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ABSTRACT This study proposes a new method for detecting and classifying faults in distribution
lines. The physical principle of classification is based on time-domain pulse reflectometry (TDR). These
high-frequency pulses are injected into the line, propagate through all of its bifurcations, and are reflected
back to the injection point. According to the impedances encountered along the way, these signals carry
information regarding the state of the line. In the present work, an initial signal database was obtained
using the TDR technique, simulating a real distribution line using (PSCADTM). By transforming these
signals into images and reducing their dimensionality, these signals are processed using convolutional neural
networks (CNN). In particular, in this study, contrastive learning in Siamese networks was used for the
classification of different types of faults (ToF). In addition, to avoid the problem of overfitting owing to
the scarcity of examples, generative adversarial neural networks (GAN) have been used to synthesise new
examples, enlarging the initial database. The combination of Siamese neural networks and GAN allows the
classification of this type of signal using only synthesised examples to train and validate and only the original
examples to test the network. This solves the problem of the lack of original examples in this type of signal
of natural phenomena which are difficult to obtain and simulate.

INDEX TERMS Artificial Neural Networks (ANNs), deep learning, siamese networks, generative adver-
sarial neural networks (GAN’s), fault classification, fault detection, transmission lines.

I. INTRODUCTION
The automatic detection and classification of short circuits
(faults) in distribution lines (especially in low-voltage instal-
lations) is a hot research topic with significant challenges
ahead. Several techniques are available for the detection and
classification of the type of fault (hereinafter referred to as
ToF) [1], [2]. One is the analysis of the event signal (high-
frequency spike) that appears when a fault occurs somewhere
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in the network [3], [4], [5]. Owing to the catastrophic and
chaotic nature of these events (faults), the acquisition, simu-
lation, and analysis of these types of signals represent a very
difficult problem.

Another way to detect and classify the ToF is to analyse
the response to the injection of high-frequency pulses into
the power grid. The different responses of the grid to these
injected signals, owing to the different types, makes it possi-
ble to classify these faults.

This study presents an analysis of these signals using neu-
ral networks. The objective was to solve the main problem
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of a lack of original examples. Finding a method to train a
neural network model to classify faults with good accuracy
and proper generalisation.

To understand this problem, it is necessary to know that
faults in distributed lines [6], [7] depend on a physical phe-
nomenonwhich, as mentioned above, produces a catastrophic
event in the electrical network (short circuit of one or sev-
eral phases to earth). This phenomenon has a chaotic and
random nature (falling trees, lightning, fire, etc.). Therefore,
it is a major handicap to obtain easily available real signals.
By contrast, the training of a neural network [8] requires
a large number of examples (typically tens of thousands).
Neural networks learn to discover a particular pattern within
a set of examples through a training process. In this process,
the weights of the network were adjusted. Each time a new
example is taught, the output of the network tries to ‘‘adjust’’
a little bit more and even closer to the real output (label). This
fact makes it necessary to have a large number of examples
that allow the network to generalise the desired pattern well.
The objective is avoiding to ‘‘learn’’ just some few examples,
which is known as overfitting [9].
On the other hand, the technique frequently used to deal

with this phenomenon is to model mathematically the elec-
trical network [10]. Using this model, we can produce a
database of fault signals for certain scenarios and locations.
However, even so, it is always a very complex task to obtain
a database with typically tens of thousands of fault signals
that will allow us to train a neural network with sufficient
reliability; for instance, there may be a wide range of cases
that produces each ToF. This implies that the electrical net-
work may be in a very diverse state, even for the same
ToF. Therefore, it is difficult to simulate all possible random
conditions that would give rise to the same ToF.

However, a more plausible solution is to start from an
existing database which includes several simulated faults.
This database, although insufficient (hundreds of examples),
is representative of the problem that needs to be solved.
More details of this database are provided in subsequent
sections.

It is at this point that our work starts by solving the problem
of the limited amount of training data using a generative
adversarial network (GAN) [11].

A GAN consists of two neural networks that are trained
simultaneously. One of them, called the Generator, can gen-
erate an example from a random input (noise) of a certain
dimension. The generated example is used as an input for
another network, called the Discriminator. The Discrimina-
tor, on the other hand, receives these so-called Fake exam-
ples, along with others, from the original database. The
latter, therefore, will be correctly labelledReal examples. The
Generator attempts to generate more realistic examples, and
the Discriminator attempts to identify whether an example
is Real or Fake. With this ‘‘zero-sum’’ game, both networks
are trained, and this process ends when the Discriminator is
unable to tell whether the example generated by the Genera-
tor is Real or Fake.

From that point on, the Generator can be used to generate
examples of this type. These have the particularity of having
the main information that characterises them as belonging to
that type. However, each example is different from the others
because it is generated from a random signal (noise).

A final problem we will face is that although these fake
images are very similar to the originals, they will not have
the same distribution in common. This leads to the fact that
a ‘‘standard’’ network, even if it is sufficiently powerful, will
not be able to generalise well between different distributions.

This fact has generally been addressed in other studies by
mixing the data from both distributions to enable the net-
work to learn both distributions. In our case, on the contrary,
wewill tackle the problem using Siamese networks [12], [13],
thus exploiting their best feature: adapting well to different
distributions.

II. ENVIRONMENT
The new challenges facing modern society have resulted in
an increasingly important electrification of the energy system
with a growing role in distribution networks. It is therefore
necessary to prepare these infrastructures so that new chal-
lenges will be faced in the future, including the installation of
multiple distributed generation resources.

The detection and classification of faults in electricity
grids [14], as well as their localisation, are considered essen-
tial requirements to achieve the objective of implementing
the smart grid concept in electricity grids. Unfortunately,
the locating task is a truly complex challenge, but it is also
often an arduous task that involves the movement of spe-
cialised personnel with ground or aerial means across the
entire affected section. This is the main reason because the
automatic location of fault systems is very worthwhile and is
the essence of this article.

Currently, a widely used option is tominimise the impact of
outages by introducing self-healing mechanisms [15]. In any
case, the use of this type of mechanism implies that they are
strongly meshed (radial and redundant topology) and are able
to isolate a faulty section until the problem is solved without
the need for the entire network to be out of service. These
faults are usually due to short circuits between one of the
phases and the earth or between different phases. It should
be borne in mind that as all the sections of a network are
connected in parallel, a short circuit is transferred to the
entire network that is ‘‘connected’’ to that section. Once the
protections of the corresponding section closest to the fault
are opened, leaving that section isolated, it must be possible
to detect the fault and its type as well as to locate the distance
to it as accurately and quickly as possible.

Alternatively, in some lines (high-voltage and medium-
voltage distribution lines), there are fault passage detectors
[16]. These detectors continuously monitor the voltage and
current of the network. When a fault occurs, the device
detects it and can supply this signal as an input for the fault
locator system. However, these types of detectors are not
usually deployed in low-voltage lines because of their high
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cost; therefore, the detection and classification of faults is
undoubtedly very useful information as a preliminary step to
locating them.

In this article, our main objective is to address the task of
automatically detecting/classifying faults, which is a prelim-
inary work to solve the bigger problem of localisation, while
being aware that both are parts of the same solution and have
to work together.

We use neural networks to obtain promising results from
the time series obtained from certain captured signals. The
physical principle used to obtain these signals is time-domain
reflectometry (TDR) [17], [18]. It consists of performing
periodic pulse injections on the line in each of the phases
of the network (R-S-T) so that the electrical response of the
network is updated frequently (which will be explained in
detail below). When a fault occurs, the returned signal carries
implicit information regarding the ToF that has occurred. This
information is used by a trained neural network to classify
faults that have occurred and classify them properly.

When TDR is employed, the pulses injected into each
of the phases travel throughout the network and, at each
impedance change (node, junction, etc.), part of the pulse
continues its journey, and another part is reflected. This
reflection of the pulses makes it possible to record at the
injection point all the signals that ‘‘return’’ after ‘‘bounc-
ing’’ through the different bifurcations of the network. These
pulses carry embedded information regarding the network
status. When the network is operating normally, the infor-
mation from the signals is different from the information
they carry when a fault has occurred, and this is precisely
the information that the neural network is able to extract to
determine the ToF that has occurred.

III. STATE OF THE ART
As discussed in the previous section, the detection/
classification process and the localisation process are part of
a more global process which would be the localisation and
interpretation of faults in electricity distribution networks.
In other words, they represent two different phases of the
same process.

Having said that, we wanted to give a more general
approach to our state of the art, and in the following, we will
not only review the state-of-the-art classification methods,
but also provide a summary of the localisation methods
(outside the scope of this publication).

A. METHODS FOR FAULT CLASSIFICATION
In this section, we show state-of-the-art fault detec-
tion/classification. According to [19] and, [20] it comprises
three major groups.

- Prominent techniques
- Hybrid techniques
- Modern techniques

Prominent techniques are most commonly used for fault clas-
sification and are further divided into three subgroups. One of

the techniques that falls under this group is numerical tools
based on wavelet transform (WT).

In this technique, the key is to choose a ‘‘mother wavelet’’
and then perform checks using versions of this WT. The
WT can separate the signal into frequencies that can then be
analysed with the help of multi resolution analysis (MRA).
For example, it is possible to use discrete wavelet transform
(DWT) to classify faults once the fault currents are known at
a given location [21].

On the other hand, but also in the same group, artificial
neural networks (ANN) are usually used to tackle with this
problem. These types of systems can be trained by showing
labelled examples to learn the features common to that class.
These trained systems can then classify the new example
shown to them.

There are some experiences of this technique implemented
on MATLAB software to notice the fault on transmission
lines. The output of the Simulink model was used to train the
ANN to identify faults in transmission systems [22].

Also, under this group, efforts have been made to address
this problem by means of Fuzzy Logic. The fuzzy-logic
technique uses an easy relationship between the input and
output variables. Therefore, the fuzzy logic technique per-
forms simple control to deal with numerous issues, especially
when the numerical model is not well known or is difficult to
solve.

There are strategies for investigating overhead line failures
based on a fuzzy system. For example, by comparing the
s-transform and wavelet transform [23], it can be concluded
that the fuzzy decision tree (DT) based on the s-transform
provides accurate fault classification.

Hybrid techniques attempt to compensate for the short-
comings of separate methods. Neuro-fuzzy techniques have
also been found in this group. These neural systems have
attempted to adapt to changing situations. The combination
of fuzzy inference systems that link human learning and
performance approaches with certain improvement strategies
has led to this technique.

One type of combination is the Stockwell transform (ST)
andmultilayer perceptron neural network (MLP-NN) / FFNN
[24], [25] tested in a simulated IEEE 13-node test feeder.
IEEE 13-node is a very small circuit model used to test
common features of distribution analysis software. In the
proposed technique, the three-phase current waveforms are
measured from different points and then processed using
ST to extract statistical features. The features are later fed
into the MLP-NN / FFNN system to detect and classify the
faults.

Another type of system that combines techniques is
wavelet and ANN techniques. Wavelet and ANN techniques
combine the features of a wavelet approach and an artificial
neural network to obtain better results in fault classification.
Some work has been carried out on fault classification
using current signals used for thyristor-controlled series-
compensated transmission systems by integrating the DWT
and ANN algorithms [26].
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On the other hand, the combination of wavelet and fuzzy
logic is used to decompose the output signals of the simulated
power grid. These output signals were then used as inputs to
the fuzzy-logic block. The fuzzy logic block has the particular
rules used for this example that result in the type of fault.

In [27], a method that uses the mother wavelet
Daubechies4 (db4) and a combination of DWT and fuzzy
logic to classify faults was developed.

Finally, wavelet and neuro-fuzzy techniques [28] can be
mixed for fault detection and classification using wavelet
MRA coefficients only. The fault location for a series-
compensated transmission system using WT and ANFIS was
developed in [29].

Modern techniques include support vector machines. This
is a technique for learning separation functions in classifica-
tion tasks (pattern recognition). This technique was based on
statistical learning. Therefore, the input vectors were mapped
nonlinearly into a high-dimensional feature space. This has
been effectively applied to many classification problems, for
example, by combining the SVM and wavelet techniques
used to detect and classify fault types [30].

Another group is the genetic algorithm. Genetic algorithms
(GA) work with variable encoding. (GA) uses a population
of points at a time, in contrast to the single-point approach of
traditional optimisation methods. It has been proposed that
some methods contain a pre-processing unit that depends
on both the DWT and GA, in which the DWT has been
used to extract characteristic features from the input current
signal [31].

In addition, we find Euclidean distance-based methods
for this group. The Euclidean distance between successive
current samples can be used for power-line fault detection and
to identify the faulty phase [32].

Focusing on neural networks, which is the technique used
by us, we have found some additional articles that have
special relevance for the work developed in this paper:

Some studies have used neural networks to process power
line voltage and current signals to classify faults [33], [34],
[35], [36], [37]. The voltages and currents were digitised to
form the input to the neural network. Also, there are some
works tomaking detection and location of aged cable sections
in underground lines [38]. In this case, the transfer function
of the cable is used as the input of the CNN.

Some studies have also been conducted on fault detection,
attempting to extrapolate the voltage values from several sim-
ulated power grids. These values were used to train a neural
network to detect faults in a real electrical network [39].

We have found some studies in which convolutional neural
networks (CNN) were used for processing time series. The
fault signals are time-series signals, so this kind of work is
very relevant for us. In particular, EEGNet, a compact CNN
for the classification and interpretation of EEG-based signals
(electroencephalography EEG)), has been used to classify
this type of signal [40].

Another interesting work is the processing of the time
signals of partial discharge phenomena in power grids using

image transformations (scalogram) [41]), in which the nature
of the signals is very similar to our own. The transformation
of this type of signal into images allows it to be processed by
convolutional neural networks (CNN).

This type of neural network provides excellent results in
image processing.

Another type of transform of time signals to images pre-
sented in the literature is the Gramian angular fields (GAF)
transform [42].

We studied this transformation in the present study to use
them with our signals.

The state of the art of deep learning includes publications
that discuss the use of a special type of network called a gen-
erative adversarial network (GAN). Using these GAN, syn-
thesised examples can be generated from a limited database.
In our case, we have the problem of the scarcity of examples,
so we can probably use this type of neural network to expand
our database of signals of the transients produced in the
electrical grid in fault [43], [44].

As has been shown, in the literature, there are several
publications proposing the use of Neural Networks for the
detection of faults and other phenomena of a similar nature
in electrical distribution networks.

The possibility of being able to detect and classify the
ToF by injecting periodic pulses into the network is currently
state-of-the-art and can be a great help as a preliminary step
in locating faults in automatic systems.

B. METHODS FOR FAULT LOCATION
Two state-of-the-art techniques are available for locating
faults in power lines.

- Impedance measurement
- Methods based on travelling waves

1) IMPEDANCE MEASUREMENT
The first technique involves measuring the impedance of
the line at the fundamental frequency from a point on the
network. The point at which it occurs can be calculated by
observing how it varies when a failure occurs.

Fault location in double circuit power networks is pre-
sented in [45]. In this paper, the new method considers the
mutual effect of double circuit lines It has been tested over
IEEE 13-node test feeder.

However, although this method works well for transport
grids because it is generally simple with no bifurcations [46],
it does not yield good results in distribution lines. In these
lines, there are numerous bifurcations, and it is not possible
to equip each section with a detector because of the high cost.

However, the measurement of these networks from a single
point results in a large error because of the lack of proportion-
ality between the impedance value and the distance caused by
the multiple bifurcations of the network.

2) METHODS BASED ON TRAVELLING WAVES
Methods based on travelling waves are based on the propaga-
tion of waves through conductors. These methods are based
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FIGURE 1. Fault location using the travelling wave of the spike event
principle.

on the well-known telegrapher equations. One of the tech-
niques within this group consists of measuring the bounce
of a high-frequency signal that appears when a failure event
occurs [47]. Short circuits caused by faults produces a high
frequency transient that travels through the network (Fig 1).

This technique has provided good results in transportation
lines where the use of two devices, one at each end of the
section to be monitored, is widespread.

However, in distribution lines with many bifurcations, it is
not possible to instal a device at each node because of the high
cost.

Another difficulty lies in the time synchronisation that
must exist between the equipment for the calculation of the
distance and the prior knowledge of each section of the lines.

Other travelling wave methods are based on the injection
of a signal and the analysis of the electrical response of
the system. Following the telegrapher’s equations, these sig-
nals undergo reflections at each location impedance change,
as well as attenuations and distortions, until they return to the
starting point. The occurrence of a fault implies a change in
the characteristic impedance such that localisation is possible,
at least in theory.

This technique is known as time-domain reflectometry
(TDR). In distribution lines, the biggest challenge that TDR
must overcome is resolving the multiple reflections caused
by shunts, which complicates the analysis of the electrical
response of the system. Thus, [48] it is proposed to inject
through a healthy and faulted phase, and then perform a
modal transformation to decouple the three-phase signals
(using the Karrenbauer transformation matrix). The problem
with this methodology is that it requires a healthy phase,
which is not always available (three-phase faults), and that
the injected pulse must have too high the amplitude (high
voltage), which requires the network to be de-energised.

Techniques have also been proposed to measure the travel
time of transients generated by the fault itself and by an
injected signal. Later, the comparison of both allows the
localisation of the fault to be calculated [49]. The method
is accurate at the simulation level; however, it requires a high

FIGURE 2. Pre-fault signal (a), Fault signal (b), comparison of both
signals (c).

sampling rate (the use of the wavelet transform is proposed).
In addition, it is not possible to locate all the faults because
it is required that the occurrence of the fault temporally
coincides with the high part of the sine wave cycle in order to
have the detection capability.

Another proposed technique based on TDR consists of
performing a periodic injection on the line in a pre-fault
state so that the electrical response of the network is updated
frequently. When a fault occurred, the injection was repeated,
and the responses were compared (Fig. 2). Thus, an attempt
can be made to locate the fault from the first point of diver-
gence between the two signals [17], [47], [50], [51]. In the
figure, it can be observed that the signals begin to diverge at
approximately 50× 10−9s.

The pre-f ault signal (line response to pulse injection
when the fault has not yet occurred) and the fault signal
(line response to pulse injection when the fault has already
occurred) are almost the same until the pulse reaches the point
where the fault is located. It is this phenomenon the one that
is exploited in the TDR technique to locate the fault and, in
our case, to detect and classify the fault.

Regardless of the type of fault, the pre-fault and fault
signals begin to differ from the moment they reach the point
where the fault has occurred

3) USE OF FAULT PASSAGE RELAYS TO DETECT THE FAULT
In medium-voltage lines (distribution lines/15 kV to 20 kV),
there are devices in transformer substations called fault pas-
sage relays. These devices monitor the voltage and current in
each phase and detect when a fault occurs in any phase. Once
the fault passage relays warning that a fault has occurred,
the locating system can operate with certainty that the line is
indeed faulted. Protection systems are alerted, and they can
open the section of the line where the fault is located until the
problem is resolved (fault-cleared).

However, in low-voltage distribution lines (230 V ac),
these devices usually do not exist, and as there are large
numbers of bifurcations, the installation of many devices
would be unfeasible.
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FIGURE 3. Methodology block diagram.

C. STRUCTURE OF THE PAPER
This paper aims to demonstrate the use of the pulse injection
technique (TDR) for fault detection and classification as a
preliminary step in fault localisation.

For this purpose, neural networks are used, which are
trained to classify the signals obtained as a response of the
electrical grids to the injected signals.

IV. METHODOLOGY
This section describes the proposed methodology based on
the injection of signals into the distribution line and the
analysis and classification of the received bounces. The
methodology, including the pulse injection and subsequent
transformations, is illustrated in Fig. 3. The following subsec-
tions explain the different steps of the methodology in detail.

To obtain a set of examples with which the neural network
can be trained, the electrical grid of interest is modelled,
as well as the injector with which the pulses are produced
in each of the phases.

In this study, a real electrical grid was modelled using
PSCADTMsoftware. Faults at different locations as well as
the responses to the injected signals were simulated. Despite
being able to simulate a large number of examples (tens
or hundreds), obtaining a large database to train a neural
network typically requires tens of thousands of examples.
A large number of examples allow the generalisation of the
problem and prevent the network from learning examples
(known as overfitting).

Based on the above, the contribution of the present paper
is threefold:

1) To demonstrate that there is sufficient information
embedded in the signals reflected by the network by
injected pulses (TDR), and that it can be extracted to
detect and classify them by type.

2) To demonstrate that with the applied methodology of
GAN, it is possible to generate high-quality examples

of synthesized signals and solve the problem of the
scarcity of original examples of this type of signal.

3) To propose a methodology for the union of GAN and
Siamese networks (a type of neural network that is
explained in detail below). With this methodology, the
accuracy improves dramatically when training with
only synthetic examples.

A. COLLECTING PHASE: TDR SIGNALS
The first process consists of creating a database with signals
obtained using the software (PSCADTM). To do this, a real
electrical network was modelled beforehand, and a series
of five fault types was simulated at different points in the
distribution line:

- Fault type 1: Short circuit between R to Earth.
- Fault type 2: Short circuit between S to Earth.
- Fault type 3: Short circuit between T to Earth.
- Fault type 4: Short circuit between R-S to Earth.
• Fault type 5: Short circuit between R-S-T to Earth.

The procedure followed, based on the time-domain reflec-
tometry (TDR) technique, consists of injecting short-period
pulses (∼10 ns) separated every few seconds (e.g. every 5 s).
It should be noted that these pulses were injected into each of
the three phases (R-S-T in a three-phase system).

According to the physics of transmission lines, these pulses
travel through the network and are reflected at every bifurca-
tion; therefore, some of them are bounced back. The magni-
tude of these reflections depended on the impedance of the
line at each bifurcation.

As shown in Fig. 4, the pulses were injected into each phase
with a time lag to allow the signal to be extinguished and
therefore, to prevent the induction of the pulses into other
phases.

Injection and reading of the response signal were per-
formed at the same physical point on the line. In such a
way that as soon as the pulse is injected, the response signal
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FIGURE 4. Detail of the injected pulse and the grid response during the
very first moments in one phase.

received by the line starts to be digitised. When the pulse
encounters a point on the line at fault (short circuit), the
impedance value at that point changes. The returning signal
carries information about the impedance change at that point.

This technique is suitable for high-, medium-, and low-
voltage distribution lines. However, its use is most relevant
for low-voltage lines, as fault passage relays are not normally
installed because of high installation costs.
In this study, the injected signals were sampled in a sim-

ulator at 100 Msps (Mega samples per second). For each of
the three injected signals (R-S-T), approximately 40 µs were
digitised, after which the signal was practically extinguished.
Thus, the total sampling time for the three phases was 40µs×
3 = 120 µs. At the indicated sampling rate, 12,000 digitised
values (parameters) were obtained, which could be used as
input to the neural network.

B. TRANSFORMATION PHASE: FROM TIME SIGNALS TO
IMAGES
Currently, in the state of the art, there are several examples
of time-series problems that are treated very satisfactorily by
Convolutional Neural Networks through their prior transfor-
mation from time series to images [41], [42], [52].

Therefore, a standard technique is to convert a time series
into images for better and easier data processing. For instance,
in [52], theGramianAngular field (GAF) transformwas used
to transform the time series into images.

In the GAF technique, we represent the time series in a
polar co-ordinate system instead of typical Cartesian coor-
dinates. Here, the amplitude of the signal is encoded as the
angular cosine, and the timestamp is the radius, as shown
in Equation (1). This information is gathered in the form of
a matrix in which the relationships between different time
instants can be identified. In this matrix, each element is the
cosine of the summation of angles (GASF) (2) or the sine of
the difference of the angles (GADF) (3). ϕ = arccos(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃

r =
ti
N
, ti ∈ N

(1)

GASF =
[
cos

(
ϕi + ϕj

)]
(2)

GADF =
[
sin
(
ϕi − ϕj

)]
(3)

FIGURE 5. Comparison of (a) an original time-series signal with (b) a
128-dimension GASF matrix recovered as time-series signal.

FIGURE 6. Encoding of the fault temporal signal (a) by transform into a
polar coordinate system (b) by (1) and finally calculate its GASF image
(c) with (2) and (3). (Numbers in brackets refer to equations).

Applying this technique to each phase (R-S-T), we digitised
4,000 samples. In total, we have 12,000 samples (4,000× 3),
which leads to high dimensionality in the output matrix of the
GAF transformation. To reduce this dimensionality, [17] an
algorithm called Piecewise Aggregate Approximation (PAA)
was proposed in [38]. First, we use the PAA algorithm to
reduce the dimensionality to 128 (the choice of this parameter
is justified below in the ‘‘Results’’ section). After applying
PAA, GASF is applied to obtain a 128 × 128 × 3 channel
matrix, where each channel corresponds to the signal of each
of the three phases of the distribution line (R-S-T). As demon-
strated in [52], the GASF transformation has an advantage
over the GADF transformation in that the temporal signal can
be reconstructed from the image (Fig. 5). This property will
allow us to compare the original signals with the ‘‘reduced’’
ones (Fig. 6).

Once the signals have been adapted in such a way, the new
format can be used in subsequent processing phases.
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FIGURE 7. GAN generator and discriminator layers structure.

C. DATASET AUGMENTATION PHASE: GAN
At this stage, our database was converted to a GASF image
database. However, owing to the problem discussed above
and the difficulty of obtaining more examples quickly and
easily, the sample set had a limited size of 200 signals/images
that included five types of faults. Thus, only 40 samples were
available for each class.

Because our next phase will be automatic classification,
a very small number of samples will be a real handicap, and
it is well known that any learning algorithm highly depends
on a large training dataset.

This issue is common in many cases where data extraction
is extremely difficult, and in some cases, becomes impossi-
ble. As previously mentioned, simulating tens of thousands
of examples is unfeasible because of the simulation time
required. Another related problem is the need to manually
adjust the parameters to generate diverse fault types. A wide
range of cases can occur due to the stochastic nature of
the phenomenon for each ToF. Therefore, we used GAN to
generate synthetic examples, thereby increasing the initial
database.

As we have seen, dimensionality reduction leads to a
substantial reduction in training time and allows for easier
implementation of GAN. We have tested different types of
GAN: Convolutional GAN (CGAN) [53], Conditional GAN
(cGAN) [54], even Conditional Deep Convolutional GAN
(cDCGAN) [55]. We did not obtain satisfactory results due to
thewell-known problem of convergence of this type of Neural
Networks known as ‘‘mode collapse.’’ This problem causes
the GAN to generate examples of a limited number of types.

Finally, we generated examples with a simpler GAN of lin-
ear layers, training each type separately with an independent
GAN. By simplifying the GAN, we achieved convergence
and obtained a database of 10,000 examples (2,000 examples
for each ToF). Although we have achieved this at the cost of
having a large number of parameters (104,306,000), we have
prioritized the ease of training over the GAN optimization.

The GAN consists of a generator (D) and discriminator
(D), as shown in Fig. 7. The generator has a random signal
(noise) as input, which is used by the generator to produce
new output images of the required dimension (Generated
sample) (128× 128× 3).

FIGURE 8. Appearance of the original GASF signals (a) and synthesized
by the GAN (b) once the GAN has been trained. It can be seen that they
are very similar even to the naked eye.

TABLE 1. % examples used.

On the other hand, the Discriminator is presented with
original images (Real samples) and images generated by the
Generator (Generated samples).

The Discriminator has to try to label them as ‘‘True’’ or
‘‘False’’. The successive training of the generator and dis-
criminator ends once the discriminator is not able to distin-
guish the generated examples from the real ones. At this point,
the generator can be used to produce as many examples as
necessary (Fig. 8).

D. CLASSIFICATION PHASE: FAULT TYPES
Finally, at this stage, we have a database of ‘‘synthetic’’
GASF data (Generated samples) produced with the help of
GAN, and a set of ‘‘original’’ data (Real samples) obtained
from the simulation.

Usually, the training, validation, and testing data are split
into a mixture of Generated and Real samples to achieve
measurable results and improvements. For example, in, [44]
the authors proposed using mixtures of no more than 50% of
Generated samples.

However, we have a database of very few examples (200),
and we cannot train the neural network with 200 original
examples + 200 synthetic examples (400 total), as they are
still too few examples to train a neural network.

To avoid this situation, we have proposed a different train-
ing solution, in which the distribution of training, validation,
and testing data is made up as shown in Table 1. The training
and validation sets are composed only ofGenerated data, and
the test set is built only with Real samples.

As a first check, we verified the results obtained using the
well-tested networks. From the simplest to the most complex,
LeNet, AlexNet, and ResNet18 were used in this work. With
these classifiers, the results were very poor, as expected and
as previously reported.
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FIGURE 9. Architecture of siamese convolutional networks which are
joined by the loss function in (4).

All these tests lead to the conclusion that the model cannot
be generalized. The model only learns the distribution of the
training examples (Generated) but fails to work with Real
samples.

Then, as a suitable alternative to try to obtain better results,
we aimed to verify whether we could use another approach
based on neural networks that could be trained only with
synthetic data and had a good performance when tested with
original data. For this purpose, we used Siamese Convolu-
tional Networks [13]

As shown in Fig. 9, the Siamese are twin nets that share
the same weights. In this case, it can be seen that even if
there are two convolutional networks, overall, we have half
the parameters with respect to the GAN (46,854,530). The
main feature is that they can be trained to learn a space in
which the features of different classes are very close to each
other. This is also our scenario, in which the different fault
GASF images appear similar to each other. This was achieved
by exposing the network to a pair of similar and dissimilar
observations.

The network minimizes the Euclidean distance between
similar pairs and maximizes the distance between dissimilar
pairs (L = contrastive loss).
In (4), we can see that s1 and s2 are two samples (GASF

images), y is a Boolean denoting whether the two samples
belong to the same class, α and β are two constants, and m is
the margin.

L(s1, s2, y) = α(1− y)D2w+ βymax(0,m− Dw)2 (4)

Dw = ‖f (s1;w1)− f (s2;w2) ‖2 (5)

where (5) is the Euclidean distance computed in the embed-
ded feature space. It can be seen that if y is 1 (different
classes), the left-hand term disappears, and we attempt to
maximize the distance between examples. On the other hand,
if y is 0 (same class), the right-hand term disappears, and we
attempt to minimize the distance between examples.

V. RESULTS
This section describes the methodology used in our experi-
ments. An introduction is made to the configuration of the
examples in the database, specifically how they have been
selected for the different phases of the training (training,

validation, and testing). Then, the results obtained for each
case are presented.

A. STRUCTURE OF THE EXPERIMENTS
To carry out the experiments in this work, we relied on a
database of 200 examples of Real samples (Fig. 6 (a)), con-
verted to images using the GASF transformation (Fig. 6 (b)),
and 10.000 GASF Generated samples (2.000 for each of the
five types under study).

In the first group of experiments, we focused on demon-
strating the potential losses due to the GASF transformation
and the subsequent suitability of GAN images. This will
provide us with significant conclusions to determine whether
these steps affect the quality of our results.

In the second group of experiments, where existing state-
of-the-art neural networks (LeNet, AlexNet, and ResNet18)
were trained, the database of synthetic examples was split
into training (80%) and validation (20%). We then tested the
database of original examples (200 examples, 40 examples of
each ToF: 40 × 5 = 200).
Finally, when dealing with the Siamese network in the

last experiment, a set of pairs randomly selected from the
Generated samples were used to train the network. Two
important facts should be mentioned at this point:1. This set
was chosen to prevent imbalance among the types. 2. The
validation and training phases were achieved with synthetic
data (Generated), and tests were carried out with the original
data (Real).

B. STUDY OF THE GASF TRANSFORMATION AND ITS
RELATED LOSSES
As previously mentioned, the first step in processing is to
transform the time signals into images using the GASF
transform. In this step, it is necessary to decide which
dimensionality reduction should be applied when performing
this transformation. As explained in [56], this dimensional-
ity reduction is obtained by applying Piecewise Aggregate
Approximation (PAA).
Therefore, PAA is a source of potential loss and distortion.

Therefore, a study in the frequency domain can demonstrate
how this reduction distorted the original signals. Therefore,
to proceed, we compute the FFT of the recovered signals
already reduced according to the following procedure:

- A Real sample is initially transformed into GASF
images of different dimensionalities (4000, 1000, 512,
and 128, respectively).

- Each GASF Generated sample was back processed to
obtain new versions of the same signal.

- Finally, we computed the FFT for the last signals (see
Fig. 10).

From the study of these FFTs, it can be deduced that this
dimensionality reduction is equivalent to a low-pass filter,
as it is observed that as the reduction increases, the higher fre-
quencies disappear and the lower frequencies are preserved.

For other types of studies, where the objective is to extract
other types of more complex information (distance to the
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FIGURE 10. FFT of GASF images recovered of the same signal.
(a) Dimensionality = 4,000 (Original) / (b) Dimensionality = 1,000 /
(c) Dimensionality = 512 / (d) Dimensionality = 128. It can be observed
that the higher frequencies disappear, while the lower frequencies are
preserved when the dimensionality reduction increases.

fault, for instance), these high frequencies can become rel-
evant. In our case and in view of the subsequent results, the
assumed reduction (128 × 128) is adequate and allows us to
save time in the training/validation phase.

C. ANALYSIS OF POTENTIAL MEASUREMENT ERRORS
Simulations based on real power distribution networks can
lead to many difficulties in obtaining an adequate amount of
data. This is why the central motif of this article is to obtain
valuable fake data (generated samples) that can be used to
train a neural network and obtain optimal results.

But at the same time, simulations can give us some uncer-
tainty about the performance of the classifier in the face of
possible failures of the measurement devices that can occur
in a real environment. Indeed, this is a significant factor that
distinguishes a simulated network from a real one. That is
why this aspect has a specific section in this article.

In this sense, we are going to focus our interest on the study
of three types of measurement errors:

1) RANDOM ERROR
Configured as a white noise signal, which has the next prop-
erties a) the signal is not statistically correlated between two
different times, and b) its power spectral density (PSD) is
constant throughout its spectrum. This type of error provides
us with information on the behavior of the classifier over the
entire frequency spectrum.

The results of the tests with this type of error are presented
in Fig. 11, where errors of different signal-to-noise ratios have
been used.

Several training epochs with different accuracy rates have
been chosen, and each of them has been processed with noisy
signals of 1 dB, 10 dB, 20 dB, 30 dB and 40 dB.

FIGURE 11. Impact of measurement error (white noise) on results.

FIGURE 12. Impact of measurement error (bias) on results.

The conclusions that can be drawn from the figure are,
on the one hand, the stability of the network with simi-
lar accuracy rates when the performance of the network in
the corresponding epoch is partial or different from 100%.
Except for epoch 3, where there is a generalized drop in
network performance in the presence of noise. On the other
hand, in epochs with a 100% hit rate, similar 100% accuracy
rates are obtained from the network regardless of the level of
noise.

2) BIAS ERROR
It provides an estimation of the accuracy of the measurement
system and represents the systematic error that can occur in
the system.

Fig. 12 shows the results with respect to this type of error.
The experiment is set up identically to the random error case,
and the results are also very similar. A drop in performance
at epoch 2, and identical behavior when 100% accuracy is
obtained in the validation can be observed.

3) AMPLIFICATION ERROR
In the latter case, we consider the error that may be introduced
by the instrumentation, due to its limited bandwidth.

The classifier’s tolerance to this type of error has a much
simpler justification, as this would be a subset of the errors
considered in the first two cases.
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TABLE 2. Original vs synthetic data correlation.

TABLE 3. Original vs original data correlation.

FIGURE 13. Original samples fault type 3 FFT statistics (a) and synthetics
samples fault type 3 FFT statistics (b). Blue line is the moving average
using 5 samples.

D. CHECKING THE SUITABILITY OF THE IMAGES
OBTAINED WITH THE GAN
As mentioned above, we trained a GAN to synthesize exam-
ples and increase the database size after transforming the
temporal signals into images. This would be useless if those
images were not of sufficient quality and did not appear
to be very similar. To do this, we select the Real signals
and compare them with the Generated signals, converted
back from GASF images, to check whether they are suitable.
Therefore, a comparison will be made with signals and not
with GASF images for a better understanding of the negative
effects.

In Fig. 11 and 12, we can see the comparison between
each harmonic of all the signals, both the Real andGenerated
signals for each ToF. In these figures, the amplitude variation
of each harmonic is represented by the black lines. Similarly,
the green flag represents the 50th percentile.
Looking at the graphs and moving average (blue line),

it can be seen that both types of signals have a very similar
frequency distribution pattern, whichmeans that the GANhas
consistently synthesized in terms of frequency spectrum vs.
amplitudes.

Another aspect to highlight, in case of Generated signals,
the percentile variation remains constant throughout the fre-
quency spectrum. Meanwhile, the Real ones show different
variabilities in each of the harmonics.

Table 2 lists the maximum and minimum values shown in
Figure 13. It can be stated that, in general, both signals are
strongly correlated.

FIGURE 14. Original samples fault type 5 FFT statistics (a) and synthetics
samples fault type 5 FFT statistics (b). Blue line is the moving average
using 5 samples.

However, there are some Real signals that show a low
correlation (blue color) with the rest of the Generated signals.

Fig. 15 (a) shows them with a frequency distribution pat-
tern that is different from the rest. In these cases, the GAN has
not learned to generalize this type of signal, which may be a
limitation of GAN. Moreover, the rest of the examples with
similar patterns were well synthesized by GAN and showed
strong correlations.

Finally, the reader can appreciate the degree of correla-
tion between the Real signals (see Fig. 14 and Table 3).
The signals have a different pattern, since they are originally
poorly correlated with all the others.

E. TRAINING STANDARD NEURAL NETWORKS MODELS
Our first attempt to classify was to train the standard models
LeNet [57], AlexNet [58], and ResNet18 [59] with our new
extended database to verify the results. Fig. 16 shows the
progression of the complete training, validation, and testing
processes for the AlexNet model. We continue applying the
same strategy to ensure a fair comparison (training and vali-
dation phase using newly Generated data and testing results
with the Real dataset).

The model can obtain values close to 100% after a few
epochs, both in training and validation (withGenerated data).
However, in the test stage, with Real examples, the accu-

racy is poor, which means that the model cannot be gener-
alized well. This is in line with what exists in the literature
regarding the need to train using a limited number of syn-
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FIGURE 15. FFT correlation synthetic vs original examples for each ToF: type 1 (a), type 2 (b), type 3 (c), type 4 (d), type 5 (e).

FIGURE 16. FFT correlation original vs original examples for each ToF: type 1 (a), type 2 (b), type 3 (c), type 4 (d), type 5 (e).

FIGURE 17. Comparison of FFT between original and synthetic signals: Comparison between original signal number 22 (blue) and synthetic signal
number 34 (red), both belonging to fault type 5 (a). Comparison between the original signal number 10 (blue) and synthetic signal number 34 (red),
both belonging to fault type 5 (b).

TABLE 4. Accuracy (%).

thetic examples [44]. Table 4 lists the training results of the
LeNet, AlexNet, and ResNet18 models. Similar results were
obtained for the three models.

F. TRAINING THE SIAMESE NEURAL NETWORK
Siamese networks are well known for their effectiveness in
one-shot or few-shots learning strategies [28], being able to
adapt to new distributions quickly.

Applying the same learning strategy as in the previous
sections, in Fig. 17 we can observe the evolution of the
training loss for each epoch, as well as the loss and accuracy
in training and validation phase for different learning rates.
For smaller values of the latter parameter, less aggressive
curves are achieved.

FIGURE 18. Accuracy of the training phase (a) with known synthetic data,
validation phase (b) with unknown synthetic data, and test phase (c) with
unknown original data of the AlexNet model. The training and validation
phases were performed using 100% synthetic examples, and the test
phase was performed using 100% original examples.

We would also like to highlight the performance with the
test data. The Siamese network (SN) is able to generalize
between both distributions (synthetic and original), and the
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FIGURE 19. Validation accuracy and Training / Validation Loss phases for different learning rates, 1e-4 (a), 1e-5 (b), 1e-6 (c), and for
each Epoch.

FIGURE 20. Validation and Test accuracy phases for different learning rates, 1e-4 (a), 1e-5 (b), 1e-6 (c), and for each Epoch.

results are even better if the correct learning rate is finally
chosen (in this case, 1e−5). In Fig. 18, we can see this com-
parison between the validation and test accuracies for each
epoch as a function of the learning rate.

In conclusion, it can be said that the network converges
to validation accuracy values of approximately 70% and
test accuracy values of approximately 80% for the correct
learning rate. This represents an improvement of more than
two times with respect to the standard networks trained
in Section D. This result shows that contrastive learning
helped us to effectively classify original signals. In this way,
the SN has been able to classify original examples that
it has never seen before, but also belongs to a different
distribution.

Apart from this result, it can be seen that with high learning
rates (1e−4) as shown in Fig.17 (a), it is worth noting that even
with this high variability, and owing to the ability of Siamese
networks, it is able to return 100% accuracy rates both in the
validation and test phases.

As mentioned before, this behavior can be explained
because this type of network can be used for one-shot-
learning, so the network does not require much training.

Thus, themodel can correctly classify never-seen examples
belonging to another distribution.With a sufficient number of
synthetic examples, it took a few epochs to correctly learn to
separate and classify unseen originals.

VI. CONCLUSION
We propose a solution to the problem of fault detection
and classification with a few examples: the generation
of synthetic examples by means of GAN networks, com-

bined with the application of contrastive loss (Siamese
networks).

In relation to the expected objectives set in this study:
1. It has been demonstrated that fault-type information

is present in the signals reflected by the network as
a result of injected pulses (TDR). Very good results
were achieved by performing dimensionality reduction
by applying the Piecewise Aggregate Approximation
(PAA) technique. This reveals that the information of
the ToF is in the low frequencies of the signal and
can be dispensed with, at least in this study, higher
frequencies.

2. It has been possible synthesized examples of each of the
five types of faults used in this study were generated.
We went from having a database of 200 examples
(original examples) to a database of 10,000 synthesized
examples (2,000 of each type).

3. It has been possible to train a network (Siamese with
Contrastive Loss output) only with synthesized exam-
ples and test it with the original examples, yielding very
high accuracy.

These synthesized examples have been divided into two
groups, one for training and one for validation.
These two groups will belong to the same data distribution,

so the generalization could not be tested yet. To certify that
the system does not only generalize to the training distribution
a test has been performed on the original 200 data, which
belong to a different distribution.
This newmethod facilitates the training of neural networks

with this type of signal, for which few examples are available
owing to their nature.
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VII. FUTURE WORK
Our work is directly linked to a research institution that
is strongly committed to TDR technology, which leads us
to continue advancing in this field. First, we are trying to
understand the limits to which we can take neural networks
in the understanding of this type of phenomenon; second,
we are excited by the results obtained, and we are encouraged
to discover new particularities that can help solve different
problems in this area.

However, our short-term points of interest are as follows:

1. To explore whether our method is valid also for high
impedances and for simultaneous fault detection.

2. To explore whether our method may be affected by the
presence of distributed generations in the distribution
networks

3. To explore whether the neural network can generalize
the learned fault types to other real distribution lines,
without retraining or at least with a minimal learning
phase. The versatility of the process must be such that
it is functional in diverse environment

4. To explore the possibility of extracting more complex
information, such as fault location, by adapting the
technique described in this paper. The challenge here
is to move from a classification problem to a linear
regression problem by generating synthetic examples.

5. Finally, we believe that we have kept open the door that
others have opened with one-short learning methods.
This philosophy has a huge potential to be pursued, and
new contributions can generate the common know-how
that the research community needs.

REFERENCES
[1] D. P. Mishra and P. Ray, ‘‘Fault detection, location and classification of a

transmission line,’’ Neural Comput. Appl., vol. 30, no. 5, pp. 1377–1424,
Sep. 2018, doi: 10.1007/s00521-017-3295-y.

[2] M. Mirzaei, M. Z. A. A. Kadir, E. Moazami, and H. Hizam, ‘‘Review of
fault location methods for distribution power system,’’ Austral. J. Basic
Appl. Sci., vol. 3, no. 3, pp. 2670–2676, 2009.

[3] R. J. Hamidi and H. Livani, ‘‘Traveling-wave-based fault-location algo-
rithm for hybrid multiterminal circuits,’’ IEEE Trans. Power Del., vol. 32,
no. 1, pp. 135–144, Feb. 2017, doi: 10.1109/TPWRD.2016.2589265.

[4] S. Wei, G. Yanfeng, and L. Yan, ‘‘Traveling-wave-based fault location
algorithm for star-connected hybrid multi-terminal HVDC system,’’ in
Proc. IEEE Conf. Energy Internet Energy Syst. Integr., Nov. 2017, pp. 1–5,
doi: 10.1109/EI2.2017.8245645.

[5] J. Teng, X. Zhan, L. Xie, X. Zeng, Y. Liu, and L. Huang, ‘‘A novel
location method for distribution hybrid lines,’’ in Proc. IEEE Conf.
Energy Internet Energy Syst. Integr. (EI2), Nov. 2017, pp. 1–5, doi:
10.1109/EI2.2017.8245425.

[6] L. Wang, ‘‘The fault causes of overhead lines in distribution net-
work,’’ in Proc. MATEC Web Conf., vol. 61, Jun. 2016, p. 02017, doi:
10.1051/MATECCONF/20166102017.

[7] S. Das, S. Santoso, and S. N. Ananthan, ‘‘Fault location on transmission
and distribution lines,’’ in Fault Location on Transmission and Distribution
Lines, Jan. 2022, doi: 10.1002/9781119121480.

[8] S.-C. Huang and T.-H. Le, ‘‘Training neural network,’’ in Principles and
Labs for Deep Learning. New York, NY, USA: Academic, Jun. 2021,
pp. 117–146, doi: 10.1016/B978-0-323-90198-7.00007-0.

[9] O. A. M. López, A. M. López, and J. Crossa, ‘‘Overfitting, model tuning,
and evaluation of prediction performance,’’ in Multivariate Statistical
Machine Learning Methods for Genomic Prediction. Cham, Switzerland:
Springer, 2022, pp. 109–139, doi: 10.1007/978-3-030-89010-0.

[10] K. Berns, A. Köpper, and B. Schürmann, ‘‘Electrical networks,’’ in Techni-
cal Foundations of Embedded Systems (Lecture Notes in Electrical Engi-
neering), vol. 732, pp. 19–43, 2021, doi: 10.1007/978-3-030-65157-2_3.

[11] D. Zhang, M. Ma, and L. Xia, ‘‘A comprehensive review on GANs for
time-series signals,’’ Neural Comput. Appl., vol. 34, no. 5, pp. 3551–3571,
Mar. 2022, doi: 10.1007/S00521-022-06888-0.

[12] G. Koch, R. Zemel, and R. Salakhutdinov, ‘‘Siamese neural networks for
one-shot image recognition,’’ in Proc. ICMLDeep Learn. Workshop, 2015,
pp. 1–30.

[13] S. Dey, A. Dutta, J. Ignacio Toledo, S. K. Ghosh, J. Llados, and U. Pal,
‘‘SigNet: Convolutional Siamese network for writer independent offline
signature verification,’’ 2017, arXiv:1707.02131.

[14] H. Ungrad, W. Winkler, and A. Wiszniewski, ‘‘The main criteria for
detecting faults,’’ in Protection Techniques in Electrical Energy Sys-
tems. Boca Raton, FL, USA: CRC Press, Aug. 2020, pp. 28–38, doi:
10.1201/9781003067504.

[15] J. Jiao, G. Lai, L. Zhao, J. Lu, Q. Li, X. Xu, Y. Jiang, Y. He, C. Ouyang,
F. Pan, H. Li, and J. Zheng, ‘‘Self-healing mechanism of lithium in
lithium metal,’’ Adv. Sci., vol. 9, no. 12, Apr. 2022, Art. no. 2105574, doi:
10.1002/ADVS.202105574.

[16] M. Brehm, L. Trigo, and D. Slomovitz, ‘‘Semiautomatic testing system for
high voltage detectors,’’ in Proc. IEEE 9th Power, Instrum. Meas. Meeting
(EPIM), Nov. 2018, pp. 1–3, doi: 10.1109/EPIM.2018.8756432.

[17] J. Oasa, M. Yamanaka, S. Higashiyama, Y. Inaoka, T. Hisakado, O. Wada,
T. Matsushima, T. Hirayama, and K. Yamaoka, ‘‘Verification of fault
location by TDRmeasurement on an actual line includingmultiple ground-
mounted equipment,’’ in Proc. 26th Int. Conf. Exhib. Electr. Distrib.,
Sep. 2021, pp. 1274–1278.

[18] R. Lacoste, ‘‘The darker side: Time domain reflectometry,’’ in Circuit
Cellar, no. 225. Apr. 2009, ch. 3, pp. 33–47, doi: 10.1016/B978-1-85617-
762-7.00003-4.

[19] A. Prasad, J. B. Edward, and K. Ravi, ‘‘A review on fault clas-
sification methodologies in power transmission systems: Part—I,’’
J. Electr. Syst. Inf. Technol., vol. 5, no. 1, pp. 48–60, May 2018, doi:
10.1016/J.JESIT.2017.01.004.

[20] A. Prasad, J. Belwin Edward, and K. Ravi, ‘‘A review on fault
classification methodologies in power transmission systems: Part—II,’’
J. Electr. Syst. Inf. Technol., vol. 5, no. 1, pp. 61–67, May 2018, doi:
10.1016/J.JESIT.2016.10.003.

[21] B. Nayak. (2014). Impact Factor: 1.852 Classification of Transmission
Line Faults Using Wavelet Transformer. Accessed: Jun. 1, 2022. [Online].
Available: https://www.ijesrt.com

[22] S. Kesharwani, D. Kumar, and M. Scholar, ‘‘Detection of power quality
disturbances using wavelet transform,’’ Int. J. Sci., Eng. Technol. Res.,
vol. 3, no. 5, pp. 1–6, 2014. Accessed: Jun. 2, 2022. [Online]. Available:
https://www.researchgate.net/publication/301695115

[23] S. R. Samantaray, ‘‘A systematic fuzzy rule based approach for fault
classification in transmission lines,’’ Appl. Soft Comput., vol. 13, no. 2,
pp. 928–938, Feb. 2013, doi: 10.1016/J.ASOC.2012.09.010.

[24] A. Aljohani, A. Aljurbua, M. Shafiullah, and M. A. Abido, ‘‘Smart
fault detection and classification for distribution grid hybridizing ST and
MLP-NN,’’ in Proc. 15th Int. Multi-Conf. Syst., Signals Devices (SSD),
Mar. 2018, pp. 94–98, doi: 10.1109/SSD.2018.8570582.

[25] M. Shafiullah and M. A. Abido, ‘‘S-transform based FFNN approach for
distribution grids fault detection and classification,’’ IEEE Access, vol. 6,
pp. 8080–8088, 2018, doi: 10.1109/ACCESS.2018.2809045.

[26] W. J. Cheong, ‘‘A novel fault location technique based on current signals
only for thyristor controlled series compensated transmission lines using
wavelet analysis and self organising map neural networks,’’ in Proc. 8th
IEE Int. Conf. Develop. Power Syst. Protection, 2004, pp. 224–227, doi:
10.1049/CP:20040104.

[27] A. Ngaopitakkul, C. Apisit, S. Bunjongjit, and C. Pothisarn, ‘‘Identifying
types of simultaneous fault in transmission line using discrete wavelet
transform and fuzzy logic algorithm,’’ Int. J. Innov. Comput. Inf. Control,
vol. 9, no. 7, pp. 2701–2712, 2013.

[28] N. Hooda andM.Malik, ‘‘Review on neuro-fuzzy system,’’ SSRNElectron.
J., vol. 2022, pp. 1–11, Mar. 2022, doi: 10.2139/SSRN.4033495.

[29] E. S. M. T. Eldin, ‘‘Fault location for a series compensated transmission
line based on wavelet transform and an adaptive neuro-fuzzy inference
system,’’ in Proc. Electr. Power Quality Supply Rel. Conf., Jun. 2010,
pp. 229–235, doi: 10.1109/PQ.2010.5549994.

[30] M. Singh, B. K. Panigrahi, and R. P. Maheshwari, ‘‘Transmis-
sion line fault detection and classification,’’ in Proc. Int. Conf.
Emerg. Trends Electr. Comput. Technol., Mar. 2011, pp. 15–22, doi:
10.1109/ICETECT.2011.5760084.

110534 VOLUME 10, 2022

http://dx.doi.org/10.1007/s00521-017-3295-y
http://dx.doi.org/10.1109/TPWRD.2016.2589265
http://dx.doi.org/10.1109/EI2.2017.8245645
http://dx.doi.org/10.1109/EI2.2017.8245425
http://dx.doi.org/10.1051/MATECCONF/20166102017
http://dx.doi.org/10.1002/9781119121480
http://dx.doi.org/10.1016/B978-0-323-90198-7.00007-0
http://dx.doi.org/10.1007/978-3-030-89010-0
http://dx.doi.org/10.1007/978-3-030-65157-2_3
http://dx.doi.org/10.1007/S00521-022-06888-0
http://dx.doi.org/10.1201/9781003067504
http://dx.doi.org/10.1002/ADVS.202105574
http://dx.doi.org/10.1109/EPIM.2018.8756432
http://dx.doi.org/10.1016/B978-1-85617-762-7.00003-4
http://dx.doi.org/10.1016/B978-1-85617-762-7.00003-4
http://dx.doi.org/10.1016/J.JESIT.2017.01.004
http://dx.doi.org/10.1016/J.JESIT.2016.10.003
http://dx.doi.org/10.1016/J.ASOC.2012.09.010
http://dx.doi.org/10.1109/SSD.2018.8570582
http://dx.doi.org/10.1109/ACCESS.2018.2809045
http://dx.doi.org/10.1049/CP:20040104
http://dx.doi.org/10.2139/SSRN.4033495
http://dx.doi.org/10.1109/PQ.2010.5549994
http://dx.doi.org/10.1109/ICETECT.2011.5760084


J. G. Fornás et al.: Detection and Classification of Fault Types in Distribution Lines

[31] J. Upendar, C. P. Gupta, and G. K. Singh, ‘‘Discrete wavelet trans-
form and probabilistic neural network based algorithm for classifica-
tion of fault on transmission systems,’’ in Proc. IEEE Conf. Exhib.
Control, Commun. Autom., vol. 1, Dec. 2008, pp. 206–211, doi:
10.1109/INDCON.2008.4768827.

[32] C. D. Prasad and D. J. V. Prasad, ‘‘Fault detection and phase selection
using Euclidean distance based function for transmission line protection,’’
in Proc. Int. Conf. Adv. Electr. Eng. (ICAEE), Jan. 2014, pp. 1–4, doi:
10.1109/ICAEE.2014.6838516.

[33] P. Sharma, D. Saini, and A. Saxena, ‘‘Fault detection and classifica-
tion in transmission line using wavelet transform and ANN,’’ Bull.
Electr. Eng. Informat., vol. 5, no. 3, pp. 284–295, Sep. 2016, doi:
10.11591/eei.v5i3.537.

[34] D. Mnyanghwalo, H. Kundaeli, E. Kalinga, and N. Hamisi, ‘‘Deep
learning approaches for fault detection and classifications in the
electrical secondary distribution network: Methods comparison and
recurrent neural network accuracy comparison,’’ Cogent Eng., vol. 7,
no. 1, Jan. 2020, Art. no. 1857500, doi: 10.1080/23311916.2020.
1857500.

[35] J. J. Q. Yu, Y. Hou, A. Y. S. Lam, and V. O. K. Li, ‘‘Intelligent fault detec-
tion scheme for microgrids with wavelet-based deep neural networks,’’
IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1694–1703, Mar. 2019, doi:
10.1109/TSG.2017.2776310.

[36] D. Baskar and P. Selvam, ‘‘Machine learning framework for power system
fault detection and classification,’’ Int. J. Sci. Technol. Res., vol. 9, p. 2,
Jan. 2020. [Online]. Available: https://www.ijstr.org

[37] F. Rudin, G.-J. Li, and K. Wang, ‘‘An algorithm for power system fault
analysis based on convolutional deep learning neural networks,’’ Int. J. Res.
Educ. Sci. Methods., vol. 5, no. 9, pp. 11–18, 2017.

[38] Y.Wu, P. Zhang, and G. Lu, ‘‘Detection and location of aged cable segment
in underground power distribution system using deep learning approach,’’
IEEE Trans. Ind. Informat., vol. 17, no. 11, pp. 7379–7389, Nov. 2021, doi:
10.1109/TII.2021.3056993.

[39] N. Sapountzoglou, J. Lago, B. De Schutter, and B. Raison, ‘‘A gener-
alizable and sensor-independent deep learning method for fault detec-
tion and location in low-voltage distribution grids,’’ Appl. Energy,
vol. 276, Oct. 2020, Art. no. 115299, doi: 10.1016/j.apenergy.2020.
115299.

[40] V. J. Lawhern, A. J. Solon, N. R.Waytowich, S.M.Gordon, C. P. Hung, and
B. J. Lance, ‘‘EEGNet: A compact convolutional neural network for EEG-
based brain–computer interfaces,’’ J. Neural Eng., vol. 15, no. 5, Oct. 2018,
Art. no. 056013, doi: 10.1088/1741-2552/aace8c.

[41] S. Barrios, D. Buldain, M. P. Comech, I. Gilbert, and I. Orue, ‘‘Par-
tial discharge classification using deep learning methods—Survey of
recent progress,’’ Energies, vol. 12, no. 13, p. 2485, Jun. 2019, doi:
10.3390/en12132485.

[42] Z. Wang and T. Oates, ‘‘Encoding time series as images for visual inspec-
tion and classification using tiled convolutional neural networks,’’ in Proc.
Workshops 29th AAAI Conf. Artif. Intell., 2015, pp. 1–7. [Online]. Avail-
able: https://www.aaai.org

[43] K. Yang, W. Gao, R. Fan, T. Yin, and J. Lian, ‘‘Synthetic high
impedance fault data through deep convolutional generated adversarial
network,’’ in Proc. IEEE Green Technol. Conf. (GreenTech),
Apr. 2021, pp. 339–343, doi: 10.1109/GREENTECH48523.2021.
00061.

[44] X. Wang, H. Huang, Y. Hu, and Y. Yang, ‘‘Partial discharge pattern recog-
nition with data augmentation based on generative adversarial networks,’’
in Proc. Condition Monitor. Diagnosis (CMD), Sep. 2018, pp. 1–4, doi:
10.1109/CMD.2018.8535718.

[45] R. Dashti, S. Salehizadeh, H. Shaker, and M. Tahavori, ‘‘Fault loca-
tion in double circuit medium power distribution networks using an
impedance-based method,’’ Appl. Sci., vol. 8, no. 7, p. 1034, Jun. 2018,
doi: 10.3390/app8071034.

[46] L. Peretto, R. Tinarelli, A. Bauer, and S. Pugliese. (2011). Fault
Location in Underground Power Networks: A Case Study. Accessed:
Mar. 30, 2022. [Online]. Available: https://ieeexplore-ieee-org.cuarzo.
unizar.es:9443/document/5759198/

[47] N. E. Halabi, ‘‘Localizadores de faltas para redes de distribución eléctrica,’’
Fundación CIRCE, Universidad de Zaragoza, Zaragoza, Spain, Tech. Rep.,
2012.

[48] C.-C. Zhou, Q. Shu, and X.-Y. Han, ‘‘A single-phase earth fault location
scheme for distribution feeder on the basis of the difference of zero mode
traveling waves,’’ Int. Trans. Electr. Energy Syst., vol. 27, no. 5, p. e2298,
May 2017, doi: 10.1002/ETEP.2298.

[49] W. Chonglin, W. Yangyang, L. Rui, and S. Gang. (2010). Fault
Location for Single-Phase-to-Earth Faults Based on Transient Trav-
eling Wave Method and Artificial Pulse Signal Injection Method.
Accessed: Mar. 30, 2022. [Online]. Available: https://ieeexplore-ieee-
org.cuarzo.unizar.es:9443/document/5629889/

[50] M. Abad, U. Zaragoza, N. El, H. Saudi, A.-S. Arabia, and
M. G.-G. Circe-Spain, ‘‘New fault location method for up-todate
and upcoming distribution networks,’’ in Proc. 23rd Int. Conf. Electr.
Distrib., 2015, pp. 15–18.

[51] J. Ballestín-Fuertes, D. Cervero, H. Bludszuweit, R. Martínez, and
J. A. S. Castro, ‘‘Fault location in low-voltage distribution networks based
on reflectometry—A case study,’’ Renew. Energy Power Quality J., vol. 18,
pp. 735–740, Jun. 2020, doi: 10.24084/REPQJ18.483.

[52] Z. Wang and T. Oates, ‘‘Imaging time-series to improve classification and
imputation,’’ 2015, arXiv:1506.00327.

[53] A. Patil and Venkatesh, ‘‘DCGAN: Deep convolutional GAN with
attention module for remote view classification,’’ in Proc. Int. Conf.
Forensics, Anal., Big Data, Secur. (FABS), Dec. 2021, pp. 1–10, doi:
10.1109/FABS52071.2021.9702655.

[54] M. Li, J. Lin, Y. Ding, Z. Liu, J.-Y. Zhu, and S. Han, ‘‘GAN com-
pression: Efficient architectures for interactive conditional GANs,’’ IEEE
Trans. Pattern Anal. Mach. Intell., early access, Nov. 9, 2021, doi:
10.1109/TPAMI.2021.3126742.

[55] F. Zhu, M. He, and Z. Zheng, ‘‘Data augmentation using improved
cDCGAN for plant vigor rating,’’ Comput. Electron. Agricult., vol. 175,
Aug. 2020, Art. no. 105603, doi: 10.1016/J.COMPAG.2020.105603.

[56] E. J. Keogh and M. J. Pazzani, ‘‘Scaling up dynamic time warping for
datamining applications,’’ in Proc. 6th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2000, pp. 285–289.

[57] V. Verdhan, ‘‘Image classification using LeNet,’’ inComputer Vision Using
Deep Learning, 2021, pp. 67–101, doi: 10.1007/978-1-4842-6616-8_3.

[58] V. Verdhan, ‘‘VGGNet and AlexNet networks,’’ in Computer Vision Using
Deep Learning. Irvine, CA, USA: Univ. of California, Irvine, 2021,
pp. 103–139, doi: 10.1007/978-1-4842-6616-8_4.

[59] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

JAVIER GRANADO FORNÁS received the B.Sc.
degree in industrial engineering (specialized in
industrial electronics) and the M.Sc. degree in
electronics engineering (intelligent environments
specialization) from the University of Zaragoza,
Spain, in 1994 and 2014, respectively. He is cur-
rently pursuing the Ph.D. degree in deep learn-
ing around classification and localization of faults
in distributions lines. Since 2009, he has been
working as a Senior Researcher with the Electron-

ics Systems Group, CIRCE Technology Center. His main research inter-
ests include electronic designs control projects around deep learning and
algorithms for fault detection.

ELÍAS HERRERO JARABA (Member, IEEE)
received the Ph.D. degree in engineering from the
University of Zaragoza.

In 1999, he worked in the automotive field at
the Production Department, Opel Spain, for four
years. Since June 2002, he has been a Professor
at the University of Zaragoza. In the meantime,
he was a Coordinator of the smart vehicle initiative
at the Aragon Institute for Engineering Research
(I3A). He currently holds a European patent and

has led to more than six projects funded in public competitions, more than
20 projects with companies, 12 indexed publications, and more than 50 con-
tributions to international conferences. It is worth mentioning the 3 million
awards for his research in the CvLAB Research Group. His teaching work
has focused on electronics, from its basics to power electronics, including
embedded systems. Within the university, he has developed his research in
the area of computer vision. Since 2012, he has focused his research interests
in the field of neural networks, and more recently, in deep learning.

VOLUME 10, 2022 110535

http://dx.doi.org/10.1109/INDCON.2008.4768827
http://dx.doi.org/10.1109/ICAEE.2014.6838516
http://dx.doi.org/10.11591/eei.v5i3.537
http://dx.doi.org/10.1080/23311916.2020.1857500
http://dx.doi.org/10.1080/23311916.2020.1857500
http://dx.doi.org/10.1109/TSG.2017.2776310
http://dx.doi.org/10.1109/TII.2021.3056993
http://dx.doi.org/10.1016/j.apenergy.2020.115299
http://dx.doi.org/10.1016/j.apenergy.2020.115299
http://dx.doi.org/10.1088/1741-2552/aace8c
http://dx.doi.org/10.3390/en12132485
http://dx.doi.org/10.1109/GREENTECH48523.2021.00061
http://dx.doi.org/10.1109/GREENTECH48523.2021.00061
http://dx.doi.org/10.1109/CMD.2018.8535718
http://dx.doi.org/10.3390/app8071034
http://dx.doi.org/10.1002/ETEP.2298
http://dx.doi.org/10.24084/REPQJ18.483
http://dx.doi.org/10.1109/FABS52071.2021.9702655
http://dx.doi.org/10.1109/TPAMI.2021.3126742
http://dx.doi.org/10.1016/J.COMPAG.2020.105603
http://dx.doi.org/10.1007/978-1-4842-6616-8_3
http://dx.doi.org/10.1007/978-1-4842-6616-8_4
http://dx.doi.org/10.1109/CVPR.2016.90


J. G. Fornás et al.: Detection and Classification of Fault Types in Distribution Lines

ANDRÉS LLOMBART ESTOPIÑAN (Member,
IEEE) received the Industrial Engineering degree
from the University of Zaragoza, in 1994.

From December 1994 to May 2001, he was an
Associate Professor with the Department of Elec-
trical Engineering, University of Zaragoza, where
he performed the following teaching activities,
such as electric circuit theory, industrial actuation,
wind energy, and renewable energy integration.
He was also a Lecturer at the Department of Elec-

trical Engineering, University of Zaragoza, from June 2003 to May 2018.
From March 2007 to March 2009, he was the Sub-Director of Institu-
tional Relations at the Superior Polytechnic Centre, University of Zaragoza.
In CIRCE Technology Center, he was in charge of Innovation and Promotion
Unit, created by himself on May 2009. He has been the General Director of
the CIRCE Technology Center, since April 2016, and the Former Executive
Director, since January 2011. In November 2011, he was designated by the
Science and Innovation Ministry as an Expert in Energy Area Committee of
the 7th Funding Program of the European Union, being in charge of the coor-
dination of electricity grids topics. He participated in more than 35 research
and development +i projects; in 16 of them, he was the primary researcher.
He has author of ten articles in indexed journals and more than 50 con-
tributions in international congresses. His active participation in forums,
associations, and platforms linked to activity lines. He has eight patents,
of which seven are being exploited. He researched the impact reduction of
power electronic source grids using passive filters in the kilowatt range. His
research gave him a Ph.D. title (specialized in electrical engineering) with
the University of Zaragoza, in 2000.

JOSE SALDANA (Senior Member, IEEE) was
born in San Sebastián, Spain, in 1974. He received
the B.S. and M.S. degrees in telecommunications
engineering and the Ph.D. degree in information
technologies from the University of Zaragoza,
Spain, in 1998, 2008, and 2011, respectively. He is
currently a Senior Researcher at the CIRCE Tech-
nology Center. He has participated in research
projects related to the digitalization of power sys-
tems, including ICT performance and security, and

the use of wireless communications in industrial environments. He has
published over 60 articles in peer-reviewed journals and conferences and
RFC7962 in the Internet Engineering Task Force (IETF) on alternative
network deployments. His research interests include wired and wireless
networks with tight delay constraints, including multimedia services and
digital communications in electric substations. He serves on the Editorial
Board for IEEE ACCESS (Associate Editor) and the KSII Transactions on
Internet and Information Systems (Area Editor). He has also served on
the Steering Committee and TPC for many conferences, such as the IEEE
Consumer Communications and Networking, the ACMMultimedia Systems
Conference, IEEE ICC, and the IEEE Globecom.

110536 VOLUME 10, 2022


