
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rquf20

Quantitative Finance

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rquf20

Optimal characteristic portfolios

Richard J. McGee & Jose Olmo

To cite this article: Richard J. McGee & Jose Olmo (2022) Optimal characteristic portfolios,
Quantitative Finance, 22:10, 1853-1870, DOI: 10.1080/14697688.2022.2094282

To link to this article:  https://doi.org/10.1080/14697688.2022.2094282

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 20 Jul 2022.

Submit your article to this journal 

Article views: 1152

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=rquf20
https://www.tandfonline.com/loi/rquf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14697688.2022.2094282
https://doi.org/10.1080/14697688.2022.2094282
https://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14697688.2022.2094282
https://www.tandfonline.com/doi/mlt/10.1080/14697688.2022.2094282
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2022.2094282&domain=pdf&date_stamp=2022-07-20
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2022.2094282&domain=pdf&date_stamp=2022-07-20


Quantitative Finance, 2022
Vol. 22, No. 10, 1853–1870, https://doi.org/10.1080/14697688.2022.2094282

Optimal characteristic portfolios
RICHARD J. MCGEE † and JOSE OLMO *‡§

†The Michael Smurfit School of Business, University College Dublin, Dublin 4, Ireland
‡Department of Economic Analysis, Universidad de Zaragoza, Gran Vía 2, 50005 Zaragoza, Spain
§Economics Department, University of Southampton, University Rd., Southampton SO17 1BJ, UK

(Received 5 January 2022; accepted 21 June 2022; published online 20 July 2022 )

Characteristic-sorted portfolios are the workhorses of modern empirical finance, deployed widely
to evaluate anomalies and construct asset pricing models. We propose a new method for their esti-
mation that is simple to compute, makes no ex-ante assumption on the nature of the relationship
between the characteristic and returns, and does not require ad hoc selections of percentile break-
points or portfolio weighting schemes. Characteristic portfolio weights are implied directly from
data, through maximizing a Mean–Variance objective function with mean and variance estimated
non-parametrically from the cross-section of assets. To illustrate the method, we evaluate the size,
value and momentum anomalies and find overwhelming empirical evidence of the outperformance
of our methodology compared to standard methods for constructing characteristic-sorted portfolios.

Keywords: Anomalies; Portfolio sorts; Size effect; Value effect; Momentum

JEL Classifications: G11, G12

1. Introduction

Portfolio sorting is an important tool of modern empirical
finance. It has been used to test asset pricing theories, to
construct profitable quantitative investment strategies and to
identify empirical pricing anomalies based on stock character-
istics. Researchers typically employ two methods to identify
return predictors: (i) portfolio sorts based on single or mul-
tiple characteristics such as size or book-to-market and (ii)
linear regression in the spirit of Fama and MacBeth (1973).

There is a vast and ongoing literature proposing novel
quantitative factors that are constructed by uncovering empir-
ical anomalies on stock characteristics. These anomalies are
exploited for investment purposes or as alternative asset pric-
ing models that build upon existing models and incorporate
the additional factors. In this paper, rather than exploring
different factor anomalies we study the formation of char-
acteristic portfolios. The typical sorting procedure is to rank
the cross-section of stocks according to a characteristic (or
set of characteristics) and to construct a zero net investment
portfolio, going long the top quantile portfolio and short the
bottom quantile portfolio. This process is dependent on the
specific choice of quantile breakpoints (e.g. deciles, terciles
or quartiles) used to build the long and short strategies and is,
therefore, subject to discretion in the choice of these tuning
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parameters. The weighting scheme also affects the forma-
tion of characteristic portfolios. Typical schemes are either
equal weighting or value weighting. Both of these weighting
schemes introduce ancillary factor exposures to a given char-
acteristic portfolio. For example, value weighting a size port-
folio is clearly counter-intuitive, reversing the return-driving
signal within the cross-sectional spread of the portfolio. If the
quantile portfolios contain few stocks/the number of quan-
tiles is large, then the value weighting has less impact, as we
are looking at the return differential between high and low
quantiles. However, when the number of quantile portfolios
becomes large, the portfolios also become less meaningful,
economically, as they contain a small number of stocks and
may not be investible for large investors. In our empirical
analysis, we show that variation in decisions on breakpoints
and weighting schemes is influential on the outcome of tests
of anomalies and may be the difference between accepting
and rejecting the hypothesis of a positive premium associated
with a characteristic.

In this paper, we propose an alternative methodology to
construct quantitative factors based on a mean–variance opti-
mization procedure to obtain the weights allocated to long-
minus-short portfolios. We are agnostic about the choice of
empirical anomalies to construct the quantitative portfolios as
our methodology can be applied to any characteristic port-
folio, however, for illustrative purposes, we focus on Fama–
French original factors: size, book-to-market and momen-
tum. Our methodology extends the typical long-minus-short
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quantitative portfolios by allocating some weight to all of
the assets in the cross-section and not only those in the
top and bottom quantiles. Additionally, these weights are
dynamic and can change across periods, allowing us to
propose time-varying characteristic portfolios that adapt to
changing market conditions. We consider a dynamic condi-
tional mean–variance optimal strategy as a proxy for general
‘characteristic-timed’ strategy risk.

In an attempt to keep the characteristic portfolios economi-
cally meaningful ,† we adopt an approach where characteristic
portfolios are formed over the constituent assets of a set fil-
tered for micro-caps (without obfuscating the characteristic
information with ancillary weighting schemes such as equal
or value weighted).‡ This procedure does not require man-
ual selection of the quantile breakpoints or of the portfolio
weighting scheme, rather portfolio weights are implied from
the data and are driven solely by the relationship between the
target characteristic and asset returns.

Compared to the standard practice in ranked, sorted portfo-
lios, our proposed methodology has three salient features:

(i) We do not overlay any fixed weighting schemes such
as value-weighting or equal-weighting on the port-
folio (these schemes are known to introduce other
factor exposures to the anomaly returns), the weight-
ing scheme is mean–variance optimal conditional on
the attribute.

(ii) All assets in the cross-section are included in the
characteristic portfolio (excluding micro-cap stocks),
increasing the market capitalization available to absorb
investment.§

(iii) Our portfolio choice is dynamically updated and esti-
mated in the cross-section. It is robust to the problem
of spurious time series correlations (see, e.g. Ferson
et al. 2003, 2008) by construction. Furthermore, by
constructing the portfolio weights from cross-sectional
regressions we avoid the need to infer a stable rela-
tionship between returns and stock characteristics from
time series data.

This final point may be seen as a potential weakness
where there is a theoretical guidance for a stable relation-
ship between the stock characteristic and its expected return,
as our methodology is discarding this information. However,
there is widespread evidence in the literature of time-varying
risk premia (see, e.g. Ludvigson and Ng 2007, Gagliardini
et al. 2016) and time-varying anomaly returns (see, e.g. Stam-
baugh et al. 2012, Jacobs 2015, Avramov et al. 2016, McGee
and Olmo 2019). As our results are fully out of sample relative
to portfolio formation and are not subjected to any fine-tuning
of parameters we let the data speak to the strength of the
approach.

† See Hou et al. (2020) for a discussion on the impact of microcap
firms on characteristic-based portfolios.
‡ The method also facilitates the construction of economically mean-
ingful portfolios with the potential for the addition of constraints to
the optimisation, such as limits on the investment in any one firm.
§ Standard rank-sorted portfolios exclude the range of assets between
the top and bottom quantiles. In the appendix, we present a robust-
ness exercise that includes the effect of micro-cap stocks.

The optimal mean–variance portfolio weights defining the
characteristic-based portfolios are a function of the expected
return and variance of the assets in the cross-section con-
ditional on the stock characteristics. We propose nonpara-
metric kernel methods for cross-sectional data to estimate
these conditional moments of the distribution of returns.
Empirically, these portfolios are shown to outperform state-
of-the-art methods for exploiting stock anomalies for factor
construction, using fundamental attributes. As we are testing
a characteristic portfolio construction technique rather than
replicating anomalies, we focus on traditional attributes com-
monly assumed to have a stable long-term relationship. Thus
we focus on size, book-to-market and momentum anomalies.

Our proposed optimal non-parametric method works par-
ticularly well for the size anomaly, capturing a premium over
the full sample with a test statistic of 4.33. None of the
other standard rank, sorted portfolio methods tested resulted
in a test statistic significant at the level modified for mul-
tiple hypothesis testing as per Harvey et al. (2016). The
optimal non-parametric size portfolio constructed from maxi-
mizing the mean–variance objective function also has the best
investment performance for a mean–variance investor and
improves a standard four factor asset pricing model, dominat-
ing all other candidate size factors tested in pairwise tests of
model squared Sharpe ratios, as per Barillas et al. (2019). The
method also works well for the value attribute in terms of cap-
turing the most significant return premium (test statistic 4.03)
and investment performance. The method did not perform
well, however, at capturing the momentum premium (test
statistic 2.26, compared with a value of 5.03 for the method of
Cattaneo et al. (2020)), suggesting that it performs better for
fundamental rather than technical factors (that may be driven
by time series rather than cross-sectional relationships).

The paper is structured as follows. Section 2 relates our
approach for characteristic-based portfolio construction to
recent literature on optimal portfolio sorting. Section 3 intro-
duces the mean–variance procedure to construct optimal
dollar-neutral portfolios based on stock characteristics. The
section also discusses non-parametric models for capturing
the relationship between stock returns and characteristics.
Section 4 applies the portfolio methods proposed in Section 3
to three popular anomalies in the financial economics lit-
erature (size, value and momentum) and compares results
against other widely used characteristic-portfolio construc-
tion methods. Section 5 presents the results of the empirical
application to assess the performance of the different proce-
dures for all common stocks from the CRSP database over the
period 1963–2018 for size, value and momentum attributes.
Section 6 concludes. The appendix contains the analysis of
characteristic-based portfolios when the universe of assets
includes micro-cap firms.

2. Literature review

Our paper is related to the fast-evolving literature develop-
ing characteristic-sorted portfolios for investment purposes
and asset pricing. The empirical applications of these port-
folios are too numerous to list but seminal contributions
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are Basu (1977), Banz (1981), Jegadeesh (1990), Fama and
French (1992), and Jegadeesh and Titman (1993), among
many others. Equally important is the contribution of this
literature to empirical asset pricing models based on observ-
able common factors, see Fama and French (1993) and Fama
and French (2015) as seminal examples. The common factors
are constructed as the returns of long-minus-short investment
portfolios, where the sorting of assets in the portfolio depends
on the specific choice of quantile breakpoints (e.g. deciles,
terciles or quartiles).

Sorting into portfolios can be considered as a non-
parametric alternative to imposing linearity on the relation-
ship between returns and stock characteristics, (see, e.g. Fama
and French 2008, Cochrane 2011). Freyberger et al. (2020)
formalize this idea and show the equivalence between portfo-
lio sorting based on stock characteristics and a linear regres-
sion model in which the regressors are indicator functions
of the stock characteristics. Cattaneo et al. (2020) extend
this idea and develop a general framework for portfolio
sorting by casting the procedure as a non-parametric estima-
tor. These authors allow for both estimated quantiles when
forming the portfolios and additive linear-in-parameters con-
ditioning variables entering the underlying model governing
the relationship between returns and sorting characteristics.
These authors develop optimal choices of the total number
of portfolios to be used in empirical applications. Ledoit
et al. (2019) propose efficient sorting portfolios when the
cross-section of assets is very large and inverting the covari-
ance matrix can be problematic. These authors obtain a
characteristic-sorted portfolio with minimum variance among
the set of dollar-neutral portfolios based on stock charac-
teristics. Another recent contribution studying characteristic-
based portfolios is Ammann et al. (2016) that shows that the
introduction of a leverage constraint improves the practical
implementation of characteristic-based portfolios by reducing
transaction costs, negative portfolio weights, and a decrease
in volatility and misspecification risk. A recent alternative
to traditional rank sorting for constructing long-minus-short
portfolios is proposed by Zhang et al. (2021). These authors
propose a new listwise learn-to-rank loss function which
aims to emphasize both the top and the bottom of a rank
list.

The choice of optimal portfolio weights based on stock
characteristics is not new. Hjalmarsson and Manchev (2012)
study empirical mean–variance optimization under the
assumption that the portfolio weights are direct functions of
underlying stock characteristics such as value and momen-
tum. Brandt et al. (2009) also assume parametric portfolio
policies that exploit the characteristics of the cross-section
of returns in an optimal asset allocation context. Abous-
salah et al. (2021) apply mean–variance (and growth optimal
investing) strategies in a cross-sectional setting.

Our method is different from these important contributions
because we exploit the optimality of the portfolios in a cross-
sectional setting to replace ad-hoc long-minus-short portfolio
constructions used for empirical asset pricing. Our estimation
approach is also very different from these authors as we rely
on nonparametric kernel methods for estimating the mean and
variance of the constituent portfolio returns conditional on the
stock attributes.

The current paper is also related to a recent and very influ-
ential literature that adds statistical rigour to characteristic-
based portfolio construction. Hou et al. (2020) identify 452
anomaly variables that constitute the basis in published stud-
ies for asset pricing models based on common factors or as
investment factors exploiting such anomalies. These authors
in a thorough replication study find that a majority of these
anomalies do not replicate. Harvey et al. (2016) in a sim-
ilar study also find that much of the predictive ability of
characteristic-based portfolios is due to data mining proce-
dures. To correct for this, these authors propose a multiple
testing procedure that yields a larger critical value to validate
the success of these portfolios, see also McLean and Pon-
tiff (2016). In parallel, in the risk factor literature there have
been a number of recent developments in testing asset pricing
factor models. These models propose alternative metrics to
test the gains of including additional factors in standard asset
pricing factor models (see Barillas and Shanken 2018, Fama
and French 2018, Barillas et al. 2019).

3. Optimal characteristic-based portfolios

3.1. Econometric model

Our strategy to construct an optimal characteristic-based port-
folio shares some of the features of recent developments in
the literature, see Hjalmarsson and Manchev (2012), Ledoit
et al. (2019) or Cattaneo et al. (2020). The portfolio weights
are the result of maximizing in each period a mean–variance
objective function constructed from the cross-section of stock
returns as

E
[
Rp

t+1 | Zt
] − γ

2
V

[
Rp

t+1 | Zt
]

, (1)

with E[· | Zt] and V [· | Zt] denoting the conditional mean and
variance of the portfolio return given the information set Zt.
This objective function can be interpreted as an individual’s
utility function conditional on the information set at time t.
Similarly, the coefficient γ can be interpreted as the degree of
individual’s risk aversion. The vector Zt contains a set of vari-
ables with power to predict variation in the expected return of
the cross-section. In this paper, and following recent litera-
ture, see Cattaneo et al. (2020), we restrict the vector Zt to
consider only stock characteristics. Thus Zt = [Z1t, . . . , Zpt]′,
with p the number of stock characteristics, such that Zit =
[Z1,it, . . . , Zp,it]′, with Zj,it denoting characteristic j for asset i at
time t; z = (z1, . . . , zp)

′ ∈ � ⊂ R
p denotes the corresponding

realizations of Zt defined over a compact set �.
The portfolio return is defined as a weighted combination of

all assets in the cross-section of stock returns. More formally,
let Rp

t+1(z) = ∫
�

wt(z)Rt+1(z)dz, with wt(z) a weight function
� ⊂ R

p → [a, b] ⊂ R establishing the portfolio allocation as
a function of z ∈ �. The compact set [a, b] implies that the
portfolio allocation is bounded in this interval to avoid exces-
sive leverage in the portfolio decisions. Note also that, by
construction, a < 0 < b, to obtain a dollar-neutral portfolio,
i.e.

∫
�

wt(z)dz = 0. In practice, we replace the continuum of
assets by a cross-section of Nt assets available at time t such
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that the portfolio return is defined as

Rp
t+1 =

Nt∑
i=1

w(Zit)Ri,t+1, (2)

with Ri,t+1 the return on asset i at time t + 1 and Zit the cor-
responding vector of stock characteristics. Additionally, the
portfolio weights are subject to the constraints

Nt∑
i=1

w(Zit) = 0;
∑
wi<0

|w(Zit)| =
∑
wi>0

|w(Zit)| = 1. (3)

The first constraint imposes the dollar-neutrality condition of
the portfolio. The second condition is to limit the amount of
leverage, adds smoothness to the portfolio weights and is also
a standard feature of traditional ranked sorted portfolios. The
zero-sum constraint (3) implies that w(Z1t) = −∑Nt

i=2 w(Zit).
Let Re

i,t+1 = Ri,t+1 − R1,t+1 denote the excess returns over a
reference return R1,t+1, for i = 2, . . . , Nt, such that the portfo-
lio return (2) can be expressed as Rp

t+1 = ∑Nt
i=2 w(Zit)Re

i,t+1.
In a similar spirit to Cattaneo et al. (2020), we propose
the following non-parametric predictive model for describ-
ing the relationship between portfolio returns and stock
characteristics:

Re
i,t+1 = μt(Zit) + εi,t+1, for t = 1, . . . , T , (4)

where μt(Zit) = E[Re
i,t+1 | Zit] under the minimization of the

mean square error. The function μt(Zit) is continuously dif-
ferentiable over � for each t = 1, . . . , T . This function is the
unknown object of interest that dictates how expected returns
vary with the characteristic at each time t. The error term εi,t+1

satisfies that E[εi,t+1 | Zit] = 0 and accommodates conditional
heteroscedasticity such that E[ε2

i,t+1 | Zit] can be a function
of Zit. In this cross-sectional setting, we assume that all the
cross dependence between the returns in the cross-section is
captured by the conditioning information set Zt. This infor-
mation set can be expanded to include observable common
factors in the spirit of Fama and French (1993) and Fama and
French (2015) and unobservable common factors obtained
from principal components analysis, as in Bai (2009), Ando
and Bai (2015) and Kelly et al. (2019). Hence, by assumption,
the conditional covariance between the error terms is such that
E[εi,t+1εj,t+1 | Zit, Zjt] = 0 for all i, j = 1, . . . , Nt, with i �= j.†

Under these assumptions, the individual’s optimization
problem becomes

max
{w(Z2t),...,w(ZNt ,t)}

{
E

[
Nt∑

i=2

w(Zit)R
e
i,t+1

∣∣∣∣∣ Zt

]
− γ

2
V

[
Nt∑

i=2

w(Zit)R
e
i,t+1

∣∣∣∣∣ Zt

]}
.

(5)

† Although this assumption may seem very restrictive it is not
unusual in empirical studies when the dimension of the cross-section
of stocks is very large, see, e.g., Hjalmarsson and Manchev (2012).
Furthermore, in practice, the information set proxied by Zt may
not be sufficient to capture all cross-sectional dependence, how-
ever, the use of cross-sectional data does not allow us to estimate
the covariance terms using the time series dimension. Therefore, we
acknowledge the importance of considering a suitable information
set and the possibility of model misspecification affecting the optimal
portfolio weights.

In matrix form, the solution to the optimization prob-
lem is μt = γ�twt, with μt a (Nt − 1) × 1 vector that
stacks the functions μt(Zit) for i = 2, . . . , Nt. The matrix
�t is a (Nt − 1) × (Nt − 1) matrix with diagonal elements
given by V [Re

i,t+1 | Zit] and off-diagonal elements given
by Cov[Re

i,t+1, Re
j,t+1 | Zit, Zjt], for i = 2, . . . , Nt. The optimal

weights that solve this system of equations are

w�
t = 1

γ
�−1

t μt, (6)

with w�
t = [w�(Z2t), . . . , w�(ZNt ,t)]

′ and w�(Z1t) = −∑Nt
i=2 w�

(Zit). This solution simplifies under the assumption that there
is no cross-correlation between the stock returns in the cross-
section conditional on the information set Zt. This assumption
is standard in cross-sectional regression models in which the
correct specification of the model implies, by construction,
that the error terms are mutually uncorrelated‡ . We should
note that we operate in a fully cross-sectional setting for each
time t = 1, . . . , T . In this case,

w�
t = 1

γ
D−1

t μt, (7)

with Dt a diagonal matrix with elements given by
V [Re

i,t+1 | Zit], for i = 2, . . . , Nt.
The optimal portfolio weight (7) is a function of the vector

of stock characteristics Zit given by

w�(Zit) = μt(Zit)

γ V
[
Re

i,t+1 | Zt
] , (8)

for i = 2, . . . , Nt. For example, under conditional homoscedas-
ticity of the cross-sectional returns, the weight function can
be expressed as w�(Zit) = μt(Zit)

γ σ 2
ε

, with σ 2
ε the variance of the

error process, and the object of interest is to estimate the
conditional mean process.

3.2. Non-parametric estimation of mean and variance of
returns

We reproduce model (4) for convenience:

Re
i,t+1 = μt(Zit) + εi,t+1, for t = 1, . . . , T ,

where Zit = [Z1,it, . . . , Zp,it]′ is a vector of stock
characteristics.

The Nadaraya–Watson estimator (Nadaraya (1965)) of
E[Re

i,t+1 | Zt] is

μ̂t(Zit) =
1
Nt

∑Nt
j=1 Re

j,t+1 Kh1t

(
Z1,jt, Z1,it

) · · · Khpt

(
Zp,jt, Zp,it

)
f̂Zt(Zit)

,

(9)

‡ Hjalmarsson and Manchev (2012) consider a similar assumption
and ignore the conditional covariance matrix in an empirical analysis
of international portfolio choice based on optimal characteristic-
based portfolios.
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with f̂Zt(Zit) = 1
Nt

∑Nt
j=1 Kh1t(Z1,jt, Z1,it) · · · Khpt(Zp,jt, Zp,it),

where Kh(Z, z) = 1
h k( Z−z

h ) and k(·) is a univariate kernel func-
tion (e.g. uniform, triangle, Epanechnikov, Gaussian); h is a
bandwidth parameter that determines the smoothing of the
stock characteristic. In this case, each kernel function is char-
acterized by different bandwidth coefficients h1t, . . . , hpt that
depend on the marginal density function of the covariate and
are time varying.†

Similarly, a suitable non-parametric estimator of the condi-
tional variance of the cross-section of excess returns is

σ̂ 2
t (Zit) =

1
Nt

∑Nt
j=1 ε̂2

j,t+1 Kh1t

(
Z1,jt, Z1,it

) · · · Khpt

(
Zp,jt, Zp,it

)
f̂Zt(Zit)

,

(10)

with ε̂i,t+1 = Re
i,t+1 − μ̂t(Zit) the estimated residuals from

model (4), for i = 2, . . . , Nt. The bandwidth parameters for
the estimation of the conditional mean and variance processes
can be different across estimators.

More sophisticated models can be proposed to non-
parametrically model the relationship between excess returns
and vectors of stock characteristics. In a related context,
Connor and Linton (2007) use semi-parametric methods to
estimate such relationships. These authors propose multivari-
ate kernel methods to form factor mimicking portfolios for the
characteristics. Then they estimate factor returns and factor
betas simultaneously using bilinear regression applied to the
set of factor mimicking portfolio returns. However, as noted
by Connor et al. (2012), a weakness of the Connor–Linton
methodology is the reliance on multivariate kernel meth-
ods to create factor-mimicking portfolios. These multivariate
kernel methods are affected by the curse of dimensionality
(Stone 1980) and severely restrict the number of factors which
can be consistently estimated.

An important recent contribution to obtain a satisfac-
tory answer in a non-parametric framework is Freyberger
et al. (2020). These authors propose non-parametric func-
tions based on quadratic splines that fit the unknown function
μ(Zit) within small disjoint intervals. The method accom-
modates a number of stock characteristics that can be larger
than the number of stocks in the cross-section. To do that,
the authors impose an adaptive LASSO type regularization
penalty function. A small dimensional alternative used in
the non-parametric literature is non-parametric additive mod-
els. This possibility is already contemplated in Cattaneo
et al. (2020) and Freyberger et al. (2020) using a non-optimal
allocation of portfolio weights. The non-parametric addi-
tive model considers the effect of each characteristic on the

† It is worth noting that this estimator exhibits some finite sample
bias due to the choice of the bandwidth parameter. More specifi-
cally, μ̂t(Zit) − μt(Zit) = OP(

∑q
i=1 h2

s + (nh1 · · · hq)
−1/2). Li and

Racine (2007) show that if each bandwidth has the same order of
magnitude, then the optimal choice of hs that minimizes the mean
square error (MSE) of the estimator μ̂t(Zit) is hs ∼ n−1/(q+4). The
resulting MSE is, therefore, of order OP(n−4/(q+4)). In the empir-
ical application, we will consider q = 1, in which case the MSE
is OP(n−4/5), which quickly converges to zero given the large
cross-sections (n ≡ Nt) considered in our paper for each period t.

cross-section of returns separately and does not allow for the
possibility of interactions between stock attributes. The model
is

Re
i,t+1 =

p∑
k=1

μkt(Zk,it) + εi,t+1, for t = 1, . . . , T . (11)

This model can be estimated as in (4), with

μ̂kt(Zk,it) =
1
Nt

∑Nt
j=1 Re

j,t+1 Khkt

(
Zk,jt, Zk,it

)
f̂Zkt(Zk,it)

,

for k = 1, . . . , p. (12)

The case of a single characteristic is a particular example of
non-parametric additive model for p = 1.

Our optimization strategy is agnostic about the estimation
procedure, however, our empirical application will show that
the additional flexibility offered by non-parametric methods
can result in characteristic-based portfolios that perform better
across a range of standard metrics. This finding is particularly
important for mean–variance optimal portfolio decisions.
There is an influential literature that highlights the difficulty
of using suitable predictors of expected returns, see, for exam-
ple, Best and Grauer (1991), Black and Litterman (1992),
and more recently, Jagannathan and Ma (2003), among many
others. These authors show that the choice of model and esti-
mator for the expected returns may have sizeable effects on
the optimal portfolio allocation of mean–variance investment
strategies. In this respect, the choice of a non-parametric pro-
cedure to model the conditional excess returns on the portfolio
assets may be a safe strategy as the methodology does not suf-
fer from model risk, although estimation risk may be slightly
higher due to the use of non-parametric convergence rates, as
discussed in footnote 6.

Non-parametric methods suffer from the curse of dimen-
sionality issues. In the empirical application, we overcome
this by focusing on a single characteristic. Our appli-
cation is therefore more grounded in the cross-sectional
anomaly literature, motivated by recent work such as Hou
et al. (2020). These authors show that cross-sectional regres-
sions with many variables are excessively flexible. Leamer
and Leonard (1983) show that inferences based on slopes
from linear regressions are sensitive to the underlying speci-
fication. For example, two individually insignificant variables
that are highly correlated can appear significant when used
together. Hou et al. (2020) avoid this trap by using univariate
regressions. Furthermore, given that one of our main contri-
butions is to show the incremental value of using an optimal
strategy to construct characteristic portfolios, it is sufficient
to show the results obtained from one single characteristic.
In the empirical application, we will separately explore size,
value and momentum anomalies.

A second drawback common to non-parametric methods is
the choice of the bandwidth parameters (h1t, . . . , hpt). This
choice is associated to the kernel functions Kh(Z, z). Non-
parametric kernel estimation has been established as being
relatively insensitive to the choice of the kernel function.
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The same cannot be said for bandwidth selection. There
are different methods for optimally choosing the bandwidth
parameter, namely, rule-of-thumb procedures, plug-in meth-
ods, least squares and maximum likelihood cross-validation
methods. It is well known in the non-parametric econometrics
literature that the optimal bandwidth parameter for Nadaraya–
Watson type estimators for the conditional mean and variance
estimators is h = O(N−1/(4+p)

t ), with p the number of regres-
sors, see Li and Racine (2007) for an excellent monograph on
the topic and Fan and Gijbels (1995) as a more specific refer-
ence for optimal choice of bandwidth parameter in regression
models. A suitable choice for a regression model with one
regressor is h = cN−1/5

t , with c a positive constant. How-
ever, different procedures yield specific choices of the optimal
bandwidth. A popular rule-of-thumb procedure is to choose
the bandwidth parameter as h = ĉSN−1/5

t , with Ŝ the sample
standard deviation of the stock attribute under consideration.
Using this rule-of-thumb procedure, we propose the follow-
ing bandwidth parameters: hk,t = Ŝk,tN

−1/5
t , where c = 1 and

Ŝ2
k,t = 1

Nt

∑Nt
i=1 Z2

k,it, for k = 1, . . . , p.†

4. Empirical application

In this section we apply the portfolio methods proposed in
Section 3 to three popular anomalies in the financial eco-
nomics literature (size, value and momentum) and compare
results against other widely used characteristic portfolio con-
struction methods.

4.1. Data

We use CRSP and Compustat data over the period July 1963
to November 2018. We include all common stocks (ordinary
equity, CRSP sharecode 10 or 11) in the CRSP stock files.
To avoid survivorship bias, all de-listed stocks are included
and given the CRSP de-listed return. Monthly risk factor data
and the risk-free rate are obtained from the Fama & French
database on WRDS. We apply attribute specific filters, for the
size analysis a stock must have a valid market capitalization
at the end of the previous month. For the value attribute each
included stock must have a valid book to market value calcu-
lated from Compustat data in December of year y − 1. For the
momentum attribute, for a stock to be included in a portfolio
for month m (formed at the end of month m − 1), must have a
price for the end of month t − 13 and a good return for m − 2.
More details on the process of obtaining attribute estimates
are given in Section 4.3.

As per Hou et al. (2020), all attribute data are winsorized
to the percentile range [1 99], and standardised by demeaning
and dividing by the standard deviation. The final data used are
in units of cross-sectional standard deviations of the attribute.
For consistency, all portfolios are normalised such that their

† To assess the robustness of our empirical estimates to the choice
of hk,t, we have also considered different values of c in the range
[0.5, 2]. Unreported results show that the portfolio performance
metrics obtained under different values of c are almost identical.

constituent long and short portfolios have unit investment
weights: +100%/ − 100%, see portfolio constraints in (3). As
described in Section 4.5, we perform our analysis on a data set
excluding micro-cap stocks (with analysis on the unfiltered
data set reported in the appendix).

4.2. Portfolio construction

It is important to benchmark our characteristic-based portfo-
lios against existing methods. Hou et al. (2020) assess the
profitability of a battery of investment factors constructed on
more than four hundred anomalies. These authors entertain
three different types of investment factors:

Rank sorted portfolios: Portfolios constructed through
dividing the asset cross-section in deciles according to a given
characteristic and going long the assets in the top decile and
short the assets in the bottom decile. These portfolios are
either market capitalization weighted or equally weighted and
the net investment is zero.

OLS portfolio: These portfolios assume a linear relation-
ship between the cross-section of stock returns and the stock
characteristic. This strategy constructs two portfolios: an
intercept and a slope portfolio. The return on these port-
folios is Rols

t+1 = Bt, defined as Bt = (X ′
t Xt)

−1X ′
t Rt+1, where

abusing of notation, we define Xt = [1 Zt]. The quantity 1
denotes a column vector of ones and Zt a vector of same
dimension stacking the stock characteristics for all the cross-
section of stocks at time t. This portfolio construction satisfies
the condition W ′

t Xt = I2, with Wt = Xt(X ′
t Xt)

−1 and I2 the
2 × 2 identity matrix, guaranteeing that the sum of the weights
across stocks is equal to zero.

WLS portfolio: This portfolio is similar to the OLS port-
folio, however, in this case assets are not equally weighted.
Instead, the weights in this portfolio are determined according
to market capitalization mit. To do this, we define a diagonal
matrix Mt = diag[m1t, . . . , mNt t] and construct the portfolio
as before: Rwls

t+1 = Bt, with Bt = (X ′
t MtXt)

−1X ′
t MtRt+1, with

Wt = M ′
t Xt(X ′

t MtXt)
−1 such that W ′

t Xt = I2.
As a recent contribution to the literature on characteristic-

based portfolios, we also consider the non-parametric
approach by Cattaneo et al. (2020). This is the fourth approach
that we consider for comparison purposes:

Cattaneo et al. (2020): We also consider rank sorted port-
folios constructed as per the method in Cattaneo et al. (2020).
This method results in a much larger selected number of quan-
tiles for rank sorting than standard methods (with fewer stocks
within long and short portfolios). To replicate the investment
strategy we implement the procedure in Appendix of their
paper.‡ Figure 1 illustrates the optimal selected number of
quantiles for each of size, value and momentum attributes
over time using their approach.

In addition to these techniques, we add the characteristic
portfolios using the methods proposed in Section 3. In total
we compare seven different attribute portfolio constructions
for each stock characteristic:

‡ We use the thresholds �−1(0.05), �−1(0.95) and perform a grid
search up to a maximum quantile level of 400 as per their paper.
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Figure 1. Optimal quantile numbers: The optimal number of quan-
tile portfolios in characteristic-sorted portfolios found using the
approach in Cattaneo et al. (2020) to minimize MSE of the anomaly
premium.

MVNP: The characteristic-based Mean–Variance optimised
investment portfolio is given in expression (8). Mean and vari-
ance are estimated using non-parametric kernel methods, and
the risk aversion coefficient γ is taken equal to 3.†

FFSMB/FFHML/FFMOMO: Fama and French estimated size,
value and momentum factors (where MOMO is the Carhart
momentum factor).‡

OLS: The OLS-weight attribute portfolio defined above.
WLS: The WLS-weight attribute portfolio defined above.
RSCCFS: The optimal in number of quantile, rank-sorted

portfolios of Cattaneo et al. (2020).

† Davies (1981) suggests a relative risk aversion value in the range 3–
4, we adopt the lower bound as equity investors are often diversified
across portfolios including less risky assets.
‡ Data obtained from https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html.

RSEW : The equally-weighted rank, sorted decile portfolio
based on the attribute (e.g. for size, long stocks below the 10
percentile of market capitalization and short stocks above the
90 percentile).

RSCW : The cap-weighted version of the ranked, sorted
decile attribute portfolio RSEW .

4.3. Example attributes

McLean and Pontiff (2016) and Hou et al. (2020) find that a
majority of anomalies in the finance literature do not replicate.
For the purposes of evaluating our approach we focus on three
of the most popular attributes in financial economics that have
been successfully replicated in the literature—the size, value
and momentum anomalies.

4.3.1. Size. A size premium, where smaller firms earn higher
returns than larger firms on average, has been widely docu-
mented in asset pricing research, dating back to Banz (1981).
Cattaneo et al. (2020) examine the size anomaly using rank
sorted portfolios with an optimal, time-varying number of
ranking quantiles. They find that the size premium is highly
significant and is robust to different sub-periods. However,
they find that the size anomaly is not robust in sub-samples
which exclude small firms.

We calculate Market Capitalization (hence forth ME) for
each CRSP security as |prc| ∗ shrout, where prc is the CRSP
share price and shrout is the number of shares outstanding. As
in McGee and Olmo (2019), we use the natural log of ME as
our size attribute. As a benchmark portfolio, we consider the
Fama and French SMB portfolio (see Fama and French 1993).

4.3.2. Value vs growth. The Value premium is a higher aver-
age return earned by value stocks over growth stocks. Hou
et al. (2020) find a statistically significant premium associated
with book to market, using annually sorted high-minus-low
book-to-market decile portfolios. As a value attribute we esti-
mate book to market as per Fama and French (1993). Book
equity is calculated as BE = SEQ + TXDITC − PS, where
SEQ is total parent stockholders’ equity and TXDITC is
deferred taxes and investment tax credit.§ For preferred stock,
PS, we use the redemption value, PSTKRV, or the liquidation
value, PSTKL or the par value, PSTK, in that order (see Fama
and French 1993, p8). As we re-balance monthly we do not
follow the Fama and French approach of using values sam-
pled in June to allocate stocks to attribute portfolios for the
following 12 months, we dynamically estimate using the book
to market in December of year y − 1, and the ME at end of
month, m − 1.

4.3.3. Momentum. The Momentum premium is where firms
that have had better relative returns in the recent past
have higher future relative returns, on average. Momen-
tum anomalies fare well in terms of replicability in Hou
et al. (2020), in particular price momentum. To construct a

§ All variable names correspond to the Compustat variable name
definitions

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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momentum attribute for each stock, we use the methodology
in Carhart (1997). Specifically, we construct a 2–12 month
momentum signal constructed as the 11-month return lagged
by 1 month (to exclude reversal effects). As a benchmark
we consider the Fama French MOMO portfolio, constructed
using six sorted portfolios on size and momentum (see Fama
and French 2012).†

4.4. Portfolio evaluation

The success of attribute portfolios is measured by the statis-
tical significance of the estimated return premia, by assessing
the corresponding alpha in Fama–French type asset pricing
equations and by comparing a risk-adjusted investment metric
(the information ratio). We should note the recent controversy
on the appropriate choice of critical values for determining the
significance of the estimates in these regressions, see McLean
and Pontiff (2016), Harvey et al. (2016) and Hou et al. (2020),
and we use a critical value adjusted for multiple hypothesis
testing (t-stat > 2.78 at the 5% level).

Finally, we also compare the performance of each candidate
portfolio in an asset pricing model. Recent research on eval-
uating factor models advocates a model selection approach
through identifying the model whose factors yield the high-
est difference in squared Sharpe ratio (see, e.g. Barillas and
Shanken 2018, Fama and French 2018, Barillas et al. 2019).

In this article, we are focusing on evaluating alterna-
tive factor portfolio construction methodologies. To assess
the performance of the proposed optimal characteristic-based
portfolios, we adopt an evaluation approach whereby we
individually replace the risk factors in a four factor model
(Fama and French 3-factor model with added momentum fac-
tor, FF3M ), with each of the candidate attribute portfolios
described in Section 4.2. We perform a non-nested model
comparison as discussed in Barillas et al. (2019) over all mod-
els including all alternative attribute portfolio constructs for
each attribute (size, value and momentum) to determine which
factor construct yields the best asset pricing model.

4.5. Controlling for micro-cap stocks

It is standard procedure in creating rank sorted portfolios to
value-weight or equal-weight stocks in the selected long-short
quantile portfolios. Arguments for value-weighting include
that it accurately reflects the wealth effect experienced by
investors (Fama 1998). However, both of these standard
approaches will introduce new factor exposures to the result-
ing portfolios. Value-weighting adds a negative exposure to
the size attribute (within quantile portfolios). Equal-weighting
is shown by Plyakha et al. (2015) to introduce a number of
factor exposures along with a re-balancing return.

Our proposed optimal non-parametric characteristic portfo-
lios assign to every stock a portfolio weight uniquely deter-
mined by its attribute score and avoids the introduction of
additional factor exposures through the overlaying of value-
or equal-weighting schemes. A legitimate concern is that

† All Fama & French benchmark portfolios are downloaded from:
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.

Figure 2. Micro-cap stock statistics (1963–2018): (A) the propor-
tion of the total number of stocks made up by micro-caps (blue),
small stocks (orange) and large stocks (yellow). (B) The propor-
tion of the total market capitalization made up of micro-caps (blue)
and small stocks (orange). (C) The 20 percentile (blue) and 50 per-
centile (orange) market capitalization breakpoints used in the size
classifications (in billions).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 3. Size vs. expected return cross-sectional regressions: plots of the estimated relationship between the size attribute and realized
returns using the non-parametric estimator for expression (8); least squares regression and weighted least squares (with stock market cap-
italizations used as the weights). The illustrated dates are sampled as 6 equally-spaced months over our full date range. The final panel,
corresponding to November 2018, illustrates the sensitivity to estimation method as the OLS and WLS estimated slopes can be seen visually
to be of opposite polarity.

this procedure could potentially result in large allocations to
micro-cap stocks, small firms that are not economically sig-
nificant. These firms could be difficult to invest in due to
their low liquidity and potentially small market capitaliza-
tion relative to the size of a fund’s assets under management.
Anomalies in micro-caps have been shown to be difficult to
exploit in practice due to high transaction costs (Novy-Marx
and Velikov 2016).

To address this, we adopt a filter as per Hou et al. (2020)
that removes micro-caps from the sample. On each month,
we exclude the stocks that have market capitalization smaller
than the 20 percentile level of stocks listed on the NYSE.† On
average, over our full sample, micro-caps make up 59% of the

† They also include a small stock classification of stocks larger than
the 20th percentile and smaller than median and large stocks as those
greater than the median.

stocks‡ and 3.2% by market capitalization (see figure 2). For
robustness, we also report summary results in the appendix on
a data set with micro-caps included.

As we do not value weight the MVNP portfolio, a poten-
tial criticism is that it may include unrealistic corner case
allocations in small capitalization stocks. To address this we
perform analysis on implied investment stakes in individual
companies to check whether the scheme is making unrealistic
allocations to individual securities. As a metric, we consider
the maximum monthly allocation of each scheme, in terms
of the percentage of market capitalization of each investment
asset. To do this, we need to select a size of our fund or assets
under management (AUM). We use a notional value of $500

‡ Consistent with the figures of 60% in Fama and French (2008) and
60.7% in Hou et al. (2020) (we note that the percentage is trending
downward in the latter part of our sample).
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Table 1. Size characteristic portfolio statistics: summary monthly return premia statistics
and correlations for eight different size portfolio constructions (excess market return, FFMKT ,

is also included for comparison).

Panel A. Means, Standard Deviations, and t-Statistics

Factor Mean(%) Std Dev. t-Statistic Info. Ratio

FFMKT 0.51 4.39 3.02 0.40
FFSMB 0.20 3.06 1.73 0.23
MVNP 0.40 2.37 4.33 0.58
OLS 0.08 1.14 1.80 0.24
WLS 0.08 1.08 1.94 0.26
RSCCFS 0.23 5.43 1.10 0.15
RSEW 0.28 3.71 1.92 0.26
RSCW 0.30 4.02 1.95 0.26

Panel B. Correlations

FFSMB MVNP OLS WLS RSCCFS RSEW RSCW

FFMKT 0.29 0.10 0.33 0.36 0.34 0.34 0.36
FFSMB 0.23 0.92 0.82 0.76 0.89 0.91
MVNP 0.28 0.20 0.21 0.30 0.28
OLS 0.78 0.77 0.97 0.96
WLS 0.81 0.77 0.87
RSCCFS 0.79 0.84
RSEW 0.98

Note: FFSMB is the Fama and French size factor; MVNP is an optimal characteristic portfo-
lio defined using the non-parametric estimator (8); OLS is the OLS-implied weight factor:
Bt = (X ′

t Xt)
−1X ′

t Rt+1, with Xt = [1 Zt]; WLS is the least squares factor weighted by mar-
ket capitalization and defined as Bt = (X ′

t MtXt)
−1X ′

t MtRt+1, with Wt = M ′
t Xt(X ′

t MtXt)
−1

and W ′
t Xt = I2; RSCCFS is the rank sorted portfolio with a time varying number of quantile

portfolios as per Cattaneo et al. (2020); RSEW is the equally-weighted rank sorted size port-
folio (short stocks above the 90 percentile market cap. value and long those below the 10
percentile) and RSCW is the cap-weighted version of the same construct.

million in AUM, this value is adjusted backward in time for
inflation from the end date of November 2018.†

5. Empirical results

In this section, we consider results for an attribute port-
folio, based on a single asset attribute/return relation-
ship, updated monthly. The 2-month lagged cross-sectional
attribute vector and 1-month lagged return are used to esti-
mate the return/attribute relationship: Ri,t−1 = μt−1(Zi,t−2) +
εt−1. Forecasts for the upcoming month, from t to t + 1, and
the corresponding Mean–Variance optimal asset weights, are
then estimated by applying μt−1 to Zt−1, the 1-month lagged
cross-sectional attribute vector.

5.1. Size results

We use the logarithm of 1-month lagged market equity as
the attribute assumed to drive returns. Examples of the kernel
estimated attribute/return relationship are compared with OLS
and WLS estimates of the relationship in figure 3. The plots
illustrate the dynamic nature of the monthly cross-sectional

† As we are comparing across portfolios the relative implied percent-
ages are important rather than the absolute values and the selected
AUM is for illustration only.

Table 2. Size characteristic portfolio regressions: regression
results for each of the seven size characteristic based portfolios,
regressed against the Fama–French three-factor model with an
added Carhart momentum factor (FF3M ). P-values are in brackets.

Factor α βMKT βSMB βHML βMOMO

Panel A. FF3M Regression Coefficients
MVNP 0.46∗∗∗ − 0.01 0.17∗∗∗ −0.07∗∗ −0.10∗∗∗

(< 0.01) (0.79) (< 0.01) (0.04) (< 0.01)
OLS 0.01 0.02 0.34 0.04 − 0.03

(0.63) (< 0.01) (< 0.01) (< 0.01) (< 0.01)
WLS 0.00 0.04∗∗∗ 0.28∗∗∗ 0.07∗∗∗ −0.03∗∗∗

(0.89) (< 0.01) (< 0.01) (< 0.01) (< 0.01)
RSCCFS − 0.08 0.17∗∗∗ 1.33∗∗∗ 0.30∗∗∗ −0.22∗∗∗

(0.55) (< 0.01) (< 0.01) (< 0.01) (< 0.01)
RSEW 0.06 0.07∗∗∗ 1.07∗∗∗ 0.15∗∗∗ −0.14∗∗∗

(0.32) (< 0.01) (< 0.01) (< 0.01) (< 0.01)
RSCW 0.04 0.10∗∗∗ 1.18∗∗∗ 0.20∗∗∗ −0.15∗∗∗

(0.46) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

relationship between asset size and returns and highlight the
sensitivity of the implied relationship to choices of estima-
tion method and weighting schemes. In November 2018, for
example, the OLS and WLS estimators yield slopes of oppo-
site polarity for the relationship between size and expected
return.
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Table 3. Asset pricing model comparison of size characteristic portfolios: tests of equality of squared Sharpe
ratios: FF3M is the four-factor model constructed by adding a Carhart momentum factor to the Fama–French

three-factor model.

Model FF3M+WLS FF3M FF3M+OLS FF3M+RSCW FF3M+RSEW FF3M+MVNP

Panel A. Differences in sample squared Sharpe ratios
FF3M+RSCCFS 0.002 0.002 0.002 0.003 0.003 0.042∗∗
FF3M+WLS 0.001 0.001 0.001 0.002 0.041∗∗
FF3M 0.000 0.001 0.001 0.040∗∗
FF3M+OLS 0.000 0.001 0.040∗∗
FF3M+RSCW 0.001 0.039∗∗
FF3M+RSEW 0.039∗∗

Panel B. P-values
FF3M+RSCCFS 0.534 0.462 0.476 0.418 0.406 0.014
FF3M+WLS 0.812 0.771 0.634 0.611 0.018
FF3M 0.825 0.671 0.571 0.018
FF3M+OLS 0.749 0.460 0.017
FF3M+RSCW 0.610 0.018
FF3M+RSEW 0.019

Note: The table shows pairwise tests of risk factor models constructed by replacing the Fama–French size factor
with each of the other seven alternative size-based portfolios (row labels). A positive value indicates that the
model in the column label outperforms the model in the corresponding row label in terms of the pairwise squared
Sharpe ratio test of Barillas et al. (2019), P-values for the Sharpe difference are also displayed, ∗ indicates
significance at the 10% level. The best performing portfolio in terms of the squared Sharpe metric is the MVNP
portfolio.

Summary statistics for the seven alternative size portfo-
lio constructions are given in table 1. The highest return-
ing size portfolio, with an average monthly return of 0.4%,
is the MVNP portfolio, defined in equation (8). The MVNP

portfolio has the only realized size return premium that is
statistically significant, under a test statistic adjusted for mul-
tiple testing as per Harvey et al. (2016) (t-stats of 2.79 and
4.33 respectively). From an investment metric perspective,
the MVNP portfolio also has by far the highest information
ratio across all portfolios tested (0.58). The MVNP portfolio
returns have a correlation value of 0.23 with the Fama and
French (1993, 2015) size factor and have a low correlation
with the market portfolio factor (0.10).

Table 2 shows the results of linear regressions of the size
characteristic portfolios on a four-factor model consisting of
the Fama–French three-factor model with an added Carhart
momentum factor (henceforth referred to as FF3M ). The
MVNP portfolio has a statistically significant alpha value of
0.46% monthly (P-value < 0.01), it also has a statistically
insignificant beta to the market factor (P-value 0.79).

In table 3, the results of asset pricing tests on risk fac-
tor models including each size attribute are displayed. The
benchmark model is the FF3M model and in each test the
Fama–French size factor in the original model, FFSMB, is
replaced with an alternative construction, one of the other
seven portfolio constructions presented in Section 4.2. The
resulting alternative factor models are tested against each
other in pairwise tests on the significance of improvement to
the squared Sharpe ratio. The MVNP portfolio is the only con-
struct to significantly outperform the benchmark FF3M model
at the 5% level (P-value of 0.018). Factor models including
the variable also significantly outperform models including all
the other size portfolio constructs.

Finally, we compare the economic significance of the strat-
egy in terms of how much investment capital it can hold

without over-investing in individual firms. Figure 4 shows
that the MVNP scheme would have lower maximum dollar
fund allocations:

max
i

⎛⎜⎜⎝
portfolio weighting
in firm i × fund size

market capitalization firm i

⎞⎟⎟⎠ (13)

than a capitalization-weighted ranked, sorted decile portfolio
scheme.†

5.2. Value

We use the ratio of the previous financial year’s book equity
(calculated as per Fama and French (1993)) to 1 month
lagged market equity as the attribute assumed to drive returns.
Examples of the kernel estimated attribute/return relationship,
compared with OLS and WLS estimates of the relationship,
are illustrated in figure 5. As with the size attribute, the plots
illustrate the dynamic nature of the monthly cross-sectional
relationship between value and returns. The WLS weighting
scheme flips the polarity of the relationship in two out of six
randomly selected months illustrated.

Summary statistics for the seven alternative value attribute
portfolio constructions are given in table 4. The highest
returning portfolio, with an average monthly return of 0.91%,
is the RSCCFS , however, the returns are highly volatile and
the test statistic for the return premium does not meet the

† For comparison purposes, at time of writing, the largest mutual
fund in the world is the Vanguard 500 Index Fund, with AUM of
approximately $300 billion. The fund’s largest individual holding is
a 5% allocation to Microsoft, which represents approximately a 1.5%
share of the firm’s market capitalization.
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Figure 4. Maximum monthly stake holdings: the maximum percent-
age stake holding in a single company over time for each of the
MVNP, RSCW and RSCCFS portfolios and for size, value and momen-
tum attributes. The values are estimated using a notional AUM figure
of $500 million adjusted for inflation back in time. The notional
amount is for the purposes of relative comparison across the methods
only.

threshold for significance at the 5% size, adjusted for multi-
ple hypothesis testing as per Harvey et al. (2016) (|t − stat| =
2.54 vs. 2.78). Although it has a lower expected return, the
premium for the MVNP value portfolio is the most significant
statistically (t-stat of 4.03). From an investment metric per-
spective, the MVNP portfolio also has the highest information
ratio (0.54). The portfolio returns have positive correlation
(0.18) with the value factor of Fama and French (1993, 2015)
and a negative correlation with the market factor ( − 0.28).

Table 5 shows the results of linear regressions of the value
characteristic portfolios on a four-factor model consisting of
the Fama–French three factor model with an added Carhart
momentum factor. The MVNP portfolio has a statistically sig-
nificant alpha value of 0.36% monthly (P-value < 0.01). It
also has an insignificant beta to the market factor ( − 0.02,
P-value 0.53).

Table 6 displays the results of asset pricing tests on risk
factor models including each alternative value attribute port-
folio. The factor model including the MVNP portfolio does
not improve the benchmark FF3M model despite the better
investment metric performance of the portfolio standalone.
This suggests that some of the additional Mean–Variance ben-
efits of the standalone portfolio are captured across other
factors in the benchmark model that may be correlated with
MVNP.† The best performing factor is the OLS factor. A four-
factor model including this as the value factor outperforms
all other models tested, however, the outperformance of the
benchmark FF3M model is not statistically significant at the
10% level (P-value 0.147).‡

5.3. Momentum

We use the Carhart momentum variable (the 1-month lag
of the return over the previous 11 months) as the attribute
assumed to drive returns. Examples of the kernel estimated
attribute/return relationship, compared with OLS and WLS
estimates of the relationship, are illustrated in figure 6. As
with size and value attributes, there is variation in the esti-
mated relationship between stock characteristics and returns
depending on the method used to construct the portfolios,
however, there is less divergence between value weighted
estimates (WLS) and OLS estimates for the momentum
attribute, with both having a common polarity across the
illustrated sample.

Summary statistics for all tested factor constructions are
given in table 7. The highest returning portfolio, with a huge
average monthly return of 2.42%, is the RSCCFS portfolio. The
momentum attribute is quite robust to the portfolio construc-
tion method with 7 out of 10 portfolios having a risk premium
with a t-stat adjusted for multiple hypothesis testing signif-
icant at the 5% level (2.78 or higher). From an investment
metric perspective, the RSCCFS portfolio has the highest infor-
mation ratio (0.67), followed closely by an equally-weighted
rank, sorted decile portfolio, RSEW .

† For example, the Fama and French size factor, FFSMB, is sorted by
both size and value.
‡ It should be noted that the benchmark model includes factors
that are sorted along multiple dimensions and we are constructing
univariate sorted portfolio alternatives.
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Figure 5. Value vs. expected return cross-sectional regressions: Plots of the estimated relationship between the book to market attribute and
realized returns using: the non-parametric estimator; least squares regression and weighted least squares (with stock market capitalizations
used as the weights). The illustrated dates are randomly sampled as 6 equally-spaced months from our full date range. The first panel,
corresponding to June 1963, illustrates the sensitivity to estimation method as the OLS and WLS estimated slopes can be seen visually to be
of opposite polarity.

Table 8 shows the results of linear regressions of the
momentum-based portfolios on a four-factor model consisting
of the Fama–French three-factor model with an added Carhart
momentum factor. The RSCCFS portfolio has a strongly sta-
tistically significant alpha value of 1.02% monthly (P-value
< 0.01), it also has insignificant beta to the market (P-value
0.56).

Table 9 displays the results of asset pricing tests on risk
factor models including each value attribute. The benchmark
model is the FF3M model and in each test the momentum fac-
tor in the original model is replaced with an alternative of the
other seven portfolio constructions. The best performing fac-
tor model is the original FF3M benchmark model, none of the

other characteristic portfolio constructs improve performance
in a linear risk factor model.†

Finally, in figure 4 the maximum stakeholding monthly in
any single firm for an investor with AUM of $500 million
is shown. From the early 90’s onward this amount is in the
range of 2–4%, while there is no accepted threshold in terms
of economic significance for an anomaly portfolio, it is clear
that there is a limit to the capacity of the investment portfolio
that could easily be reached by a large investment fund.

† It should be noted that the benchmark in this case uses double sorts,
controlling the momentum portfolio for market capitalisation.
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Table 4. Value characteristic portfolio statistics: summary monthly return premia statis-
tics and correlations for eight different value portfolio constructions (excess market return,

FFMKT , is also included for comparison).

Panel A. Means, standard deviations, and t-statistics

Factor Mean Std Dev. t-Statistic Info. Ratio

FFMKT 0.51 4.39 3.02 0.40
FFHML 0.32 2.80 2.98 0.40
MVNP 0.53 3.39 4.03 0.54
OLS 0.14 1.48 2.38 0.32
WLS 0.10 1.67 1.56 0.21
RSCCFS 0.91 9.29 2.54 0.34
RSEW 0.32 5.87 1.39 0.19
RSCW 0.18 5.36 0.88 0.12

Panel B. Correlations

FFHML MVNP OLS WLS RSCCFS RSEW RSCW

FFMKT − 0.26 − 0.10 − 0.21 − 0.09 − 0.08 − 0.23 − 0.06
FFHML 0.18 0.81 0.78 0.55 0.79 0.76
MVNP − 0.05 − 0.10 − 0.08 − 0.05 − 0.08
OLS 0.86 0.70 0.97 0.85
WLS 0.69 0.85 0.94
RSCCFS 0.71 0.71
RSEW 0.86

Note: FFHML is the Fama and French value factor; MVNP is an optimal characteristic port-
folio defined using the non-parametric estimator (8); OLS is the OLS-implied weight factor:
Bt = (X ′

t Xt)
−1X ′

t Rt+1, with Xt = [1 Zt]; WLS is the least squares factor weighted by market
capitalization and defined as Bt = (X ′

t MtXt)
−1X ′

t MtRt+1, with Wt = M ′
t Xt(X ′

t MtXt)
−1 and

W ′
t Xt = I2; RSCCFS is the rank sorted portfolio with a time varying number of quantile port-

folios as per Cattaneo et al. (2020); RSEW is the equally-weighted rank sorted value portfolio
using decile portfolios and RSCW is the cap-weighted version of the same construct.

Table 5. Value characteristic portfolio regressions: regression
results for each of the seven size characteristic based portfolios,
regressed against the Fama–French three-factor model with an
added Carhart momentum factor (FF3M ). P-values in brackets.

Factor α (%) βMKT βSMB βHML βMOMO

Panel A. FF3M regression coefficients
MVNP 0.36∗∗ -0.02 0.02 0.25∗∗∗ 0.14∗∗∗

(0.01) (0.53) (0.67) (< 0.01) (< 0.01)
OLS 0.13∗∗∗ −0.02∗∗ −0.05∗∗∗ 0.37∗∗∗ −0.14∗∗∗

(< 0.01) (0.01) (< 0.01) (< 0.01) (< 0.01)
WLS 0.05 0.02∗ 0.02 0.43∗∗∗ −0.16∗∗∗

(0.11) (0.05) (0.15) (< 0.01) (< 0.01)
RSCCFS 0.95∗∗∗ 0.00 − 0.05 1.59∗∗∗ −0.82∗∗∗

(0.00) (0.96) (0.59) (< 0.01) (< 0.01)
RSEW 0.33∗∗∗ −0.08∗∗∗ −0.28∗∗∗ 1.41∗∗∗ −0.57∗∗∗

(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)
RSCW 0.04 0.07∗∗∗ 0.04 1.35∗∗∗ −0.52∗∗∗

(0.69) (0.00) (0.33) (< 0.01) (< 0.01)

5.4. Discussion of results

We have tested the proposed methodology on three pop-
ular anomalies in the financial economics literature: size,
value and momentum. For the size attribute, the optimal non-
parametric portfolio results in a size return premium that has
a larger test statistic than that of all other portfolio constructs
tested. The portfolio also outperforms the competitors in

investment metrics and when used as an asset pricing factor in
a four-factor model, improves performance over models that
include a large range of alternative size factor constructions,
including the Fama and French size factor. The optimal non-
parametric size portfolio also had lower implied maximum
stakeholdings in individual companies (as a percentage of firm
market capitalization) than a standard capitalization-weighted
rank, sorted decile portfolio.

For the value attribute, the method also results in the
highest test statistic for the associated return premium
and the best mean–variance investment performance, how-
ever, the resulting portfolio did not improve the bench-
mark asset pricing model in asset pricing factor tests. The
approach failed to capture a statistically significant momen-
tum premium when adjusting for multiple hypothesis test-
ing (t-stat = 2.26 < 2.78). The best performing construct for
momentum was the procedure of Cattaneo et al. (2020), where
a large number of quantile portfolios/smaller number of stocks
in extreme quantiles, captured more extreme recent perform-
ers (t-stat = 5.03 ). Our findings suggest that the optimal non-
parametric approach works better with portfolios constructed
using firm fundamental attributes rather than technical fac-
tors, whose returns may be driven by time series rather than
cross-sectional relationships. This finding also casts doubt on
the optimality of standard ranked sorts for time series driven
anomalies, as the main theoretical justification for their use is
in capturing cross-sectional relationships.
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Figure 6. Momentum vs. expected return cross-sectional regressions: Plots of the estimated relationship between the momentum attribute
and realized returns using the non-parametric estimator; least squares regression and weighted least squares (with stock market capitalizations
used as the weights). The illustrated dates are randomly sampled as six equally-spaced months from our full date range.

Table 6. Asset pricing model comparison of value characteristic portfolios: Tests of equality of squared Sharpe ratios: FF3M is the
four-factor model constructed by adding a Carhart momentum factor to the Fama–French three-factor model.

Model FF3M+MVNP FF3M+RSCW FF3M+WLS FF3M FF3M+RSCCFS FF3M+RSEW FF3M+OLS

Panel A. Differences in sample squared Sharpe ratios
FF3M+MVNP 0.007 0.019 0.019 0.029 0.035∗ 0.057∗∗
FF3M+RSCW 0.012∗ 0.012 0.022 0.028∗∗ 0.049∗∗∗
FF3M+WLS 0.000 0.010 0.016 0.038∗∗∗
FF3M 0.010 0.016 0.038∗∗∗
FF3M+RSCCFS 0.006 0.028
FF3M+RSEW 0.022∗∗∗

Panel B. P-values
FF3M+MVNP 0.664 0.293 0.317 0.152 0.069 0.012
FF3M+RSCW 0.064 0.319 0.145 0.011 0.001
FF3M+WLS 0.977 0.526 0.167 0.006
FF3M 0.565 0.158 0.003
FF3M+RSCCFS 0.714 0.147
FF3M+RSEW 0.004

Note: The table shows pairwise tests of risk factor models constructed by replacing the Fama–French value factor with each of the
other seven alternative size-based portfolios (row labels). A positive value indicates that the model in the column label outperforms
the model in the corresponding row label in terms of the pairwise squared Sharpe ratio test of Barillas et al. (2019), P-values for the
Sharpe difference are also displayed, ∗ indicates significance at the 10% level. The best performing portfolio in terms of the squared
Sharpe metric is the OLS portfolio.
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Table 7. Momentum characteristic portfolio statistics: summary monthly return premia statis-
tics and correlations for eight different momentum portfolio constructions (excess market

return, FFMKT , is also included for comparison).

Panel A. Means, standard deviations, and t-statistics

Factor Mean Std dev. t-Statistic Info. ratio

FFMKT 0.51 4.39 3.02 0.40
FFMOMO 0.66 4.17 4.10 0.55
MVNP 0.37 4.20 2.26 0.30
OLS 0.30 1.89 4.04 0.54
WLS 0.30 2.28 3.41 0.46
RSCCFS 2.42 12.43 5.03 0.67
RSEW 1.23 6.56 4.86 0.65
RSCW 1.22 7.13 4.40 0.59

Panel B. Correlations

FFMOMO MVNP OLS WLS RSCCFS RSEW RSCW

FFMKT − 0.13 − 0.14 0.00 0.01 − 0.07 − 0.09 − 0.09
FFMOMO 0.27 0.91 0.91 0.72 0.93 0.91
MVNP 0.21 0.23 0.24 0.26 0.26
OLS 0.92 0.75 0.97 0.90
WLS 0.72 0.89 0.93
RSCCFS 0.78 0.74
RSEW 0.92

Note: FFMOMO is the Fama and French momentum factor; MVNP is an optimal characteris-
tic portfolio defined using the non-parametric estimator (8); OLS is the OLS-implied weight
factor: Bt = (X ′

t Xt)
−1X ′

t Rt+1, with Xt = [1 Zt]; WLS is the least squares factor weighted by
market capitalization and defined as Bt = (X ′

t MtXt)
−1X ′

t MtRt+1, with Wt = M ′
t Xt(X ′

t MtXt)
−1

and W ′
t Xt = I2; RSCCFS is the rank sorted portfolio with a time varying number of quantile

portfolios as per Cattaneo et al. (2020); RSEW is the equally-weighted rank sorted size port-
folio (short stocks above the 90 percentile market cap. value and long those below the 10
percentile) and RSCW is the cap-weighted version of the same construct.

Table 8. Momentum risk factor regressions (July 1963–December
2018): regression of each of the seven momentum attribute based
portfolios on the Fama–French three-factor model with the Carhart

momentum factor.

Factor α (%) βMKT βSMB βHML βMOMO

Panel A. FF3M regression coefficients
MVNP 0.18 −0.07∗ − 0.05 0.15∗∗ 0.28∗∗∗

(0.28) (0.09) (0.34) (0.01) (< 0.01)
OLS 0.01 0.02∗∗∗ 0.09∗∗∗ −0.06∗∗∗ 0.41∗∗∗

(0.64) (< 0.01) (< 0.01) (< 0.01) (< 0.01)
WLS − 0.05 0.03∗∗∗ 0.11∗∗∗ −0.05∗∗∗ 0.49∗∗∗

(0.13) (< 0.01) (< 0.01) (< 0.01) (< 0.01)
RSCCFS 1.02∗∗∗ 0.05 0.01 − 0.11 2.13∗∗∗

(< 0.01) (0.56) (0.92) (0.40) (< 0.01)
RSEW 0.27∗∗ 0.00 0.16∗∗∗ −0.09∗∗ 1.46∗∗∗

(0.01) (0.94) (< 0.01) (0.01) (< 0.01)
RSCW 0.19∗ − 0.02 0.22∗∗∗ −0.12∗∗∗ 1.55∗∗∗

(0.08) (0.50) (< 0.01) (0.00) (< 0.01)

6. Conclusion

This paper develops an optimal non-parametric procedure for
constructing characteristic-based portfolios as a replacement
for standard ranked sorting. In contrast to standard procedures
such as long-minus-short portfolios sorted by deciles on the

stock characteristics or more sophisticated versions given by
OLS and WLS regression analysis, our characteristic-based
portfolios are optimal in the sense that the allocation to the
cross-section of assets is driven by a mean–variance objec-
tive function. One of the main features of this approach is that
all the assets in the cross-section can potentially contribute
to the attribute portfolio. In doing so, we avoid arbitrary
choices of breakpoints (dividing the cross-section of returns
into different deciles), and we avoid overlaying arbitrary
weighting schemes that may obfuscate the attribute/return
relationship. A difference to standard rank sorted portfolios is
that the polarity of the return–characteristic relationship is not
assumed to be static. A key contribution of the methodology
is that it provides a non-parametric test bed for cross-sectional
anomalies that is optimised to extract optimal performance for
the candidate anomaly. The combination of a target of opti-
mality with a non-parametric approach removes researcher
discretion, the process is completely data-driven, robust to
p-hacking† and can capture non-linear relationships.

† P-hacking is the practice of selecting parameters such as port-
folio breakpoints or quantile definitions to maximize the apparent
performance of a reported anomaly (see, e.g. Harvey 2017).
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Table 9. Asset pricing model comparison of momentum characteristic portfolios: tests of equality of squared Sharpe ratios: FF3M is
the four-factor model constructed by adding a Carhart momentum factor to the FamaFrench three-factor model.

Model FF3M+RSEW FF3M+MVNP FF3M+WLS FF3M+RSCCFS FF3M+RSCW FF3M+OLS FF3M

Panel A. Differences in sample squared Sharpe ratios
FF3M+RSEW 0.003 0.003 0.019 0.031∗ 0.031∗ 0.035∗
FF3M+MVNP 0.001 0.016 0.028∗∗ 0.028∗∗ 0.032∗∗
FF3M+WLS 0.016 0.028 0.028 0.032∗
FF3M+RSCCFS 0.012∗ 0.012∗ 0.016∗
FF3M+RSCW 0.000 0.004
FF3M+OLS 0.004

Panel B. p-values
FF3M+RSEW 0.803 0.447 0.177 0.070 0.073 0.058
FF3M+MVNP 0.966 0.134 0.025 0.030 0.034
FF3M+WLS 0.297 0.121 0.125 0.099
FF3M+RSCCFS 0.087 0.091 0.051
FF3M+RSCW 0.940 0.611
FF3M+OLS 0.586

Note: The table shows pairwise tests of risk factor models constructed by replacing the momentum factor with each of the other seven
alternative size-based portfolios (row labels). A positive value indicates that the model in the column label outperforms the model
in the corresponding row label in terms of the pairwise squared Sharpe ratio test of Barillas et al. (2019), P-values for the Sharpe
difference are also displayed, ∗ indicates significance at the 10% level. The best performing portfolio in terms of the squared Sharpe
metric is the benchmark FF MOMO portfolio.
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Appendix. Including micro-caps

In this appendix, we report summary statistics for the analysis in
the paper, repeated on an unfiltered data set that includes micro-
caps (see tables A1–A3). As per the extant literature (see, e.g. Hou
et al. 2020), we find that anomaly returns are much stronger when
micro-caps are included in the analysis, but there are known issues

Table A1. Size characteristic portfolio statistics including
microcaps: the equivalent results to Table 1, with no microcap

filter applied to the data set.

Factor Mean (%) Std dev. t-Statistic Info. ratio

FFMKT 0.51 4.39 3.02 0.40
FFSMB 0.20 3.06 1.73 0.23
MVNP 1.33 3.87 8.84 1.19
OLS 0.29 1.95 3.89 0.52
WLS 0.12 1.73 1.82 0.24
RSCCFS 4.59 11.46 10.33 1.39
RSEW 1.66 6.91 6.21 0.83
RSCW 1.07 6.59 4.18 0.56

Table A2. Value characteristic portfolio statistics including
microcaps: the equivalent results to table 4, with no microcap

filter applied to the data set.

Factor Mean (%) Std dev. t-Statistic Info. ratio

FFMKT 0.51 4.39 3.02 0.40
FFHML 0.32 2.80 2.98 0.40
MVNP 0.35 3.40 2.63 0.35
OLS 0.46 1.52 7.79 1.05
WLS 0.15 2.32 1.71 0.23
RSCCFS 0.99 11.24 2.27 0.31
RSEW 1.52 5.66 6.94 0.93
RSCW 0.27 5.64 1.24 0.17

Table A3. Momentum characteristic portfolio statistics
including microcaps: the equivalent results to table 7, with

no microcap filter applied to the data set.

Factor Mean (%) Std dev.t-Statistic Info. ratio

FFMKT 0.51 4.39 3.02 0.40
FFMOMO 0.66 4.17 4.10 0.55
MVNP − 0.14 4.73 − 0.78 − 0.11
OLS 0.25 1.98 3.22 0.43
WLS 0.37 2.43 3.96 0.53
RSCCFS 2.67 12.11 5.70 0.76
RSEW 0.77 7.58 2.62 0.35
RSCW 1.71 8.34 5.28 0.71

around the costs of trade when including micro-caps (see Novy-Marx
and Velikov 2016). In our own analysis of economic significance,
we repeat the analysis in figure 4 of the main paper, with a data set
including micro-caps. For the size attribute we find that the average
monthly max stake holding in an individual firm, in a cap-weighted
decile portfolio, is 11% for AUM of $500 million. For our pro-
posed optimal non-parametric portfolio, MVNP, the equivalent figure
is 56% and for the RSCCFS portfolio of Cattaneo et al. (2020) the
figure is 190%.
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