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We give explicit upper bounds for the Stirling numbers of the 
first kind s(n, m) which are asymptotically sharp. The form of 
such bounds varies according to m lying in the central or non-
central regions of {1, . . . , n}. In each case, we use a different 
probabilistic representation of s(n, m) in terms of well known 
random variables to show the corresponding upper bounds. 
Some applications concerning the Riemann zeta function and 
a certain subset of the Comtet numbers of the first kind are 
also provided.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Stirling numbers of both kinds are among the most important sequences in math-
ematics and have numerous applications in combinatorics, number theory, numerical 
analysis, probability theory, and other fields. Starting from the seminal work by Moser 
and Wyman [14], there are many papers devoted to obtaining asymptotic expansions for 
the Stirling numbers of the first kind s(n, m) (see, for instance, Wilf [21], Temme [18], 
Hwang [11], Tsylova [19], Chelluri et al. [6], Louchard [13], and the references therein).
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As far as we know, less attention has been paid to obtain explicit upper bounds for 
such numbers. In this regard, denote by

H(a)
n =

n∑
j=1

1
ja

, a > 0, n = 1, 2, . . . . (1)

Moser and Wyman [14] gave the estimate

s(n + 1,m + 1) =
(−1)n−mn!

(
H

(1)
n

)m

m!

⎛⎜⎝1 − m(m− 1)H(2)
n

2
(
H

(1)
n

)2 + En,m

⎞⎟⎠ , (2)

where

|En,m| ≤ 2
(

em

H
(1)
n

)3

.

Of course, formula (2) works in the range m = o(H(1)
n ) = o(logn). The same authors 

showed that more exact terms can be added in formula (2).
Using Stein-Chen Poisson approximation, Arratia and DeSalvo [3] obtained the upper 

and lower bounds(
N

m

)
e−μ(1 − eμDn,m) ≤ |s(n, n−m)| ≤

(
N

m

)
e−μ(1 + eμDn,m), (3)

for n ≥ 3 and n ≥ m ≥ 2, where

N =
(
n

2

)
, μ =

(
m
2
)(

n
3
)(

N
2
) ,

and Dn,m is an error term uniformly bounded by 1. The inequalities in (3) are useful 
in the range m = O(

√
n), i.e., in the case in which the error term Dn,m goes to 0, as 

n → ∞.
The purpose of this paper is twofold. On the one hand, to give explicit upper bounds 

for s(n, m) easy to handle and asymptotically sharp. In this respect, many functions and 
analytic constants are expressible by means of series involving the numbers s(n, m) (see, 
for instance, Blagouchine [4]). Having at our disposal explicit upper bounds for s(n, m), 
we can compute such functions and analytic constants by finite sums, providing at the 
same time a specific upper bound for the remainder (see the illustrative example for the 
Riemann zeta function given in Proposition 7.1 in the final section).

On the other hand, to open the door to possible extensions of our results to more 
general numbers, such as the Comtet numbers of the first kind (cf. Comtet [7] and El-
Desouky et al. [10]). Indeed, we give different probabilistic representations for s(n, m)
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according to m lying in the central or non-central regions of {1, . . . , n} in order to obtain 
our results. Certainly, these probabilistic representations are closely connected to the 
saddle-point method based on Cauchy’s integral representations. However, we believe 
that such representations, written in terms of sums of independent random variables 
involving the Bernoulli, the uniform, and the exponential distributions, may be of in-
dependent interest. As an illustration, we give in Theorem 7.2 in the final section some 
estimates for a certain subset of the Comtet numbers of the first kind containing the 
r-Stirling numbers of the first kind introduced by Broder [5].

The paper is organized as follows. In the following section, we state our main results 
and compare them with other known estimates. Section 3 contains the aforementioned 
probabilistic representations. In Sections 4 and 5, we give the estimates of such prob-
abilistic representations used to establish our main results, the proof of them being 
postponed to Section 6. The final section contains the illustration of our results and 
methods mentioned above.

2. Main results

Let N be the set of positive integers and N0 = N ∪ {0}. For any n ∈ N0, the 
Stirling numbers of the first kind s(n, m) can be defined in various equivalent ways (cf. 
Abramowitz and Stegun [1, p. 824] and Comtet [8, Chap. 5]). For instance, they can be 
defined as

(x)n =
n∑

m=0
s(n,m)xm, x ∈ R, (4)

where (x)n is the descending factorial, i.e., (x)n = x(x − 1) · · · (x − n + 1), n ∈ N, 
(x)0 = 1, or in terms of their generating function as

logm(1 + u)
m! =

∞∑
n=m

s(n,m)u
n

n! . (5)

Throughout this paper, we assume that n = 2, 3, . . .. We define the functions

μn(t) =
n∑

j=1

t

t + j
, σ2

n(t) =
n∑

j=1

t

t + j

(
1 − t

t + j

)
, t > 0. (6)

Such functions were introduced by Moser and Wyman [14] (see also Temme [18], Chelluri 
et al. [6], and Louchard [13]). Their respective probabilistic meaning, as the mean and 
the variance of a certain random variable having the Poisson-binomial distribution, will 
be established in Section 3.

Let m = 1, . . . , n − 1. Since μn(t) is strictly increasing and satisfies

lim μn(t) = 0, lim μn(t) = n,

t→0 t→∞
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we consider the unique solution τ = τ(n, m) > 0 to the equation

μn(τ) = m. (7)

Note that if m = n there is no real solution τ to equation (7). On the other hand, it 
follows from (4) that s(n, n) = 1. For these reasons, we assume that m = 1, . . . , n − 1 in 
our following main result.

Theorem 2.1. Let m = 1, . . . , n − 1 and let τ be as in (7). Then,

|s(n + 1,m + 1)| ≤ n!(logn)m

m!

(
1 + m

log n

)
(8)

and

|s(n + 1,m + 1)|

≤ Γ(τ + n + 1)
Γ(τ)τm+1 min

(
1, 1

σn(τ)
√

2π (1 − log σn(τ)/σ2
n(τ))

+ 1
σ2
n(τ)

)
.

(9)

In addition, whenever n −m ≤
√
m + 1/4, we have

|s(n + 1,m + 1)| ≤
(
n + 1
m + 1

)(
m + 1

2

)n−m (
1 + 32e1/6 (n−m)2

m + 1

)
. (10)

To see the sharpness of estimate (10), we give the following result.

Theorem 2.2. Let m = 1, . . . , n − 1. If n −m ≤
√
m + 1/4, then∣∣∣∣∣(−1)n−ms(n + 1,m + 1)

−
(
n + 1
m + 1

)(
m + 1

2

)n−m (
1 + 5(n−m)(n−m− 1)

6(m + 1)

)∣∣∣∣∣
≤ 27e1/6

(
n + 1
m + 1

)(
m + 1

2

)n−m (
n−m√
m + 1

)3

.

In contrast with (10), estimates (8) and (9) are valid for any n ≥ 2 and m = 1, . . . , n −
1. However, their accuracy depends on the range of m. Actually, it is well known that

H(1)
n = logn + γ + O(n−1),

where γ is Euler’s constant. Thus, whenever m = o(logn), the main terms in (2) and 
(8) have the same order of magnitude, as n → ∞. In other words, the upper bound 
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in (8) is asymptotically sharp, provided that m = o(logn). We point out that Hwang 
[11] extended formula (2) into an asymptotic series valid for m = O(logn). Also, it is 
worthwhile to mention that Wilf [21] obtained the following expansion for each fixed 
m ≥ 1

|s(n + 1,m + 1|
n! = γ1

(log(n + 1))m

m! + γ2
(log(n + 1))m−1

(m− 1)! + · · · + γm+1

+ O

(
(log(n + 1))m−1

n + 1

)
,

where γj are the coefficients in the expansion

1
Γ(z) =

∞∑
j=1

γjz
j ,

with γ1 = 1 and γ2 = γ = 0.57721 · · · .
On the other hand, Chelluri et al. [6] obtained the asymptotic estimate

|s(n + 1,m + 1)| = Γ(τ + n + 1)
Γ(τ)τm+1σn(τ)

√
2π

(1 + O(1/m)), (11)

in the range 
√

log n ≤ m ≤ n − n1/3. In this range, Moser and Wyman [14, Lemma 4.1]
showed that σn(τ) → ∞, as n → ∞. Therefore, the upper bound in (9) is asymptotically 
sharp, provided that 

√
log n ≤ m ≤ n − n1/3.

From Theorem 2.2, estimate (10) is asymptotically sharp too, whenever n − m =
o(
√
m). We mention that the accuracy of the upper bound in (10) can also be derived 

from the following asymptotic result by Moser and Wyman [14] (see also Tsylova [19])

(−1)n−ms(n,m)

=
(
n

m

)(m
2

)n−m
(

1 + 5(n−m)2
6m + 1

m2

(
(n−m)3 + 25(n−m)4

72

)
+ · · ·

)
=

(
n

m

)(m
2

)n−m

(1 + o(1)), n−m = o(
√
n).

(12)

Apart from giving specific bounds, we have included Theorem 2.2 because its proof does 
not require an extra effort to that in proving (10).

Finally, note that the aforementioned ranges are overlapping. As a practical guide, 
the upper bounds in (8), (9), and (10) should be used, respectively, in the ranges m ≤
(logn)r, (logn)r ≤ m ≤ n − ns, and n − ns ≤ m ≤ n, for any 1/2 ≤ r < 1 and 
1/3 ≤ s < 1/2.
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3. Probabilistic representations

We consider the following sequences of random variables used to give suitable proba-
bilistic representations of s(n, m). Let X(p) be a random variable having the Bernoulli 
distribution with success probability p, i.e.,

P (X(p) = 1) = p = 1 − P (X(p) = 0), 0 ≤ p ≤ 1. (13)

If (X(pj))1≤j≤n is a finite sequence of independent random variables such that X(pj) has 
the Bernoulli distribution with success probability pj , and denoting by pn = (p1, . . . , pn), 
we define

W (pn) = X(p1) + . . . + X(pn), 0 ≤ pj ≤ 1, j = 1, . . . , n. (14)

The probability distribution of W (pn) is rather involved and is known in the literature as 
the Poisson-binomial distribution (see, for instance, Shorgin [16] and Roos [15]). Observe 
that the mean and the variance of W (pn) are respectively given by

EW (pn) =
n∑

j=1
pj , V ar(W (pn)) =

n∑
j=1

pj(1 − pj), (15)

where E stands for mathematical expectation. Using the independence of the random 
variables involved, we see that

E(1 + z)W (pn) =
n∏

j=1
E(1 + z)X(pj) =

n∏
j=1

(1 + pjz) , z ∈ C. (16)

We will use the following particular cases of (14), namely,

Wn(t) := W (pn), if pj = t/(t + j), j = 1, . . . , n, t > 0, (17)

and

Wn := W (pn), if pj = 1/j, j = 1, . . . , n. (18)

As follows from (15) and (17), the mean and the variance of Wn(t) are, respectively, the 
quantities μn(t) and σ2

n(t) defined in (6). The connection between the random variables 
Wn and Wn(t) is given by

E(1 + tz)Wn = E(1 + t)WnEzWn(t), t > 0, z ∈ C, (19)

as follows from (16) and some simple computations.
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Finally, let U and T be two independent random variables such that U is uniformly 
distributed on [0, 1] and T has the exponential density with unit mean

ρ(x) = e−x, x ≥ 0. (20)

Let (Uj)j≥1 and (Tj)j≥1 be two sequences of independent copies of U and T , respectively. 
We assume that both sequences are mutually independent and define

Sm = U1T1 + . . . + UmTm. m ∈ N. (21)

It follows from (20) that

μ := E(UT ) = 1
2 , σ2 := V ar(UT ) = E(UT )2 − μ2 = 5

12 , (22)

as well as

EeuUT = E

(
1

1 − uU

)
= − log(1 − u)

u
, |u| < 1, (23)

thus implying that

EeuSm =
(
− log(1 − u)

u

)m

, m ∈ N, |u| < 1. (24)

Various probabilistic representations of s(n, m) in terms of the random variables con-
sidered above are provided in the following result.

Theorem 3.1. Let t > 0. For any m = 0, 1, . . . , n, we have

(−1)n−ms(n + 1,m + 1) = Γ(t + n + 1)
Γ(t)tm+1

1
2π

π∫
−π

Eeiθ(Wn(t)−m) dθ, (25)

as well as

(−1)n−ms(n + 1,m + 1) = n!E
(
Wn

m

)
=

(
n + 1
m + 1

)
ESn−m

m+1 . (26)

Proof. Let x ∈ R. Since s(n + 1, 0) = 0, we can rewrite (4) as

(x)n+1 =
n∑

m=0
s(n + 1,m + 1)xm+1. (27)

By (16), (18), and the binomial expansion, we have
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(x)n+1 = (−1)nn!x
n∏

j=1
(1 − x/j) = (−1)nn!xE(1 − x)Wn

= (−1)nn!x
n∑

m=0
E

(
Wn

m

)
(−x)m.

Comparing this identity with (27), we obtain the first equality in (26). On the other 
hand, note that

1
2π

π∫
−π

E(1 + teiθ)Wne−imθ dθ

=
n∑

j=0
E

(
Wn

j

)
tj

2π

π∫
−π

eiθ(j−m) dθ = tmE

(
Wn

m

)
.

(28)

Choosing z = eiθ in (19) and recalling (16) and (17), the first term in (28) is equal to

E(1 + t)Wn
1
2π

π∫
−π

Eeiθ(Wn(t)−m) dθ = Γ(t + n + 1)
Γ(t + 1)n!

1
2π

π∫
−π

Eeiθ(Wn(t)−m) dθ.

Hence, (25) follows from the first equality in (26) and (28). The second equality in (26)
was shown by Sun and Wang [17] (see also [2]). We give here a short proof of it for the 
sake of completeness. By (24), we have

logm(1 + u)
m! = um

m!Ee
−uSm = um

m!

∞∑
k=0

(−u)kESk
m

k!

=
∞∑

n=m

(
n

m

)
(−1)n−mESn−m

m

un

n! , |u| < 1.

This, together with (5), shows the second equality in (26) and completes the proof. �
4. Estimates concerning Poisson-binomial distributions

In this section, we give some auxiliary results referring to the random variables Wn

and Wn(t), which are used to prove estimates (8) and (9) in Theorem 2.1. The proof of 
the following lemma is similar in spirit to that of Lemma 6 in Shorgin [16].

Lemma 4.1. Let μn(t) and σ2
n(t) be as in (6) and let Wn(t) be as in (17), t > 0. Then,

1
2π

π∫ ∣∣∣Eeiθ(Wn(t)−μn(t))
∣∣∣ dθ ≤ 1

σn(t)
√

2π (1 − log σn(t)/σ2
n(t))

+ 1
σ2
n(t) .
−π
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Proof. Let j = 1, . . . , n and −π ≤ θ ≤ π. Denote by pj = t/(t + j). From (17), we have

Eeiθ(Xj(t)−pj) = e−ipjθ(pjeiθ + 1 − pj),

thus implying that

∣∣∣Eeiθ(Xj(t)−pj)
∣∣∣2 = 1 − 4pj(1 − pj) sin2(θ/2) ≤ e−4pj(1−pj) sin2(θ/2),

which, by virtue of (6) and the independence of the random variables
(Xj(t))1≤j≤n, entails

1
2π

π∫
−π

∣∣∣Eeiθ(Wn(t)−μn(t))
∣∣∣ dθ ≤ 1

2π

π∫
−π

e−2σ2
n(t) sin2(θ/2) dθ

= 2
π

π/2∫
0

e−2σ2
n(t) sin2 θ dθ.

(29)

Let 0 < a < π/2 to be chosen later on. Observe that

2
π

π/2∫
a

e−2σ2
n(t) sin2 θ dθ ≤ e−2σ2

n(t) sin2 a. (30)

On the other hand, making the change 2σn(t) sin θ = u, we have

2
π

a∫
0

e−2σ2
n(t) sin2 θ dθ = 1

πσn(t)

2σn(t) sin a∫
0

e−u2/2√
1 − u2/4σ2

n(t)
du

≤ 1
πσn(t) cos a

∞∫
0

e−u2/2 du = 1
σn(t)

√
2π cos a

.

(31)

If σn(t) ≤ 1, the result is obviously true. Thus assume that σn(t) > 1. Choosing 
σ2
n(t) sin2 a = log σn(t), the result follows from (29)–(31). �
Let Nλ be a random variable having the Poisson law with mean λ ≥ 0, i.e.,

P (Nλ = j) = λj

j! e
−λ, λ ∈ N0.

The binomial moments of Nλ are easy to compute, since
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E

(
Nλ

m

)
=

∞∑
j=m

(
j

m

)
λj

j! e
−λ = λm

m! , m ∈ N0. (32)

On the other hand, it is well known (see, for instance, Shorgin [16], Roos [15], Zacharovas 
and Hwang [22], and the references therein) that the random variable Wn is close to Nλ, 
whenever both random variables have similar means and variances. In this respect, we 
consider the following coupling construction. Let (Nλj

)2≤j≤n be a finite sequence of 
independent random variables such that Nλj

has the Poisson distribution with mean

λj = − log(1 − 1/j), j = 2, . . . , n. (33)

For fixed m ≥ 1, denote by Nλj
(m) the truncated Poisson random variable

Nλj
(m) = Nλj

1{Nλj
≤m−1} + m1{Nλj

>m},

where 1{·} is the indicator function. It is clear that Nλj
(m) ≤ Nλj

for any m ≥ 1. 
Furthermore, (14) and (18) allow us to write

Wn = X1 + · · · + Xn = 1 + X2 + · · · + Xn, (34)

where (Xj)2≤j≤n is a finite sequence of independent random variables such that Xj has 
the Bernoulli distribution with success probability 1/j, 2 ≤ j ≤ n.

Observe that Xj
d= Nλj

(1) for 2 ≤ j ≤ n, where 
d= stands for equality in distribution. 

Then, Xj ≤ Nλj
for 2 ≤ j ≤ n, and we have from (34)

Wn ≤ 1 + Nλ2 + · · · + Nλn

d= 1 + Nλ2+···+λn
. (35)

Lemma 4.2. Let Wn be as in (34). Then,

E

(
Wn

m

)
≤ (logn)m

m! + (logn)m−1

(m− 1)! , m = 1, ..., n.

Proof. By (32) and (35), we have

E

(
Wn

m

)
≤ E

(
1 + Nλ2+···+λn

m

)
= E

(
Nλ2+···+λn

m

)
+ E

(
Nλ2+···+λn

m− 1

)
= (λ2 + · · · + λn)m

m! + (λ2 + · · · + λn)m−1

(m− 1)! ,

which, together with (33), shows the result. �
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5. Moment estimates

The estimate given in (10) for relatively large values of m will be derived from the 
second equality in (26) written in terms of the moments of the random variable Sm.

General moment estimates are established in Lemma 5.1 below. To this end, let Y
be a nonnegative random variable with EY = μ > 0 and V ar(Y ) = σ2 < ∞. Assume 
further that

ϕ(u) := Eeu(Y−μ) < ∞, |u| ≤ u0, (36)

for some u0 > 0. Let (Yj)1≤j≤m be a finite sequence of independent copies of Y and 
denote

S̃m = Y1 + · · · + Ym, m ∈ N.

It turns out that the kth moment of S̃m has the order of magnitude of that of (μm)k, 
whenever k = o(

√
m), as shown in the following result.

Lemma 5.1. Let k, m ∈ N be such that

k ≤ u0μ
√
m, (37)

where u0 is defined in (36). Then,

E(S̃m)k ≤ (μm)k
(

1 +
(

k

u0μ
√
m

)2 (
ϕm

(
u0/

√
m
)

+ ϕm
(
−u0/

√
m
)))

. (38)

Moreover,

∣∣∣∣E(S̃m)k − (μm)k
(

1 + σ2

2μ2
k(k − 1)

m

)∣∣∣∣
≤ (μm)k

(
k

u0μ
√
m

)3 (
ϕm

(
u0/

√
m
)

+ ϕm
(
−u0/

√
m
))

.

(39)

Proof. If k = 1, estimates (38) and (39) are true, since ES̃m = μm. For the rest of the 
proof, assume that k ≥ 2. Consider the standardized random variable

Zm = S̃m − μm

σ
√
m

, (40)

which obviously satisfies EZm = 0. We write



12 J.A. Adell / Journal of Combinatorial Theory, Series A 192 (2022) 105669
E(S̃m)k = E(σ
√
mZm + μm)k =

k∑
l=0

(
k

l

)
(μm)k−l(σ

√
m)lEZl

m

= (μm)k
(

1 +
k∑

l=2

(
k

l

)(
σ

μ
√
m

)l

EZl
m

)
.

(41)

By (37), the modulus of the sum in (41) is bounded above by

k∑
l=2

(
σk

μ
√
m

)l E|Zm|l
l! ≤

(
k

u0μ
√
m

)2 ∞∑
l=2

(u0σ)lE|Zm|l
l!

≤
(

k

u0μ
√
m

)2

Eeu0σ|Zm| ≤
(

k

u0μ
√
m

)2 (
Eeu0σZm + Ee−u0σZm

)
.

(42)

This, together with (36), (40), and (41), shows inequality (38). The proof of (39) follows 
the same pattern by noting that the term corresponding to l = 2 on the right-hand side 
in (41) is equal to

k(k − 1)
2μ2m2 V ar(S̃m) = σ2

2μ2
k(k − 1)

m
.

This completes the proof. �
Applying Lemma 5.1 to the case in which Y = UT and, therefore, S̃m = Sm, as 

defined in (21), we obtain the following result.

Lemma 5.2. Let k, m ∈ N with k ≤ √
m/4 and let Sm be as in (21). Then,

ESk
m ≤

(m
2

)k
(

1 + 32e1/6 k
2

m

)
. (43)

Moreover, ∣∣∣∣ESk
m −

(m
2

)k
(

1 + 5k(k − 1)
6m

)∣∣∣∣ ≤ 27e1/6
(m

2

)k
(

k√
m

)3

. (44)

Proof. Suppose that |u| ≤ u0 = 1/2. By (23) and (36), we have in this case

ϕ(u) = Eeu(UT−1/2) = −e−u/2 log(1 − u)
u

.

Observe that

− log(1 − u) = u + u2

2 + 2
3u

3g(u), |g(u)| ≤ 1.

This implies that
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ϕ(u) = e−u/2
(

1 + u

2 + 2
3u

2g(u)
)

≤ e2u2/3,

and therefore

ϕm
(
|u0|/

√
m
)
≤ e1/6. (45)

Since μ = u0 = 1/2, inequality (43) follows from (38) and (45). Similarly, inequality 
(44) follows from (39) and the fact that σ2 = 5/12, as seen in (22). This completes the 
proof. �
6. Proofs of Theorem 2.1 and Theorem 2.2

The upper bound in (8) follows from the first equality in (26) and Lemma 4.2. In-
equality (9) follows by choosing t = τ , as defined in (7), in representation (25) and then 
applying Lemma 4.1. Estimate (10) is an immediate consequence of the second equality 
in (26) and inequality (43). This completes the proof of Theorem 2.1.

Theorem 2.2 readily follows from the second equality in (26) and (44).
We finally observe that the second equality in (26) and formula (41) with S̃m replaced 

by Sm give us the exact formula

(−1)n−ms(n + 1,m + 1) =
(
n + 1
m + 1

)
ESn−m

m+1

=
(
n + 1
m + 1

)(
m + 1

2

)n−m
(

1 +
n−m∑
l=2

(
n−m

l

)(
5

3m

)l/2

EZl
m

)
,

(46)

for 0 ≤ m ≤ n, as follows from (22). For n − m = o(
√
n), (46) is nothing else but 

formula (12) shown by Moser and Wyman [14] written in terms of the moments of the 
standardized random variable

Zm = Sm −m/2√
5m/12

.

7. Final considerations

In this section, we briefly illustrate some statements made in the Introduction con-
cerning the Riemann zeta function and a certain subset of the Comtet numbers of the 
first kind.

In the first place, let m ∈ N0 be fixed. A nice formula relating the Riemann zeta 
function ζ(m + 2) with the Stirling numbers of the first kind is the following

ζ(m + 2) =
∞∑ |s(n + 1,m + 1)|

(n + 1)(n + 1)! . (47)

n=m
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This formula can be found in Jordan [12, pp. 194–195]. A very short proof of it was given 
by Blagouchine [4, formula (34)]. As an application of formula (8) in Theorem 2.1 (recall 
the comments following Theorem 2.2), we give the following explicit estimate.

Proposition 7.1. Let m ∈ N0. For any k ∈ N with m ≤ log k, we have

ζ(m + 2) −
k∑

n=m

|s(n + 1,m + 1)|
(n + 1)(n + 1)! ≤ 2

k

m∑
l=0

(m)l
m! (log k)m−l. (48)

Proof. Since m ≤ log k, we have from (8)

∞∑
n=k+1

|s(n + 1,m + 1)|
(n + 1)(n + 1)! ≤ 2

m!

∞∑
n=k+1

(logn)m

n2 ≤ 2
m!

∞∫
k

(log x)m

x2 dx,

since the function h(x) = x−2(log x)m is decreasing in [k, ∞). Thus, the result follows 
by applying successively integration by parts in the last integral. �

Note that the order of magnitude of the right-hand side in (48) is that of (log k)m/k

and, therefore, the series in (47) slowly converges to ζ(m + 2).
In the second place, let α = (αj)j≥0 be an arbitrary sequence of real numbers. The 

Comtet numbers of the first kind associated to α, denoted by sα(n, m), are defined by

n−1∏
j=0

(z − αj) =
n∑

m=0
sα(n,m)zm. (49)

These numbers were introduced by Comtet [7] (see also El-Desouky et al. [10]). We will 
extend estimate (8) to the subset of the Comtet numbers of the first kind satisfying

αj = 0, j = 0, 1, . . . , r − 1, 0 < αr < αr+1 ≤ αr+2 ≤ · · · , (50)

for some fixed r ∈ N. The r-Stirling numbers of the first kind, introduced by Broder [5], 
are given by [

n

m

]
r

= (−1)n−msα(n,m), (51)

when we choose αj = j, j ≥ r, in (50). Under assumption (50), we can rewrite (49) as

n−1∏
j=0

(z − αr+j) =
n∑

m=0
sα(n + r,m + r)zm. (52)

Let (X̃j)0≤j≤n−1 be a finite sequence of independent random variables such that X̃j

has the Bernoulli distribution with success probability
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pj = αr

αr+j
, j = 0, 1, . . . , n− 1, (53)

and consider the random variable

W̃n = X̃0 + X̃1 + · · · + X̃n−1 = 1 + X̃1 + · · · + X̃n−1. (54)

With these ingredients, we state the following result.

Theorem 7.2. Assume (50). For any m = 0, 1, . . . , n, we have

(−1)n−msα(n + r,m + r) = Qn

αm
r

E

(
W̃n

m

)
, (55)

where

Qn =
n−1∏
j=0

αr+j . (56)

As a consequence, we have for n ≥ 2 and m = 1, . . . , n − 1,

|sα(n + r,m + r)| ≤ Qn

αm
r

(
(logRn)m

m! + (logRn)m−1

(m− 1)!

)
, (57)

where

Rn =
n−1∏
j=1

αr+j

αr+j − αr
. (58)

In particular, we have for the r-Stirling numbers of the first kind[
n + r

m + r

]
r

≤ r(r + 1) · · · (r + n− 1)
rm

((
log

(
n+r−1

r

))m
m! +

(
log

(
n+r−1

r

))m−1

(m− 1)!

)
.

(59)

Proof. Starting from (52), we have by (53), (54), and (56)

n∑
m=0

sα(n + r,m + r)(αrz)m =
n−1∏
j=0

(αrz − αr+j)

= (−1)nQn

n−1∏
j=0

(1 − pjz) = (−1)nQn

n−1∏
j=0

E(1 − z)X̃j

= (−1)nQnE(1 − z)W̃n = (−1)nQn

n∑
E

(
W̃n

m

)
(−z)m,
m=0
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which shows (55).
On the other hand, let (Ntj )1≤j≤n−1 be a finite sequence of independent random 

variables such that Ntj has the Poisson distribution with mean

tj = − log(1 − pj), j = 1, . . . , n− 1, (60)

where pj is defined in (53). Proceeding as in (32)–(35), we have X̃j ≤ Ntj , 1 ≤ j ≤ n −1, 
thus implying, as in the proof of Lemma 4.2, that

E

(
W̃n

m

)
≤ (t1 + · · · + tn−1)m

m! + (t1 + · · · + tn−1)m−1

(m− 1)! .

This, together with (55), implies (57), since t1 + · · · + tn−1 = logRn, as follows from 
(53) and (60). Finally, (59) follows from (57) and (58), by noting that αr+j = r + j, 
j ∈ N0. �

For r = 1, estimates (8) and (59) coincide. We finally point out that an asymptotic 
formula for the r-Stirling numbers of the first kind, similar to that in (11), was obtained 
by Corcino et al. [9] (see also Vega and Corcino [20]).
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