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Abstract. We study the time delay of reflected and transmitted waves in 1D disordered media with high
transmission. Highly transparent and translucent random media are found in nature or can be syntheti-
cally produced. We perform numerical simulations of microwaves propagating in disordered waveguides to
show that reflection amplitudes are described by complex Gaussian random variables with the remarkable
consequence that the time-delay statistics in reflection of 1D disordered media are described as in random
media in the diffusive regime. For transmitted waves, we show numerically that the time delay is an addi-
tive quantity and its fluctuations thus follow a Gaussian distribution. Ultimately, the distributions of the
time delay in reflection and transmission are physical illustrations of the central limit theorem at work.

1 Introduction

Classical and quantum waves in disordered media such
as microwaves propagating in a random waveguide and
electrons passing through quantum wires, respectively,
are delayed relative to waves traveling in free space.
Apart from the fundamental question about how much
time waves spend in a random medium, the delay pro-
vides practical information. On a macroscopic scale, for
instance, the time delay is an essential ingredient in the
construction of medical images from the reflected ultra-
sound waves penetrating the body; while on a micro-
scopic scale, in electronic quantum transport, the time
delay is directly related with the density of states and
the admittance of quantum capacitors [1–5]. See also
[6]. A related useful quantity to the time delay in trans-
mission and reflection is the dwell time, which has been
used to find the position of a reflector embedded in a
disordered structure [7]. Thus, the time delay has been
an issue of interest in fundamental and practical inves-
tigations in different research areas.

In real materials, the disorder is ubiquitous and is a
source of random fluctuations of static and dynamical
properties, such as the transmission and the time delay.
For coherent wave propagation, localization effects on
the random fluctuations of time delay have been of par-
ticular interest. Despite many efforts to describe theo-
retically the time delay in disordered media, a complete
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theoretical description of this problem is still missing,
even for the simplest case of 1D systems. However, sig-
nificant advances have been made when imposing some
restrictions. For instance, several works consider the
time delay of disordered systems with an infinite poten-
tial at the end of the samples; thus, the statistics of the
time delay of reflected waves has been obtained in the
localized and ballistic regimes [8,9]. Further progresses
have been made in the description of the time delay in
reflection and transmission by considering large disor-
der samples in the insulating transport regime [10,11].
Also, exploiting a relation between reflection in systems
with absorption and the time delay, the distribution of
the time delay in reflection has been obtained in 1D
and higher dimensions [12–15]. Under these restrictions
an extensive literature exists. For a review of the topic,
which includes the case of disordered systems beyond
1D, see for instance Refs. [16,17].

In this paper, we study the time delay of reflected
and transmitted waves in 1D disordered structures com-
posed of weak scatterers such that the mean free path
� is larger than the sample length L. The total trans-
mission coefficient through the samples is thus near-
unity. In the opposite insulating regime (L � �), the
time delay in reflection and transmission in 1D has been
studied in Refs. [9] and [11], respectively.

Because of the large random fluctuations of the time
delay, we are particularly interested in the complete dis-
tribution of those fluctuations. As previously pointed
out, the time delay is a quantity of interest in classical
and quantum waves. Here we will use numerical sim-
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ulations of microwaves in a waveguide with randomly
placed scatterers to show that the random reflection
amplitudes are complex Gaussian random variables and
as a consequence, the distribution of the time delay of
reflected waves follows a probability density function,
Eq. (3), theoretically and experimentally obtained in
Ref. [18], albeit considering systems in the diffusive
regime. For the time delay in transmission, we show
numerically that it is an additive quantity and thus the
distribution of the time delay follows a Gaussian distri-
bution according to the central limit theorem (CLT).

Transparent and translucent disordered media char-
acterized by high transmission coefficients can be found
in nature, such as organic materials where light can eas-
ily pass through. Also, synthetical materials like poly-
crystalline ceramics and optical fibers with high trans-
mission are manufactured nowadays [19,20]. Further-
more, though the presence of the disorder is gener-
ally considered as a disadvantage, recent experimen-
tal technics have exploited the presence of disorder to
increase the transparency of polycrystalline ceramics,
to improve focusing in semi-transparent media, and
enhancing energy transport [20–28]. It has also been
shown numerically and experimentally that disorder in
periodic multilayer structures can be used as a broad-
band source and increase the x-ray reflectivity [29].

Let us start considering a 1D disordered sample, as
shown in Fig. 1, and assume that the scattering matrix
S that relates incoming and outgoing waves at both
sides of the system is given by

S =
(

r t
t r′

)
, (1)

where the complex numbers r and r′ are the reflection
amplitudes at the right and left sides of the system,
respectively, and t is the transmission amplitude. The
elements of the S-matrix are frequency dependent. In
writing Eq. (1), we have assumed time-reversal invari-
ance, so the transmission of incident waves from the left
and right sides of the sample are the same. Following
seminal works by Wigner and Smith [30,31], the time
delays of reflected and transmitted waves are deter-
mined by the derivative of the argument of the reflection
and transmission amplitudes, θr and θt, with respect to
the frequency ω: τr = dθr/dω and τt = dθt/dω.

We obtain the scattering matrix S numerically using
the transfer matrix method described in Ref. [33]. The
method consist of obtaining the total transfer matrix
M of the whole sample which is given by the product
of individual transfer matrices Mi associated to each
layer. See also Ref. [30]:

M = M1M2 · · · MN =
(

1/t∗ −r∗/t∗
−r/t 1/t

)
,

where N is the number of layers. Thus, the elements of
the scattering matrix S are obtained from the transfer
matrix M . Microwaves at the characteristic frequency
ν = 8 GHz (ω = 50 rad·ns−1) are launched into a mul-

Fig. 1 A schematic of the waveguide consisting of alter-
nating layers with indices of refraction n0 and n1

tilayer structure with alternating indices of refraction
n0 = 1 (air) and n1 = 1.05, see Fig. 1. The widths of the
air-layers are normally distributed N (0, 1), while the
n1-layers are of width 0.01 cm. We generate an ensem-
ble of 106 samples with different realizations of the dis-
order and collect the data of the reflection and trans-
mission amplitudes across the ensemble. That allows
us to obtain different statistical properties such as the
ensemble average of the logarithmic transmission 〈ln T 〉,
from which the mean free path � is obtained via the
relation 〈− ln T 〉 = L/� [34]. With the above parame-
ters, we find that � ≈ 2.5 × 106 cm. Therefore, sam-
ples are weakly disordered (k� � 1). We remark that
coherent multiple scattering by weak scatterers pro-
duce random fluctuations of the phases θr and θt [32].
Thus τr and τt are also random variables and a statisti-
cal analysis of their fluctuations is necessary. The time
delays are obtained using a differential frequency step
Δν = 47.71 Hz (Δω = dω = 3 × 10−7 rad·ns−1). In the
following sections, we will obtain the distribution of the
fluctuations of both τr and τt.

2 Time delay of reflected waves

A key point to obtain the complete distribution of τr is
to notice that the reflection amplitude r(ω) is a com-
plex Gaussian random variable. Furthermore, at two
frequencies, say ω1 and ω2, the joint distribution of
r1 = r(ω1) and r2 = r(ω2), also follows a Gaussian
distribution. We point out that the limit Gaussian dis-
tribution of r is a consequence of the CLT when the
random vector r is interpreted as the result of the sum
of a large number of complex random variables or com-
plex phasors [35].

Defining r as the column matrix r = (r1, r2)T
and assuming circular symmetry, the joint distribution
P (r, r†) can be written as [35]

P (r, r†) =
1

π2 det C
exp

(−r†C−1r
)
, (2)

where Cij = E[rir∗
j ] is the Hermitian covariance

matrix and r† is the conjugate transpose of r. Circu-
lar symmetry implies the following relations between
the expectation values: E[Re(r1)] = E[Im(r1)] = 0,
E[Re(r1)Re(r2)] = E[Im(r1)Im(r2)], and E[Re(r1)Im
(r2)] = −E[Im(r1)Re(r2)].

We illustrate the features of the circular Gaussian
variables using the numerical simulations of disordered
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(a)

(b)

Fig. 2 Numerical joint density distribution of (a) the real
and imaginary parts of the reflection amplitude r and (b)
the real parts of the reflection amplitude r at two frequen-
cies: ω1 = 50.262 rad ns−1 and ω2 = 50.268 rad ns−1. Panels
at the left present a top view of the joint distributions and
their respective marginal Gaussian distributions in gray. In
both examples (a) and (b), L/� = 10−2

structures, described above. In Fig. 2a (right), we show
the joint density distribution of the real and imaginary
parts of the reflection amplitudes, ρ(Re(r1), Im(r1)),
and a top view (left) of this density. Additionally, in
Fig. 2a (left), the marginal Gaussian density distribu-
tions of the real and imaginary parts ρR(Re(r1)) and
ρI(Im(r1)), respectively, are plotted in gray.

The joint density distribution of the real part of the
reflection amplitudes at two frequencies ρ (Re(r1),Re(r2))
is shown in Fig. 2b (right), while the left side panel
shows a top view of this density. In the same Fig. 2b
(left), we plot in gray the marginal Gaussian distribu-
tions ρR(Re(r1)) and ρR(Re(r2)). Thus, the reflection
amplitudes of our disordered structures are circular ran-
dom Gaussian variables.

Statistical properties of waves in random media have
been studied assuming circular random Gaussian vari-
ables, as described by Eq. (2) [18,36]. See also Ref. [11].
In particular, the distribution of the frequency deriva-
tive of the phase of the reflection has been theoretically
and experimentally obtained in Refs. [18,37] in the dif-
fusive regime defined by: � � L � ξ, where ξ is the
localization length. For the time delay of localized waves
see Ref. [38]. Here, we are dealing with structures in a
different regime, i.e., L < �(= ξ/2, for 1D systems);
however, as we have shown above, the reflection is well

Fig. 3 The numerical distribution p(τr/〈τr〉) (histogram)
with L/� = 10−2 and 〈τr〉 = 4.35 × 10−5 s. Solid curves
are the theoretical prediction from Eq. (3) normalized by
the mean value τr → τr/〈τr〉. The value Q = 0.335 was
obtained from the numerical simulation. The inset shows
p(τr/〈τr〉) in a logarithmic scale. The dashed line, following
the power law τ−3

r , is a guide to the eye

Fig. 4 The average of the time delay in reflection 〈τr〉 as a
function of the system length L for different strength of the
disorder characterized by the mean free path � (reported in
cm)

described by a circular complex Gaussian random pro-
cess. Therefore the distribution of the time delay p(τr)
can be written as [18,37]:

p(τr) =
1

2〈τr〉
Q

[Q + (τr/〈τr〉 − 1)2]3/2
, (3)

where Q = −2b/a2 − 1 with a = 〈τr〉 and b is pro-
portional to 〈τr〉2. To compare the distribution in Eq.
(3) with numerical simulations, we obtain the con-
stants a and b from the covariance element C12 as
a = Im (C12) /Δω and b = Re (C12 − 1) /(Δω)2. The
elements Cij have been normalized, Cii = 1.
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We show in Fig. 3 the distribution of the time delay in
reflection p(τr) as given by Eq. (3) (continuous line) and
the corresponding numerical distribution (histogram)
for disordered structures with L/� = 0.01. A good
agreement is seen. We remark that there are no fitting
parameters. All the information about the parameters
that enter into Eq. (3), a and b, is extracted from the
numerical simulations.

In the insets of Fig. 3, the left and right tail of p(τr)
are shown on a log scale for a better appreciation of the
power-law decay τ−3

r of the distribution, top and bot-
tom insets, respectively. This power-law behavior has
also been observed experimentally and numerically in
the diffusive regime [18,37].

To gain some insight into the evolution of the statis-
tics of the time delay with the system length, we study
the first and second moments of τr as a function of the
system length. The average 〈τr〉 is given by [16,39,42]

〈τr〉 = Lne/c, (4)

where ne is the effective index of refraction and c
the speed of light. Notice that the average time delay
depends only on the system’s length, for ne fixed. This
result agrees with a general property: the average time
delay is determined essentially by the boundary of the
system and it is independent of the details of the disor-
der. This interesting property has been studied exper-
imentally and theoretically [39–43], and it has been
deduced based on the direct relation of the average of
the total time delay, 〈τ〉 = 〈Tτt〉+ 〈Rτr〉, with the den-
sity of states inside the sample [43–45]. Notice that in
our 1D systems, as a consequence of the unitarity of
the scattering matrix, 〈τt〉 = 〈τr〉 [11]. To illustrate
the independence of 〈τr〉 on the details of the disor-
der, in Fig. 4 we plot the average 〈τr〉 as a function
of the length of the system for different values of the
mean free path but keeping approximately constant the
value of ne. The mean free path can be considered
a measured of the strength of disorder. As it can be
seen, the value 〈τr〉 does not change with the mean free
path.

Concerning the variance Var(τr) = 〈τ2
r 〉 − 〈τr〉2,

we have obtained a quadratic behavior with L/�. See
Fig. 5b. In Fig. 5, we kept � fixed. In Fig. 5a, it is
shown the linear behavior of 〈τr〉 with L, as discussed
above. We notice, however, that the power-law tail of
p(τr) in Eq. (3) leads to the divergence of the second
moment 〈τ2

r 〉 when considering the whole number line
where p(τr) is supported. This divergence is suppressed
by the finite frequency step Δw in our numerical simu-
lations. But still, large fluctuations of τr are expected.
For instance, we notice a non smooth behavior of the
variance in Fig. 5b. The strong fluctuations of τr are
better revealed by plotting the ratio Var(τr)/〈τr〉2,
as in Fig. 5c. As one can see, this ratio does not
decrease with the length, but instead it remains approx-
imately constant with the system length. This means
that τr is non self-averaging quantity. In the next sec-
tion, we will contrast this result with the time delay in
transmission.

(a)

(b)

(c)

Fig. 5 a Numerical average of the reflection delay-time
〈τr〉 for disordered structures with � ≈ 57635 cm (dots).
The black continuous line is given by Eq. (4). b Numer-
ical variance of the reflection delay-time Var(τr) (dots).
The black continuous line is a fitting of f(L) = aL2 with
a ≈ 2.8 × 10−17. c The ratio Var(τt)/〈τt〉2 as a function of
the system length. The ratio remains approximately con-
stant showing that τr does not self-average

3 Time delay of transmitted waves

We now consider the time delay τt of waves that pass
through the whole sample. We recall that there is a high
probability that waves can travel through the entire
samples without being reflected since the transmission
coefficient of the samples is close to unity. In this case,
we found that the time delay in transmission is an addi-
tive quantity. That is, the delay time in transmission
can be seen as the sum of partial time delays produced
by each scatterer or layer of the sample.

We illustrate the additive property of the time delay
in transmission τt using typical disordered samples.
In Fig. 6, we show the results of τt as a function of
the number of scatterers in the sample. Squares are
obtained from the frequency derivate of the phase of
the amplitude transmission t through the entire sam-
ple. In contrast, crosses show the values of τt obtained
from the sum of time delays associated with each scat-
terer, i.e., τt =

∑N
i=1 τti.

As we can see in Fig. 6, the results of both procedures
to obtain τt agree. Some differences can be observed
for a large number of scatterers, when the transmission
coefficient starts to deviate from unity.

Consequently, the average time delay is proportional
to the number of slabs or, equivalently, to the length of
the samples. Now, since the time delay in transmission
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Fig. 6 The time delay of transmitted waves τt as a func-
tion of the number of scatterers for a typical sample of
� = 9480 cm. Crosses depict the results obtained by adding
partial contributions of each scatterer to the time delay,
while squares correspond to the time delay obtained from
the derivative of the total cumulative phase of the transmit-
ted wave

Fig. 7 The numerical distribution p(τt) (histogram) for
disordered structures characterized by L/� ≈ 10−2 and
〈τr〉 = 4.35 × 10−5 s. The continuous curve is a Gaussian
where μ and σ2 have been extracted from the numerical
simulation

is given by the sum of independent random variables,
we expect from the CLT that the probability density of
τt follows a Gaussian distribution, as we verify next.

In Fig. 7, we show an example of the distribution of
the time delay in transmission, p(τt). The average and
the variance that characterize the Gaussian distribution
are obtained from the numerical simulations. A good
agreement between the Gaussian distribution (contin-
uous line) and the histogram is seen. Additionally, the
linear dependence of both the average 〈τt〉 and variance
Var(τt) with the system length is shown in Fig. 8a and
b, respectively. The average 〈τt〉 is given as in Eq. (4),
since 〈τt〉 = 〈τr〉, as previously mentioned.

In contrast to the time delay in reflection studied in
the previous section, the time delay in transmission is a
self-averaging quantity. This is shown in Fig. 8c, where
it is seen that Var(τt)/〈τt〉2 → 0 with L, instead of the
constant behavior with L shown in Fig. 5c.

(a)

(b)

(c)

Fig. 8 a Numerical average of the transmission delay-time
for samples with fixed � ≈ 57635 cm (dots). The black con-
tinuous line is given by Eq. (4). b Numerical variance of
the reflection delay-time Var(τt) (dots). The black continu-
ous line is a fitting of f(L) = aL with a ≈ 7.8 × 10−18. c
The ratio Var(τt)/〈τt〉2 decays to zero as L increases since
τt self-averages

4 Summary

We have presented a statistical analysis of the random
fluctuations of the time delay of reflected and transmit-
ted waves in 1D disordered media with high transmis-
sion coefficients. We have performed numerical simu-
lations of microwaves diffusing in structures with ran-
domly placed weak scatterers and found that the distri-
bution of the time delay in reflection is given by Eq. (3),
while the time delay in transmission follows a Gaussian
distribution.

We have shown numerically that the random fluctu-
ations of the reflection amplitudes are described by cir-
cular complex Gaussian random variables. This allowed
us to apply previous results of [18,37] in which the ran-
dom field amplitudes were assumed to follow a com-
plex Gaussian distribution. The Gaussian distribution
in Eq. (2) can be seen as consequence of the CLT by
considering that the complex field amplitudes r is the
result of a sum of a large number of partial contribu-
tions of waves scattered off many randomly-placed scat-
terers.

Interestingly enough, the statistics of the time delay
in reflection are described as in the diffusive regime,
despite that our 1D structures are in the ballistic
regime. This does not happen to all other transport
quantities. For instance, the distribution of the total
transmission in the diffusive and ballistic regimes are

123



  188 Page 6 of 8 Eur. Phys. J. B          (2022) 95:188 

completely different. Other unexpected similarities in
the ballistic and diffusive regimes such as the same
scaling of transmission and intensity channels in both
regimes have been found experimentally and numeri-
cally [48].

For the time delay in transmission, we have shown
that in a disordered sample, the time delay is given by
the sum of partial contributions of random time delays
associated with each scattering unit of the samples.
Thus, the fluctuations of the time delay in transmission
are expected to be described by a Gaussian distribution
invoking the CLT.

Thus, the statistics of the time delay of both reflected
and transmitted waves find their roots in a fundamental
result: the central limit theorem.

From a practical point of view, with the advances
in manufacturing materials, samples with high trans-
mittance have been produced; even in nature, highly
transparent materials can be found. However, they are
not entirely free of the presence of sources of disorder.
Therefore, a statistical analysis of wave propagation in
such materials is of relevance. Our results, however, are
strictly valid for 1D systems with high transmission;
thus, an extension to higher dimensions is of interest as
well as to explore the case of moderated transmission
values. In this respect, in Appendix A we analyze the
statistical deviations of the reflection amplitudes from a
description given by circular Gaussian variables, when
the ballistic restriction in our calculations is relaxed.
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Appendix A Deviations of the reflection
amplitudes from the Gaussian circular ensem-
ble

In the main text we have assumed that the reflection ampli-
tudes are complex Gaussian random variables in the bal-
listic regime. Here we quantify the range of validity of this
assumption as a function of the ratio L/�. We perform chi-
square goodness of fit tests to determine whether the real
and imaginary parts of the reflection amplitudes follow a
Gaussian distribution and the distribution of τr is described
by Eq. (3), in the main text.

First, we have found that the expectation values that
define the circular symmetry, E[Re(r1)] = E[Im(r1)] =
E[Re(r1r2)] = E[Im(r1r2)] = 0, of the reflections are pre-
served even for values of L ∼ �, as it can be seen in Fig. 9.

However, the chi-square goodness of fit reveals that the
reflection amplitudes are no longer described by a Gaussian
distribution as L approaches �. In Fig. 10, we show the val-
ues of χ2 of the real and imaginary parts of the reflection
at two different frequencies and two values of the mean free
path as function of the system length. The χ2 values are
obtained from 1000 samples and the data is grouped into 21
histogram classes. We obtained 1000 values of χ2 for each
value of L/�. We thus plot the average value 〈χ2〉. The hor-
izontal dashed lines in Fig. 10 indicate the χ2 critical value
with 20 degrees of freedom and level of significance α = 0.05.
As it can be seen, the χ2 values are within the acceptance
level up to L/� ∼ 10−1.

It is thus expected that for systems with L ∼ �, the dis-
tribution of the time delay in reflection would not be well
described by Eq. (3) in the main text. Indeed, we have per-
formed chi-square tests for the distribution of τr. In Fig. 11,
the values of the chi-square goodness of fit indicate that the
numerical distributions of τr are well described by Eq. (3)
in the main text up to L/� ∼ 10−1.
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(a) (b)

(c) (d)

(f)(e)

Fig. 9 Average of the real and imaginary parts of the reflection at two different frequencies (ω1 = 50.262 rad ns−1 and
ω2 = 50.268 rad ns−1) as a function of the ratio L/�. Blue and orange dots correspond to � = 57634 cm and 214082 cm,
respectively

(a) (b)

(c) (d)

Fig. 10 Chi-square test values as a function of the ratio L/� to test the Gaussian distribution of the real and imaginary
parts of the reflection at two frequency values. Blue and orange dots correspond to � = 57634 cm and 214082 cm, respectively.
The dashed line indicate the critical value χ2

c = 31.41 which corresponds to the level of significance α = 0.05 with 20 degrees
of freedom
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Fig. 11 Chi-square test values as a function of the ratio
L/� to test the agreement of the numerical and the expected
(Eq. (3)) distribution of τr. Blue and orange dots corre-
spond to � = 57634 cm and 214082 cm, respectively. The
dashed line indicates the critical value χ2

c = 31.41 which
corresponds to the level of significance α = 0.05 with 20
degrees of freedom
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