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Abstract— Automated Driving Systems (ADS) have rapidly
evolved in recent years and their architecture becomes sophis-
ticated. Ensuring robustness, reliability and safety of perfor-
mance is particularly important. The main challenge in building
an ADS is the ability to meet certain stringent performance
requirements in terms of both making safe operational decisions
and finishing processing in real-time. Middlewares play a
crucial role to handle these requirements in ADS. The way mid-
dlewares share data between the different system components
has a direct impact on the overall performance, particularly the
latency overhead. To this end, this paper presents FastCycle as a
lightweight multi-threaded zero-copy messaging broker to meet
the requirements of a high fidelity ADS in terms of modularity,
real-time performance and security. We discuss the architecture
and the main features of the proposed framework. Evaluation
of the proposed framework based on standard metrics in
comparison with popular middlewares used in robotics and
automated driving shows the improved performance of our
framework. The implementation of FastCycle and the asso-
ciated comparisons with other frameworks are open sourced?.

I. INTRODUCTION

ADS development has witnessed considerable progress
during the last few years [1]. The ultimate goals of this
technology are to provide a safe, comfortable and efficient
mobility solution as well as minimizing road fatalities caused
by human errors. Robustness of performance and reliability
are both crucial if the potential of automated driving is to
come to reality [2]. The key challenge in building ADS lies
in the ability to meet stringent requirements, particularly of
real-time performance and security. The ability to handle
large amounts of sensor data, process them, make safe oper-
ational actions and share between the different subsystems,
while rigorously respecting real-time constraints are critical
in ADS [3]. While tremendous efforts have been expended
to improve data processing including the optimization of
algorithms as well as hardware acceleration [4], transmission
of data between the different components of the system is
still a limiting performance bottleneck [3], [5]. In this work,
we present FastCycle, a simplified middleware with efficient
data transmission capabilities required for modular ADS.

Several middlewares are already available for robotics
and ADS development (ROS1&2 [6], CyberRT [7], TZC
[8], Robust-Z [5], eProsima FastRTPS [9] and Nerve [10]).
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Several automated driving software platforms have been de-
veloped based on these frameworks [11], [12]. Early releases
of Baido Apollo and Autoware were based on ROS. Due
to the performance limitations of ROS, Apollo developed
their own middleware, CyberRT, with real-time and task-
scheduling features, whereas Autoware migrated to ROS2.
More details about the performance of both frameworks
can be found in these works [13], [14]. A middleware is a
software layer enabling different communications, data man-
agement and task scheduling services between an operating
system and an application. The middleware APIs provide the
aforementioned services and motivate software developers to
build their solutions on top of them. Middlewares are used to
build not only distributed systems but also to build complex
systems in a single machine. The architecture of a modular
ADS, as shown in Fig. |1} is composed of various subsystems
that need to communicate and be managed by a middleware.
Furthermore, middlewares enable developers to manage com-
plex tasks more easily thanks to the abstraction of low-level
details in a high-level API layer, which significantly reduces
the development effort of an application.

The communication mechanism of a middleware has a
direct impact on the performance, reliability and security
of the ADS to be developed [3]. Most of the existing
middlewares in robotics and automated driving use Inter-
Process Communication (IPC) over sockets as the backbone
of their data transmission models [15]. Middlewares built
on top of sockets tend to be a highly reliable solution due
to the loosely coupled communication mechanism offered
by the TCP protocol [5]. In other words, the crash of one
process will not cause the whole system to crash. However,
IPC over sockets always leads to high latency overhead and
cannot guarantee good performance [3], [5]. Conventional
robotics middlewares such as ROS [6] utilise both TCP and
UDP sockets for IPC. This allows processes to communicate
either locally or between several machines. Nevertheless,
messages are subjected to be copied several times resulting in
unnecessary memory copies and system calls [5], explaining
the high latency overhead of this mechanism. To improve
socket-based IPC, Data Distribution Service (DDS) protocol
[16], [10] is proposed as a reliable multicast solution over
plain UDP sockets [16]. ROS2 [6] uses a fast implementation
of DDS called FastDDS (formerly FastRTPS) developed by
eProsima [9]. More details about the performance of ROS2
in comparison with ROS is given in [17].

To overcome some of the drawbacks of socket-based IPC,
shared memory techniques could be an alternative to reduce
the memory copy operations. As the name implies, in a
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Fig. 1: High-level overview of the architecture of modern industry-level automated driving system

shared memory mechanism, two or more processes share
the same memory space to pass messages, which has a
significant impact on the performance of IPC. CyberRT is
one of the high performance middlewares built using shared
memory [7]. The underlying mechanism is based on a shared
buffer together with a ring structure divided into several
slots. Each slot stores its state as well as message data. The
state of a slot allows for only one process to access the
data. Although shared memory based methods tend to be
the most efficient implementation for IPC, serialization and
deserialization of messages are still needed [7]. As pointed
in [3], serialization and deserialization as well as data copy
operations are the root cause of communication overhead
latency. Furthermore, in IPC based middlewares, access to
messages by third-party applications tends to be feasible
which puts the security of these middlewares in question,
mainly for automated driving applications. Moreover, an
additional security layer would harm the overall performance
[18], [19].

In intra-process based middlewares, communication be-
tween different threads (in the same process) offers a zero-
copy data transport, which significantly improves perfor-
mance. The gain in performance of this mechanism is
obviously better in ROS nodelet, ROS2 and CyberRT intra-
process communications, compared to their IPC counterparts
[3]. However, messages in these middlewares are still ex-
posed to external applications, e.g. for logging and visual-
ization purposes [6], [7]. Furthermore, implementations of
a modular architecture based intra-process middlewares tend
to be complicated. The present paper proposes FastCycle as
an efficient, multi-threaded and modular intra-process based
middleware for automated driving using zero-copy message
transfer. FastCycle is inherently secured since messages
circulating between the different threads are not exposed
to other external processes. Additionally, no message seri-
alization and deserialization is needed except for logging. A
comparative study based on standard metrics validates the
performance of FastCycle.

The rest of this paper is organized as follows. The high-
level architecture of ADS as well as their design require-
ments in terms of modularity, performance and security are
presented in Section [[I} The architecture and functionality of
FastCycle is presented in Section [l The evaluation of per-
formance of FastCycle compared with standard middlewares
used in ADS is presented in Section [[V] Finally, Section
[V] concludes this paper and highlights directions for future
work.

II. AD SYSTEM ARCHITECTURE REQUIREMENTS

Automated vehicles are sophisticated cyber-physical sys-
tems with a high-degree of interdependency and interop-
erability between their different components. The synergy
between these components plays a crucial role in the ro-
bustness, reliability and the overall performance of an ADS.
A key element in the design of its architecture is to define
the mechanism these components use to share data between
them. The message transfer mechanism has a substantial
impact on the stability and performance of the overall system.
In this section, we present a high-level architecture of a
modular ADS. Based on this architecture, we elaborate on
the design requirements of message sharing frameworks.

A. Automated Driving System Description

Different ADS architectures exist in previous works. These
architectures are mostly built on top of a middleware that
manages the resources of the software components and trans-
fer data between them. Fig. [T] shows a typical architecture
of a modular ADS. The various components constituting the
overall system need to communicate with one another in an
efficient manner, to meet performance and security require-
ments. Popular middlewares such as ROS and CyberRT have
been proposed as development frameworks for ADS [20],
[11]. Different architectures of ADS have been proposed
in the literature [21], [22], [23], [24]. Understanding the
architecture and the different components of an ADS is
essential to analyse the design requirements. Similar to



robotics systems, an automated vehicle is considered as a
cognitive agent. From an abstract point of view, it consists
of sensing, cognitive and action elements. In more details,
a modern industry-level ADS is typically composed of 12
modules as depicted in Fig. [T} The role of the drivers module
is to read and pre-process raw data from various sensors
such as camera, lidar, IMU, GPS, sonar, radar, CAN bus and
to provide them to other modules. The localization module
provides the rest of the system with a precise estimation of
the vehicle position, velocity and acceleration with respect to
the environment. The perception module receives sensor data
to detect obstacles (e.g. vehicles, pedestrians, and cyclists) as
well as traffic signs, lanes and road borders. High definition
(HD) digital maps are usually stored in remote servers. The
HD map service module is responsible for downloading a
portion of this map (map tile) which is needed by various
parts of the system to understand the environment and
improve localization of the vehicle. Additionally, this module
calculates the shortest route to the destination point. Then
scene understanding module receives an HD map tile as its
input as well as vehicle localization, raw perception objects
and semantic images. The role of this module is to under-
stand what are the relevant objects for decision making and
in what context they exist, e.g. a pedestrian is on a crossing
or a sidewalk. The prediction module receives as its input
the vehicle localization, a list of relevant objects from the
scene understanding module and it predicts their behavior by
computing their predicted trajectories. The motion planning
module generates a safe and collision-free reference driving
trajectory for the automated vehicle. To do so, this module
needs an HD map tile, a route to the destination as well
as the predicted trajectories of relevant objects generated
by the prediction module. The control module receives the
planned trajectory and computes control commands for the
steering, brake and acceleration actuation systems. Since
those actuators are available through vehicle CAN bus, it is
the vehicle module that is responsible for encoding/decoding
raw CAN frames. One of the important modules for safety is
the supervision module. It defines the states and transitions
to safely enter and exit the autonomous driving mode of the
vehicle as well as to provide a visualization of the whole
system. The connectivity module enables communication
with other vehicles as well as the smart infrastructure and the
cloud. Finally, the logging module records all (or selected)
events/messages in the system for later use in incidents
analysis and debugging.

B. Design Requirements

A crucial step in the architecture design of an ADS is the
choice of the development framework on which the overall
system will be developed. As discussed earlier in this section,
an ADS is a very complex system from an architectural point
of view. To ensure a robust behavior of the system, certain
key design requirements are important.

1) Performance: The overall performance of the system
depends on the capability to transfer messages of typical
payload such as raw images, point clouds, and map tiles
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Fig. 2: FastCycle high-level architecture

from one subsystem to another as well as to process them
in real-time. Modules involved in the control loop of the
system, i.e. from perception to action must be harmonized
at a frequency depending on the physics of the system. The
system should be able to complete all needed computations
within a specific period of time in a deterministic way.

2) Modularity: A development framework should allow
to build a complex system that is made up of independent
software modules that can be developed, maintained, tested
and integrated with other modules with a minimum effort.
The middleware used should allow to define common input
and output interfaces as well as encapsulation of all metadata
and configuration parameters to allow for further extensions.

3) Security: In a complex distributed system as an ADS,
the communication between the various subsystems must
be secured against unauthorized data access by external
processes.

4) Reliability: The ability to implement a reliable and
fail-safe ADS and capable of recovering from failures is
crucial. Reliability in IPC-based middleware is feasible since
the crash of one process does not necessarily lead the others
to crash. However, in a multi-threaded architecture, one must
rely on a robust implementation and maybe redundancy of
the whole system.

ITI. FASTCYCLE ARCHITECTURE

FastCycle is a lightweight multi-threaded zero-copy mes-
sage sharing framework. In this section we discuss its ar-
chitecture in more details together with the various building
blocks of the system, as well as the transfer model of the
message sharing mechanism.

A. FastCycle Anatomy

The main element in building a modular ADS software is
the FastCycle component. It encapsulates everything needed
to build a subsystem. As shown in Fig. 2} a component de-
fines the inputs and outputs, e.g. via subscribers, publishers,
configuration parameters, and message definitions. The core
system of FastCycle is composed of the following five main
elements:

1) Configuration Manager: It handles the parameters in-
cluded in a configuration file associated with each compo-
nent. The configuration file is written in JSON format and it



Execute S1

Component 1 l

Hash Map Pop Msg M1

Callback S1  Topi :
| Topic T1 Queue Q1 Submit S1

Submit 52

Fig. 3: FastCycle message transfer model

Pop Msg M2

Publish on T1

| Topic T2 Queue Q2 |

=
o
=
-
>
=
©
@
a

|ood-peaayl

Publishon T2

| Topic TN

Queue QN |

Execute S2

defines all needed parameters that control the component be-
havior. For instance, if the component implements a control
module of an ADS, this file will typically contain the sample
period, parameters of the control laws for steering, brake, and
acceleration, as well as the physical model parameters of the
vehicle and its actuators.

2) Message broker: The message broker is the core of
FastCycle and is responsible for the transfer and delivery
of messages from a publisher to a corresponding subscriber.
Its main components are a topics registry, a main thread,
and a thread-pool. The topics registry keeps a record of
the subscribers of a given topic. The main thread checks
for newly published messages and submit the callback of a
corresponding subscriber to the thread-pool.

3) Message Transfer: This mechanism handles the zero-
copy message transmission between the different components
registered in FastCycle. More details about the message
transfer mechanism are given later in this section.

4) Component Registry: All components to be executed
by FastCycle are listed in a configuration file which contains
the component names as well as a their parameters. At the
most abstract level, each component is compiled as a shared
library and if its name is included in the configuration file,
they will be added to the component registry, which will
then be used by the main thread of FastCycle for execution.
A component is derived from a base class giving access to all
APIs needed for initialization with parameters and defining
publishers and subscribers. A callback function is associated
with each subscriber that is invoked once a new message
is received. Each component has also access to one Serve
Timer called at a configurable cycle period.

B. Message Transfer Model

The performance achieved by FastCycle is due to its multi-
threaded architecture and zero-copy message transfer be-
tween its components. The topics registry is implemented as
a hash map whose keys are the registered topic names and the
values are the message queues for each corresponding sub-
scriber. Message queues are updated by each publisher while
the main thread will check for newly published messages and
submit the message callback of a corresponding subscriber to
the thread-pool as depicted on Fig. 3] Only a shared pointer
is given to the subscriber callback, thus ensuring a zero-
copy transfer. Moreover, in order to avoid race conditions,
the content of the pointer cannot be modified.

C. Message Format

The message format used in FastCycle is Google’s pro-
tocol buffers (or simply protobuf). Protobuf offers a small-
size, simple and fast serializable/deserializable message rep-
resentation [25]. Similar to ROS message format, protobuf
supports the common primitive data types such as boolean,
strings, integers and floating points. These primitives allow
to define more customised message definitions. Furthermore,
protobuf guarantees backward compatibility with earlier ver-
sions, which is an essential feature of extensibility. Proto-
buf compiler takes user-defined messages (.proto file) and
generates compiled classes accessible in code. Due to these
features, CyberRT has adopted protobuf as a message format
since the beginning [11], [7] and so does FastCycle.

IV. EVALUATION AND COMPARATIVE STUDY

In order to assess the performance of our proposed
framework, we conduct a comparative study with well-
known frameworks in the robotics and automated driving,
namely ROS1, ROS2 and CyberRT. Both ROS1 and ROS2
will be evaluated in both inter-process and intra-process
communication modes. In inter-process mode, messages are
exchanged using either socket-based (ROS1) or DDS-based
(ROS2) IPC mechanisms. On the other hand, in intra-process
mode, messages are locally shared, meaning that publishers
and subscribers spin inside the same process. ROS1&2 intra-
process are expected to be faster than their inter-process
counterparts. This section compares the performance of
these messaging frameworks, as well as provides a general
assessment of their strengths and weaknesses for their uses
in the context of autonomous driving.

A. Methodology

Our methodology to assess the performance of FastCycle
in comparison with other frameworks is based on three
different metrics measured against different message pay-
loads. The latency is widely used to assess the time elapsed
from the generation of a message in one component to its
reception by another component in the system. We also use
the Round-Trip Time (RTT) which quantifies the time taken
from sending a message to its reception back in the same
component. The third metric we use is the jitter, which
quantifies the difference between the sending frequency and
reception frequency thus assessing asymmetry in real-time
capabilities between emitting and receiving components.
These metrics have been used to evaluate the performance
of different frameworks [20], [26], [27], [3], [17], [28]. Let
1 be the index of the ith message, the metrics we use are
defined as follows.

The latency [; is defined as:

l; =T s —T;p, (D

where T; 5 is the reception time and T; p is the publication
time.
The RTT r; is defined as:

ry =T p, —Tj pys 2



where T p, is the reception time of the echoed message ¢
and T; p, is the publication time.

The jitter j is defined as the standard deviation of the
latency:

j = a(li)a (3)

Our scenario for the comparative study is to measure latency,
RTT and jitter as defined in equations (I), (2) and (B)
respectively at different message payloads. As discussed in
Section [[I, a message sharing framework should be capa-
ble of handling messages of sizes typical to raw images,
point clouds and map tiles. A reasonable payload of these
messages would be up to 4MB [3]. For statistical relevancy,
we measure our performance metrics over a relatively big
number n of samples (n = 5000 samples are used in these
experiments). The sending interval for the messages is set to
Ims.

B. Experimental Setup

The experiments are conducted on an industrial PC which
is used as an autonomous driving computer by our Junior
test vehicle [29]. It is a Sintrones ABOX-5200G with an
Intel Core i7-8700T CPU, 32GB RAM and one Nvidia GTX
1060 GPU. The operating system used for all experiments is
Ubuntu 20.04 with a kernel version 5.4. Docker containers
with similar settings are used to setup the test environment
for each framework. FastCycle has been evaluated against
ROS Noetic and Apollo CyberRT x86_64-18.04.

C. Evaluation and Comparison

TABLE [l and [ show the results of the aforementioned
evaluation scenarios. FastCycle achieves better performance
in terms of mean latency and RTT in almost all tests. The
exception being a slightly greater mean latency than ROS2
intra-process for a message size of 32KB. Overall, ROS2
intra-process comes as the second fastest middleware thus
demonstrating the improvements made over ROSI. It can
also be seen that the effect of the message size is less sensi-
tive in FastCycle, whereas a steadier increase is observed in
the other middlewares, especially in CyberRT and ROS1&2
inter-process. FastCycle is also 2 to 3 times faster than ROS2
intra-process for the 4MB message size, which demonstrates
its substantial capabilities for large payloads. As for the jitter,
FastCycle seems to be under-performing as the standard
deviations of the latency is mostly above other frameworks,
although it catches up at 4MB. The higher values of jitter
might be the result of some thread-pool induced delays and
should be investigated in future work. Consequently, ROS2
intra-process seems to be more reliable under 4MB from a
real-time perspective although it is slower on average. At
4MB however, FastCycle has the smallest standard deviation
which confirms the better performance at higher message
payloads. It can also be worth noting that the CyberRT
performance across the board seems exceptionally poor.

As a conclusive comparison, CyberRT and ROS1&2 inter-
process are modular, extensible and reliable frameworks
thanks to their multi-process designs, however, this in turn
induces a significant performance overhead. Furthermore, the

messages are exposed to other processes at the operating
system level which can lead to security vulnerabilities.
ROS1&2 intra-process are very similar but offer a remarkable
performance improvement at the cost of reliability. Across
the board, ROS2 is better than ROS1, especially at higher
payloads. Finally, FastCycle showed the best latency and
RTT performance although it falls behind ROS2 in jitter.
FastCycle was particularly fast at higher payloads which is
important for autonomous driving applications. FastCycle is
also modular and safe as it does not expose messages to
external applications, however, its reliability falls behind the
inter-process counterparts. The above discussion is summa-
rized in Table [

V. CONCLUSION AND FUTURE WORK

This paper presented FastCycle as a lightweight multi-
threaded zero-copy message sharing framework that has
been designed to meet the requirements of a high fidelity
ADS in terms of modularity, performance and security. The
architecture of FastCycle as well as its different components
along with the message transfer model and format are pre-
sented. Evaluation of FastCycle based on latency and RTT in
comparison with ROS and CyberRT shows the improved per-
formance of the proposed framework although future work
should improve upon the current jitter and subsequently real-
time capabilities. Based on the evaluation study, FastCycle is
chosen as the middleware in our modular autonomous system
RoboCar, which is currently under development. The current
version of FastCycle still uses catkin package management
system, which is also left for future work.
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