates the performance of a basic classifier. Moreover,
Table V shows high accuracy (more than 97% of F1-score) to
detect most of the attacks (12/14). However, Bute Force-Web
and Infiltration attacks have obtained less interesting results.
This is due to the number of instances used in the test dataset.

Table VI gives the evaluation of the DL model in terms of
satisfactory metrics. Our model was trained for 94.8 seconds,
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TABLE V: Multi-class results of the DL model

Traffic type Precision Recall F1-score Support

Benign 0.99 1.00 0.99 64848
Bot 1.00 1.00 1.00 2862
Brute Force-Web 1.00 0.67 0.80 6
Brute Force-XSS 1.00 1.00 1.00 2
DDOS attack-HOIC 1.00 1.00 1.00 6860
DDOS attack-LOIC-UDP 1.00 0.94 0.97 17
DDoS attacks-LOIC-HTTP 1.00 1.00 1.00 5762
DoS attacks-GoldenEye 1.00 1.00 1.00 415
DoS attacks-Hulk 1.00 1.00 1.00 4619
DoS attacks-SlowHTTPTest 1.00 1.00 1.00 1399
DoS attacks-Slowloris 1.00 1.00 1.00 110
FTP-BruteForce 1.00 1.00 1.00 1934
Infilteration 0.77 0.58 0.66 1619
SQL Injection 1.00 1.00 1.00 1
SSH-Bruteforce 1.00 1.00 1.00 1876

TABLE VI: DL model deployment performance

Training time (s) Size (KB) Inference time (s)
94.8 309.808 0.058

which is an acceptable time to train the model. Our model also
has a small storage size (less than 1 MB), making them lightly
deployable in sVNFs, at different levels from CAVs to the 5G
core. Moreover, the Inference Time (IT) is short. It takes less
than 58 ms to decide if an event is an attack or not, which
demonstrates the fast detection of our scheme, leading to an
immediate reaction after detecting an attack. Figure 4 shows
the IT required by the DL model for verifying 1000 events.
The x-axis is the number of events in each Inference Operation
(IO). As depicted, IT decreases with the increase of the number
of events in each IO. If events are sequentially verified, then
1000 IOs are performed; thereby, IT equals 62.29s. However, if
100 events are verified in each IO, then 10 IOs are performed;
thus, IT equals 1.72s. We can explain these results by the role
of the vectorization technique in making the DL model runs
faster.

Fig. 4: The inference time vs. the number of events verified
in each inference operation (the total number of events equals
1000)

VI. CONCLUSION

The failure to detect intra-slice 5G-V2X attacks could
jeopardize the safety of users. This paper has designed a novel
scheme for detecting intra-slice V2X attacks. Our scheme
combines the flexibility of virtual security as a service and the
power of deep learning to efficiently detect the attack while
taking deployment indicators into account. We plan to perform
feature engineering to optimize the size model further while
enhancing the performance in future work.
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