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Response of the chiral soliton lattice to spin-polarized currents
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Spin-polarized currents originate a spin-transfer torque that enables the manipulation of magnetic textures.
Here we theoretically study the effect of a spin-polarized current on the magnetic texture corresponding to a
chiral soliton lattice in a monoaxial helimagnet under a transverse magnetic field. At sufficiently small current
density the chiral soliton lattice reaches a steady motion state with a velocity proportional to the intensity of the
applied current, the mobility being independent of the density of solitons and the magnetic field. This motion is
accompanied with a small conical distortion of the chiral soliton lattice. At large current density the spin-transfer
torque destabilizes the chiral soliton lattice, driving the system to a ferromagnetic state parallel to the magnetic
field. We analyze how the deformation of the chiral soliton lattice depends on the applied current density. The
destruction of the chiral soliton lattice under current could serve as a possible erasure mechanisms for spintronic
applications.
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I. INTRODUCTION

In magnetic systems where the antisymmetric
Dzyaloshinskii-Moriya interaction (DMI) is present [1,2],
topological and chiral features emerge. The DMI interaction
is the responsible of the stabilization of localized magnetic
textures with chiral character, such as the skyrmion lattice
[3–9] and single skyrmion state [10–13]. In monoaxial
helimagnets, such as CrNb3S6, CrTa3S6, CuB2O4, CuCsCl3,
Yb(Ni1−xCux )3Al9, and Ba2CuGe2O7 [14–21], the DMI
favors the rotation of the magnetization along a single chiral
axis. In this case, analogously to the skyrmion lattice and
single skyrmion in bulk or interfacial DMI systems, chiral
soliton lattice (CSL) [21–29] and individual chiral solitons
(CSs) can be stabilized [30].

Both objects, the skyrmions and chiral solitons, present
interesting magnetoresistive [31–33] and mobility [13,30,34]
properties, with their particular imprint related to their struc-
ture and topological nature. These properties make them good
candidates for spintronic devices [35]. Besides the applica-
tion to spintronic devices, new electromagnetic properties of
magnetic textures are being explored based on the concept
of emergent electrodynamics [36,37]. It was theoretically
predicted, and experimentally confirmed in the compound
Gd3Ru4Al12, that the spiral structure encountered in heli-
magnets can effectively work as an electromagnetic inductor
[38,39]. This property of the spiral structure allows for the
implementation of large inductances at small scales.

The previously described potential technological applica-
tions motivate the study of the CS and CSL dynamics in
monoaxial helimagnets under electric current. The response to
external currents of the CSL has been theoretically studied in

the linear response limit corresponding to small currents and
weak fields [40,41]. The response of a single CS to external
currents has been recently analyzed and it has been shown
that the single soliton is destabilized and can be destroyed by
large currents [30]. Here, we study the response of the CSL
in a wide range of currents and magnetic fields. We show that
both the CSL and the single CS have the same mobility in the
steady motion regime, and that the CSL is also destabilized
with large currents. Our results are relevant within the field
of chiral magnetism but also for the design of spintronic and
electronic devices.

The article is organized as follows: In Sec. II we introduce
the model for a monoaxial chiral helimagnet under the effect
of a spin-transfer torque, we present the main results on the
CSL stability and subcritical dynamics in Sec. III, we con-
tinue in Sec. IV with the study of the dynamical behavior in
the supercritical regime, and in Sec. V we study the j − B
phase diagram and the critical current at constant density of
solitons. Finally we summarize our findings in Sec. VI.

II. MICROMAGNETIC MODEL FOR A MONOAXIAL
HELIMAGNET UNDER EXTERNAL CURRENTS

The time evolution of the magnetization field in a ferro-
magnet under current induced external torque is governed by
the modified Landau-Lifshitz-Gilbert (LLG) equation

∂n
∂t

= γ Beff × n + αn ×
(

∂n
∂t

)
+ τ, (1)

where α and γ are the Gilbert damping and the gyromagnetic
constant, respectively. The vector field Beff (r) = − 1

MS

δE
δn(r) is
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the effective field derived from the energy functional E . The
unimodular vector field n(r) = M(r)/MS describes the local
magnetization direction and MS is the saturation magnetiza-
tion. The last term in Eq. (1), τ, is the spin-transfer torque due
to the spin-polarized current and it is given by

τ = −(u · ∇ )n + βn × (u · ∇ )n, (2)

where u = −b j j and b j = PμB

|e|MS
with P the polarization de-

gree, e the electron charge, and μB the Bohr magneton. Notice
that u points in the direction of the electron motion while
the current density j points in the opposite direction. The
first term is the reactive (adiabatic) torque and the second
term is the dissipative (nonadiabatic) torque, whose strength
is controlled by the nonadiabaticity coefficient β [42,43].

To describe a monoaxial chiral ferromagnet we consider
a model that includes ferromagnetic exchange interactions,
monoaxial DMIs and single-ion anisotropies, characterized by
the stiffness constant A, the DMI strength constant D, and the
anisotropy constant K , respectively. Thus the magnetic energy
functional is E [n] = ∫

d3re(r), and the energy density e(r) is
given by

e(r) = A
∑

i

(∂in)2 − Dẑ · (n × ∂zn) − Kn2
z − MSB · n,

(3)

where the index i runs over x, y, z, the chiral axis is along ẑ
and B is the external magnetic field. The effects of the dipolar
interaction are effectively taken into account in the uniaxial
anisotropy term, which is correct for magnetization fields that
depend only on the z coordinate, as those considered in this
paper. The corresponding effective field in Eq. (1) reads

Beff = 2

MS

[
A∇2n − Dẑ × ∂zn + Knz ẑ + MS

2
B

]
. (4)

The model just described possess a rich phenomenology.
Without applied current and at zero-magnetic field the mag-
netization forms a helical structure (HL) with the propagation
vector q0 aligned with the chiral axis (see Fig. 1). This means
that the magnetization is contained within the x − y plane but
rotates around the z axis. If a magnetic field is applied along
the chiral axis, the helical state features a conical deforma-
tion leading to a conical state (CN) as shown in Fig. 1. By
increasing the magnetic field the system reaches a ferromag-
netic state, with the magnetization pointing in the z direction
[23,27,29,44,45]. Instead, if a magnetic field is applied in a
direction perpendicular to the chiral axis, say B = Bŷ, the
helical state is distorted and a CSL is formed (Fig. 1). The
structure of the CSL can be transformed into that of the HL
if the magnetic field is gradually reduced down to zero. The
density of solitons decreases with increasing external field B,
so that the distance between consecutive solitons increases
according to the relation [21,22,24,46]

L(B)

L0
= 4K̃ (k)Ẽ (k)

π2
, (5)

where L0 = 4πA/D is the period of the zero-field helical state,
K̃ (k) and Ẽ (k) are the complete elliptical integrals of the first

FIG. 1. The magnetization field for different configurations in a
monoaxial chiral magnet: At zero-magnetic field the configuration
corresponds to the helical state (HL) with period L0, for a magnetic
field along the chiral axis the magnetization corresponds to the
conical state (CN), if the magnetic field is applied in the direction
perpendicular to the chiral axis the magnetic state corresponds to
a chiral soliton lattice (CSL), which can be conceived as a regular
arrangement of chiral solitons (CS). The color code represents the ny

component: blue (yellow) for ny = −1 (+1).

and second kind, respectively, and k solves the equation

k

Ẽ (k)
=

√
B

Bc
. (6)

The model described by Eq. (3) applies to a wide range
of monoaxial chiral helimagnets. In particular we shall con-
sider A = 1.42 pJ/m, D = 369 μJ/m2, K = −124 kJ/m3, and
MS = 129 kA/m, that reproduces the phenomenology of the
CrNb3S6 compound [21–24,46]. The zero-field helical pitch
L0 ≈ 48 nm and the critical field Bc ≈ 230 mT for the chiral
soliton lattice-forced ferromagnet transition in a transverse
magnetic field, are well described by the previous set of pa-
rameters [30,47].

In the following, we shall study the effect of an external
electric current applied along the chiral axis when the system
is subjected to a magnetic field applied perpendicular to the
chiral axis. Henceforth we thus consider a magnetic field
along the ŷ direction, B = Bŷ.

III. STEADY MOTION OF THE CHIRAL
SOLITON LATTICE

Since the norm of the magnetization n is constant there are
only two degrees of freedom and it is useful to use the polar
parametrization

n = − sin θ sin ϕ x̂ + sin θ cos ϕ ŷ + cos θ ẑ, (7)

with the direction ẑ aligned with the chiral axis.
Steady solutions of the LLG equation, where a magnetic

texture rigidly moves at a constant velocity, exist if there is
an applied electric current, which delivers a torque on the
magnetization. In this case the magnetic state is characterized
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by functions θ (w) and ϕ(w) depending on w = q0(z − vt ),
with v a constant velocity and q0 = D/2A. Setting the current
to j = − jẑ, the LLG equations in the steady state can be
written in the form

θ ′′ = (ϕ′ 2 − 2ϕ′ + κ ) sin θ cos θ − hy cos θ cos ϕ

−�θ ′ + � sin θϕ′, (8)

sin θϕ′′ = hy sin ϕ − 2(ϕ′ − 1) cos θθ ′

−�θ ′ − � sin θϕ′, (9)

where κ = K/Aq2
0 and hy = MSB/2Aq2

0. The primes indicate
derivatives with respect to the w variable. The parameters �

and � are given by

� = α

v0

(
v − β

α
b j j

)
, � = 1

v0
(v − b j j), (10)

with v0 = 2γ Aq0/MS. When the current is applied to the CSL,
the steady solution is expected to be also periodic and thus
the steady equations are solved for z within an interval of
length equal to a period, L. This means w ∈ [−wL,wL] with
wL = q0L/2, and then ϕ(w) and θ (w) satisfy the boundary
conditions

ϕ(−wL ) = 0, ϕ(wL ) = 2π, ϕ′(wL ) = ϕ′(−wL ), (11)

θ (−wL ) = θ (wL ), θ ′(wL ) = θ ′(−wL ). (12)

These conditions ensure, in a single period, a 2π rotation of
ϕ, periodicity of θ , and continuity of their derivatives.

A. Determination of the steady solutions

Besides the model parameters and the applied magnetic
field, Eqs. (8) and (9) contain a priori two independent free
parameters, � and �, or, equivalently, j and v. The value of j
can be arbitrarily chosen since it corresponds to an external
physical parameter, which can be varied at will. However,
we expect the velocity v, which has been introduced in the
ansatz for the steady-state solution, to be determined by the
applied current. This issue can be addressed by numerically
solving the boundary value problem defined by Eqs. (8) and
(9) and the boundary conditions (11) and (12). As shown in
Appendix A, extensive numerical simulations show that this
problem has a solution only for � = 0. In this way the current
j determines uniquely the steady-state velocity v, which is
given by

v = βb j

α
j. (13)

This means that the steady velocity has a linear depen-
dence with the current density j, with a mobility m = βbj/α,
which is independent of the density of solitons and of the
applied field, but still depends on the Gilbert damping, the
nonadiabaticity parameter, the saturation magnetization and
the polarization degree of the current. Notice that the direction
of velocity vector v is opposite to the direction of the current
density j. Interestingly, the relation in Eq. (13) is the same as
that found for the steady motion of a single CS in a monoaxial
helimagnet [30] and of a domain wall in an anisotropic fer-
romagnet [48]. Thus, it seems to be a universal feature of the

FIG. 2. (a) Magnetization tilt angle at the boundary θL , and
(b) maximum real part of the eigenvalues of the operator S in
Eq. (15), max Re(ν ) (in units of ω0, see Appendix B), as a func-
tion of j for B = 50 mT. The stable branch of θL corresponds to
max Re(ν ) < 0 and is indicated with a continuous blue line. Unstable
branches are indicated with dashed-red lines. For this value of the
external field, there are no solutions beyond jc ≈ 2.34 1012 A/m2.
The inset in (b) shows that within the range 2.12 1012 A/m2 � | j| �
2.34 1012 A/m2 two stable solutions are found [corresponding to two
different values of θL in (a)].

one dimensional magnetic soliton dynamics. Notice that if the
condition in Eq. (13) holds, � is proportional to the current
density, � = (β/α − 1)bj j/v0.

For � = 0 the boundary value problem defined by Eqs. (8),
(9), (11), and (12) may have one or more solutions, or no
solution (this happens if j is large, see below). For given j
we characterize the solutions by the magnetization tilt angle
at the boundary [49], θL = θ (−wL ) = θ (wL ), which encodes
conical deformations of the magnetic configuration.

For given B and low values of | j| there is only one solu-
tion, but at high enough | j| a second solution appears. The
two solutions merge at a critical value of | j|, denoted by
jc, beyond which the boundary value problem with � = 0
has no solution. As an example, Fig. 2(a) shows the values
of θL as a function of j for B = 50 mT, with a density of
solitons corresponding to the equilibrium CSL at zero current,
that is, with L obtained from B by Eq. (5). In this case,
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the value jc ≈ 2.34 1012 A/m2 is obtained. The continuous
blue line corresponds to stable solutions while the solutions
indicated by broken red lines are unstable, as detailed in the
following.

To analyze the stability of the steady solutions we study the
dynamics of perturbations about them. Let n0 be a steady state
and let a perturbation around this state be given by

n = n0 + ξ1e1 + ξ2e2, (14)

where e1 and e2 are two orthonormal vectors perpendicular to
n0, and ξ1 and ξ2 are the amplitudes of the perturbations. The
perturbations ξ1 and ξ2 are functions of the three coordinates
x, y, z, and of time t , while the vectors n0, e1, and e2 are
functions of the single variable w = q0(z − vt ), where v is
given by Eq. (13). Inserting the form of the magnetization
given by Eq. (14) into the LLG equation and linearizing it
in ξ1 and ξ2 we obtain a linear equation for the dynamics
of the perturbations. Defining the two component column
vector ξ = (ξ1, ξ2)T , where the superscript T stands for ma-
trix transpose, the linearized LLG equation relates the time
derivative of ξ to a linear second-order differential operator
acting on ξ . The linear operator involves only spatial deriva-
tives and its coefficients are functions only of w. Hence, it
is convenient to perform a change of variables and consider
ξ a function of t , x, y, and w. In this form we obtain the
equation

∂tξ = Sξ, (15)

where the coefficients of the linear differential operator S ,
which is given in Appendix B, depend only on w. With the
ansatz ξ = ηeνt , where η is a function of x, y, and w, the
evolution equation is reduced to the eigenvalue problem Sη =
νη. The steady state is stable if and only if all eigenvalues ν

of S have nonpositive real part.
Figure 2(b) shows the maximum of the real part of the

eigenvalues of S corresponding to the steady solutions of
Fig. 2(a). Some details on the computations are given in
the Appendix B. We see that the blue branch of Fig. 2(a)
represents the values of θL that correspond to stable steady
solutions, while the steady solutions corresponding to the
dashed branches are unstable. In the range 2.12 1012 A/m2 �
| j| � 2.34 1012 A/m2, we find two possible stable solutions,
as θL is not single valued and the corresponding eigenvalues
have negative real part [see inset in Fig. 2(b)]. In this case,
which of the two possible stable solutions is reached will
depend on the initial condition. In our numerical simulations
we use the CSL as the initial state and we always observe the
solution corresponding to the maximum deviation from the
x − y plane, i.e., with max(|θL − π/2|), corresponding to the
lower(upper) blue section for positive(negative) j values in
Fig. 2(a).

In conclusion, steady motion states exist only if the ap-
plied current density is lower than a critical current jc, which
depends strongly on the applied magnetic field and on the
density of solitons (see Sec. V).

B. Steady velocity-current response

The stable steady solutions are reproduced by micromag-
netic numerical simulations: A steady motion state is obtained

FIG. 3. (a) The CSL velocity for different number of CSs and at
different values of magnetic field: N = 10 and B = 50 mT, N = 13
and B = 50 mT, and N = 13 and B = 100 mT. The black line repre-
sents the analytical result for the velocity given by Eq. (13). (b) The
magnetization along the chiral axis as a function of time for different
applied currents of intensities j and B = 50 mT.

after a short transient if a polarized electric current along
the chiral axis is applied to a system, which is initially at
equilibrium, provided the applied current density is lower than
a certain critical value.

We use the MuMax3 code and implement a monoaxial
DMI interaction [30,50,51]. Parameter values for CrNb3S6

(as mentioned in Sec. II) were used in a one-dimensional
system of size R = 500 nm, with a mesh comprised of 500
cells of length �R = 1 nm, and we set α = 0.01 and β = 0.02
for the Gilbert damping in Eq. (1) and the nonadiabaticity
constant in Eq. (2), respectively. We perform our simulations
using periodic boundary conditions and keeping the number
of chiral solitons constant at a given value N . The velocity
of the CSL can be obtained from the simulations using the
autocorrelation 〈n(z, 0) · n(z, t )〉 where 〈· · · 〉 = 1

R

∫ R
0 · · · dz.

From the Fourier transform of the time-dependent autocorre-
lation function, and using the lowest nonzero frequency ν1,
we get the CSL velocity as v = ν1R

2πN (see Appendix C). The
results of the velocity as a function of the current are shown
in Fig. 3(a), indicating an extremely good agreement between
the stationary solution and numerical simulations of the full
LLG equations. The fact that the velocity does not depend on
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the solitons’ density, controlled by the external magnetic field,
gives room to work in a wide-field range without modifying
the dynamical properties of the CSL.

C. Current induced CSL deformation

As shown in Fig. 3(b), where the z component of the net
magnetization is presented, numerical simulations show that
the stationary solutions are reached after a transient time of the
order of a few nanoseconds. This results correspond to a case
with B = 50 mT and different intensities of the current j. It is
also important to mention that besides the translation motion
of the magnetic texture, the effect of the current involves a
deformation of the original CSL into a state with cone-like
profile, leading to a net magnetization along the chiral axis, as
shown in Fig. 3(b). At zero-magnetic field, the current drives
the system to a conical state analogous to the state observed in
a cubic helimagnet under the same conditions [52,53]. In this
case the distortion is characterized by a uniform component
of the magnetization field along the propagation vector q0.
However, when a transverse magnetic field is applied, the
magnetization component parallel to q is not uniform but ex-
hibits a modulation along the system. Figure 4(a) shows how
the magnetization components are periodically varying along
the z coordinate, as found using micromagnetic simulations
for B = 50 mT and applying a current j = 1.8 1012 A/m2.
The distortion of the CSL is described by the form of θ (w) and
ϕ(w) within one period. Figures 4(b) and 4(c) compare the
steady solutions obtained by solving the boundary value prob-
lem and by the micromagnetic simulations for B = 50 mT. A
good agreement between both results is observed.

Let us discuss the form of the CSL distortion in the steady
motion state. In absence of current, j = 0, the polar angle
has a constant value θ (w) = π/2, which means that the mag-
netization lays in the x − y plane. If a current is applied,
θ (w) oscillates between a maximum value for z = 0, L (i.e.
w = ±wL) and a minimum value at z = L/2 (i.e., w = 0), as
can be appreciated in Fig. 4(b). This means that the tilting
of the magnetization towards the chiral axis is maximum at
the center of the soliton, i.e., when ny is minimum, and it is
minimum when ny takes its maximum value. The variation of
the angle ϕ(w) indicates how the magnetization field performs
the 2π rotation, and depends on the applied current and field
as shown in Fig. 4(c).

The distortion of the steady moving CSL can be recast as a
conical deformation, akin the one observed when a magnetic
field in the z direction is considered [29,54]. The opening of
the cone depends on the intensity of the current. Large values
of j tend to shrink the cone, and, as a consequence, the value
of the net magnetization along the chiral axis grows approx-
imately linearly with the intensity of the current as shown in
Fig. 3(b). In this case θ (w) < π/2, indicating a conical defor-
mation pointing in the z direction. It is instructive to represent
the magnetization field over the Bloch sphere as in Fig. 4(d).
From this figure it is possible to recognize the effect of the
current on the structure of the CSL: its profile changes from
a planar (thick-black line) to a conical section (thin-black and
thick-blue lines) when a current density is applied. For B =
0 mT the cone axis is aligned with the z direction (thin black)

FIG. 4. (a) A snapshot of the magnetization field along the sam-
ple after the steady motion is reached (B = 50 mT and j = 1.8 1012

A/m2). (b) Polar angle θ (z) within one period of the CSL, with a
pitch L = 50 nm. (c) Rotation angle ϕ(z) indicating one complete
turn in a CSL period. The curve corresponding to j = 1.8 1012 A/m2

was displaced in order to present the results more clearly. The dotted
lines serve as a guide for the eye and emphasize the difference
between the cases with and without applied current. In (b) and
(c) the circles represent the results from the micromagnetic sim-
ulations while the solid lines are the solutions for the boundary
value problem in Eqs. (8), (9), (11), and (12). (d) A spherical plot
representing the magnetization field over the Bloch sphere. The
thick-black line represents the CSL before the current is applied.
The thin-black line represents the conical state for B = 0 mT when
the current is applied. The blue line represents the magnetization field
in (a). The sphere represents the Bloch sphere spanned by the set of
vectors |n| = 1 and the color code (blue-yellow) represents the value
of ny: blue (yellow) corresponds to ny = −1 (+1). (e) Projection of
the conical distortion in the y − z plane. The orientation and opening
angles, θo and θa, characterizing the cone are indicated.

whilst for nonzero B the orientation of the axis of the conical
distortion slightly departs from the z direction (thick blue).

Since the current deforms the CSL and turns its pro-
file into an oriented-cone, key features of the magnetization
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FIG. 5. Characteristics of the conical distortion for small cur-
rents. (a) Time evolution of the orientation and opening angles, θo

(blue diamonds) and θa (red circles), in the subcritical regime for
j = 1.8 1012 A/m2 and B = 50 mT. (b) The angles θo (in blue) and
θa (in red), in the steady state, as a function of the current intensity
for B = 50 mT. The circles and diamonds are the results from the
micromagnetic simulations and the solid lines are the results obtained
from the solution of the boundary value problem. The dotted-black
line signals the critical current jc ≈ 2.34 1012 A/m2 for B = 50 mT.

dynamics can be characterized by two angles that we call
θo, providing information about the orientation of the cone,
and θa, representing the opening angle of the cone [see
Fig. 4(e)]. Whenever θo > 0 the 2π rotation of the magne-
tization is around the direction defined by θo, and the cone is
not perfectly oriented with the chiral axis. Figure 5(a) presents
micromagnetic simulation results showing that θa (red circles)
and θo (blue diamonds) reach a steady value. It can be ob-
served that θo grows from zero (the axis of the cone coincides
with the chiral axis) to a finite value in the steady regime, that
is, the axis of the cone departs from the chiral axis. On the
other hand, the opening angle θa decreases with time, from
π/2 to a finite value reached at the steady state. The values
of θa and θo in the steady state as a function of the applied
current are shown in Fig. 5(b). We see that θa decreases while
θo increases with j. It is important to note that θa takes a finite
value when j reaches jc, i.e., the critical regime is reached
before the cone closes. The numerical results (symbols) and
the analytical results (solid lines) are in perfect agreement. A

similar phenomenology appears in the helical state of cubic
noncentrosymmetric ferromagnets [55].

IV. DESTRUCTION OF THE CHIRAL SOLITON LATTICE
AND TRANSIENT DYNAMICS BEYOND THE

CRITICAL CURRENT

The steady states described in Sec. III are only reached if j
is below a critical current, since steady solutions of the LLG
equation exist only if j < jc as indicated in Fig. 2. When
j > jc the CSL is destabilized and the system is driven to a
different state.

Although it is not expected to become an accurate de-
scription for large distortions, it is still insightful to describe
the magnetization texture as an oriented cone. The time evo-
lution of the orientation and opening angles obtained using
micromagnetic simulations for B = 50 mT and for a current
j = 3 1012 A/m2, which is above jc ( jc ≈ 2.34 1012 A/m2 at
B = 50 mT) are presented in Fig. 6(a). The orientation angle
θo (blue diamonds) starts increasing from zero and reaches
the constant value θo = π/2. Concomitantly, the value of the
opening angle θa (red circles) decreases from π/2 to reach
the constant value θa = 0. This means that the conical de-
formation initially oriented along the chiral axis rotates to
the y direction, whilst shrinking at the same time, and the
final result is a ferromagnetic state (θa = 0) oriented in the
direction of the external magnetic field (θo = π/2).

In Fig. 6(b) we show a representation of the dynamical
evolution of the magnetization field in the Bloch sphere for
the current density and magnetic field values corresponding
to Fig. 6(a). It can be observed that after the application
of the current the profile of the magnetization field can be
pictured as a deformed cone with its axis pointing, approx-
imately, along the chiral axis. The shape and orientation of
this cone evolves with time and, after a while, the axis of the
cone moves within the y − z plane and its direction gradually
departs from the chiral axis (z axis) to finally lay along the
direction of the magnetic field (y axis), see Figs. 6(b)(i)–(vi).
After this, the cross section of the cone starts shrinking to
finally reach the ferromagnetic state along the magnetic field,
see Figs. 6(b)(vii)–(viii). Notice that, as can be appreciated
in Fig. 5, the conical deformation does not fully close as
j approaches the critical current jc from below. Moreover,
notice also that once θo > θa the magnetization texture winds
around θo, but the chiral axis is no longer contained within the
cone defined by θo and θa [Figs. 6(c)(v)–(vi)]. It is important
to mention that after the destruction of the CSL the magnetic
state can be described as a ferromagnetic state with small
spatial fluctuations. As shown in Fig. 6, the transition from the
CSL to the ferromagnetic state occurs within a few nanosec-
onds. When the current is not too large ( jc < j � jFM

c with
jFM
c the critical current for the ferromagnetic instability, dis-

cussed in Sec. V) the amplitude of these fluctuations decreases
with time and the perfect ferromagnetic state is eventually
reached.

To summarize the main results of this section we mention
that for j > jc(B), but j not too high, and a long enough pulse
of current, the system reaches a ferromagnetic steady state,
and the CSL exhibits a finite life time.
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FIG. 6. Destruction of the CSL in the supercritical current
regime. (a) Time evolution of the orientation and opening an-
gles, θo (blue diamonds) and θa (red circles), in the supercritical
regime for j = 3 1012 A/m2. (b) Representation of the magnetization
field (on the Bloch sphere) at selected times after the application
of the density current pulse corresponding to (a): (i) t = 0.05 ns,
(ii) t = 0.20 ns, (iii) t = 0.45 ns, (iv) t = 0.70 ns, (v) t = 0.95 ns,
(vi) t = 1.10 ns, (vii) t = 1.45 ns, and (viii) t = 1.80 ns. The black
circle represents the initial state at t = 0 ns and the blue line repre-
sents the magnetization at each time.

V. PHASE DIAGRAM

Extending the previous analysis to different values of j
and B it is possible to construct the phase diagram shown in
Fig. 7(a). From micromagnetic simulations the winding num-
ber Q in the final state after a 50 ns pulse of current is obtained.

FIG. 7. (a) The j-B phase diagram for a monoaxial helimagnet.
The color code indicates the value of the winding number Q, which,
due to periodic boundary conditions, only takes integer values (0 �
Q � 10 for the equilibrium state in a system of size R = 500 nm) for
the final magnetization state after a 50-ns long pulse of intensity j
at each value of the magnetic field B. The solid-red line represents
the analytic limit for the stability of the CSL. The dashed-red line
represents the analytic limit for the stability of the ferromagnetic
state (which is unstable within the gray region). The dashed-white
line represents the critical field Bc = 230 mT. The green cross repre-
sents the critical current for the helical state at B = 0 mT. Its value
j ≈ 2.51 1012 A/m2 is very close to the value of the critical current
for the stability of ferromagnetic state ( j ≈ 2.54 1012 A/m2). (b) The
stability limit of the CSL at constant density of solitons, as indicated
in the key. The dashed-black line represents the stability limit for
the equilibrium state [shown in (a)], in which the density of chiral
solitons varies with the magnetic field.

The winding number is computed as Q = ∑
i arcsin[(n̂⊥,i ×

n̂⊥,i+1) · ẑ], where the sum runs over the number of cells
along the chiral axis, n̂⊥,i = n⊥,i/|n⊥,i| and ẑ · n⊥,i = 0, and
counts the number of chiral solitons winding around the chiral
axis in the system. It is important to note that this definition
of Q does not involve the evaluation of derivatives (through
finite differences). This implies that the value of Q is well
quantized, taking integer values, and its value does not depend
on the mesh size used in the discretization of the system. The
computation of Q, as introduced here, resembles the method
for the computation of the topological charge (or skyrmion
number) in two-dimensional systems using a lattice-based
approach [56].
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The region with a gradient scale of colors from yellow to
dark blue corresponds to j < jc where we find a CSL with
the number of CSs decreasing from N = 10 to N = 0 for in-
creasing magnetic fields. The region in dark blue corresponds
to Q = 0, and this means that the magnetization texture is not
winding around the chiral axis, which eventually result in a
ferromagnetic state. For j = 0 we observe the typical behavior
of a monoaxial chiral magnet in a transverse magnetic field.
Since in our simulations we consider a system of size R =
500 nm, and at zero-magnetic field the period of the magnetic
texture is L0 ≈ 48 nm, the number of chiral solitons is thus
Q = 10. This value decreases down to Q = 0 as the mag-
netic field grows and the system reaches the ferromagnetic
state at Bc. The solid-red line corresponding to jc = jc(B)
was obtained using the stability analysis and agrees with the
results from micromagnetic simulations. It is observed that the
winding number does not change with the current except at
the transition point, where it drops to zero discontinuously.
A change in Q involves the removal of a chiral soliton and
this could occur in two ways, either through the edges of
the system or destroying locally a chiral soliton. Since we
simulate infinite systems, through the implementation of pe-
riodic boundary conditions, the first mechanism is forbidden
due to the absence of edges. Since Q is conserved when the
current is increased below jc(B), the local destruction of CSs
is not observed in our numerical simulations, presumably due
to the topological protection of the CSL state. However an
unwinding process of individual CSs could be present at low
magnetic fields [55].

The instability of the ferromagnetic state occurs for j >

jFM
c (B) due to the current-assisted excitation of spin waves

and is a well-known fact, usually encountered in different
models of ferromagnets [57–60]. In Fig. 7(a) the ferromag-
netic state is unstable in the gray region and the critical current
jFM
c (B) is represented by the dashed-red line.

Above jFM
c the magnetization field does exhibit neither

spatial nor temporal structure. It is important to note that
for B � 12 mT the CSL is driven directly to the region
where the ferromagnet is unstable, without passing through
a ferromagnetic state. The value at B = 0 mT can be di-
rectly computed to obtain jc(0) ≈ 2.51 1012 A/m2 [green
cross in Fig. 7(a)]. In this region the necessary compu-
tation time to reach jc using micromagnetic simulations
increases noticeable. Since we used a maximum time of
50 ns, the stability limit shown in Fig. 7(a) is slightly larger
than the analytical limit for jc(B) when B → 0. Within
this region, random fluctuations could also lead to an un-
winding dynamical process, gradually reducing the number
of CSs [55].

The phase diagram shown in Fig. 7(a) corresponds to the
equilibrium state, in which the density of chiral solitons min-
imizes the energy (at zero current), and thus varies with the
magnetic field. However, due to the protection of the topolog-
ically nontrivial states, each metastable states characterized
by the density of solitons has its own critical current, jc(B),
which is displayed in Fig. 7(b) for different values of the
density of solitons. For comparison, the critical current corre-
sponding to the equilibrium state is also shown (dashed-black
line). We see that jc(B) decreases both with B and with the
density of solitons.

VI. DISCUSSION AND CONCLUSIONS

We have described how the CSL responds to an applied
current beyond the weak current density and weak magnetic
field regimes (B small compared to Bc). For each value of
the magnetic field we find a critical current jc depending on
the density of solitons. In the subcritical regime ( j < jc) the
velocity-current response is linear and does not depend on
the density of solitons. The steady finite velocity regime is
accompanied by a conical distortion of the CSL, similar to
the one observed when applying magnetic fields with a finite
z component. The magnitude of the applied current governs
two properties of the conical distortion: the cross section of
the cone decreases with the current, while the deviation of the
cone axis, with respect to the chiral axis, increases with the
current.

In the supercritical regime, j > jc, the CSL is destabilized
and the system reaches a ferromagnetic state with the mag-
netization oriented along the external field (except within the
range 0 mT � B � 12 mT). Even in this supercritical regime
the evolution of the CSL to the ferromagnetic state can still be
described, qualitatively, by an oriented conical deformation,
but with strong deviations.

The velocity of the CSL dragged by a spin-polarized cur-
rent has been already studied in Ref. [41], assuming weak
magnetic fields. In that article the authors find that the
terminal velocity for the CSL exhibits a weak dependence on
the magnetic field for B 
 Bc, that can be recast as an approx-
imately constant velocity, in agreement with our findings. In
addition, in the calculations of Refs. [40] and [41] the authors
considered θ ≈ π/2. We go beyond this limit by considering
that the spin-polarized current can induce pronounced distor-
tions in the structure of the CSL in which θ (z) is allowed to
significantly depart from θ (z) = π/2.

Let us end the article with a brief discussion about the
practical relevance of the results reported in this paper. Firstly,
the stability limit of the CSL imposes a constraint on the
velocity of the CSL. That is, at a given magnetic field, v

can not exceed the critical velocity vc(B) = βb j

α
jc(B). Since

jc(B) is a decreasing function of B, vc(B) � vc(0), and that
in turn implies for CrNb3S6 that the maximum velocity for a
CSL is v = vc(0) ≈ 2600 m/s (for α = 0.01 and β = 0.02).
Finally, although not shown in detail here, it is important to
mention that once the ferromagnetic state is destabilized, and
after turning off the current, the system evolves to a CSL with
a variable number of CSs. Since the forced ferromagnet and
CSL have very different magnetoresistive responses [32,33],
the dynamics described here allows a write/erase mechanism
by using two currents jw and je to switch between states
with high and low magnetoresistance. For instance, let us
consider two current pulses of values je and jw with je < jw
and such that jc(B) < je < jFM

c (B) and jw > jFM
c (B). By

applying a pulse of intensity je to the CSL the system is driven
into a ferromagnetic state, which is then metastably retained
when the current is removed, i.e., a low-magnetoresistive
state is retained. If we then apply a pulse with intensity jw
the system goes beyond the ferromagnetic instability and
then relaxes to a CSL, which would correspond to a high-
magnetoresistive state. After a sequence je- jw current pulses,
the initial and final CSL would, in general, have different
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number of CSs, which would comprise a small difference be-
tween high-magnetoresistive states but would not drastically
affect the possible observation of two well resolved high-
and low-magnetoresistive states. The results discussed here
could therefore be relevant for the development of spintronic
devices.
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APPENDIX A: SOLUTION OF THE BOUNDARY VALUE
PROBLEM FOR THE STEADY STATE

Let us discuss in this Appendix some details about the
boundary value problem, which determines the steady states.
It is set out by Eqs. (8), (9), (11), and (12), and therefore has
to be solved in the interval [−wL,wL].

The applied current density j, and the steady-state velocity
v, appear in the steady-state equations (8) and (9) through the
combinations � and �, which may be seen as the natural pa-
rameters for the boundary value problem that determines the
steady state. Notice that there is a one-to-one correspondence
between the pairs ( j, v) and (�,�). To find the steady state
we adopted the following strategy. For given values of �, �,
and θL, we solve the boundary value problem given by Eqs. (8)
and (9) and the boundary conditions

ϕ(−wL ) = 0,

ϕ(wL ) = 2π,

θ (−wL ) = θL,

θ (wL ) = θL.

(A1)

In general, a solution to this problem can numerically be
found for different values of �, �, and θL. We solved this
problem numerically using a finite difference method with
centered finite differences for the derivatives. The resulting
nonlinear equations were solved by a relaxation method. A
solution of the boundary value problem, which we solve nu-
merically, associated to the boundary conditions (A1), is a
solution of the steady-state boundary value problem, associ-
ated to the boundary conditions (11) and (12), if and only if

�ϕ′ = ϕ′(wL ) − ϕ′(−wL ) = 0, (A2)

�θ ′ = θ ′(wL ) − θ ′(−wL ) = 0. (A3)

Clearly, these additional conditions will be fulfilled only at
specific values of �, �, and θL. Numerically, we observe that
�ϕ′ = 0 only when � = 0. Some examples are shown in
Figs. 8(a)–8(c), where �ϕ′ is plotted as a function of θL for
different values of � and �. Therefore, we are forced to set
� = 0, what implies the linear relationship between v and j
given by Eq. (13), and that � is proportional to j.

FIG. 8. Dependence of �ϕ′ = ϕ′(wL ) − ϕ′(−wL ) and �θ ′ =
θ ′(wL ) − θ ′(−wL ) on the boundary tilt angle θL for different values
of � and �. In (a), (b), and (c) �ϕ′(θL ) is shown for different �

values and fixed � = 0, −1.2, and 0.5, respectively. �ϕ′ = 0 only
when � = 0, irrespective of the value of θL . (d) Shows �θ ′(θL ) for
� = 0 and different � values. The values of θL (�,� = 0) satisfying
�θ ′ = 0 and �ϕ′ = 0 are indicated as open-black circles. θL (�,� =
0) results in θL ( j) shown in Fig. 2.

With � = 0 and for a given value of �, condition �θ ′ = 0
is satisfied only for specific values of θL. This is illustrated in
Fig. 8(d). We can use these values of θL to characterize the
steady solutions at given �. They are displayed as a function
of j in Fig. 2. Finally, the boundary value problem associated
to the boundary conditions (A1) has no solution if |�| is larger
than a certain value |�c|, which depends on the rest of the
parameters of the model (the applied field, the anisotropy
energy, etc.) This means there is no steady motion state
for j > jc.

APPENDIX B: STABILITY ANALYSIS
OF THE STEADY SOLUTION

Let n0 be a steady state and consider a perturbation about
it described by two fields ξ1 and ξ2 as in Eq. (14). We choose

e1 = ∂n/∂θ, e2 = n0 × e1, (B1)

where n is given by Eq. (7) and θ and ϕ are the solution of the
boundary value problem, defined by Eqs. (8), (9), (11), and
(12), which determines the steady state. Remember that while
ξ1 and ξ2 are functions of the three coordinates x, y, z, and of
time t , the vectors n0, e1, and e2 are functions of the single
variable w = q0(z − vt ). Hence, as discussed in Sec. III A, it
is convenient to perform a change of variable and consider ξ1

and ξ2 as functions of t , x, y, and w.
Defining the two-component column vector ξ = (ξ1, ξ2)T

the dynamics of the perturbation is governed by the lin-
earized LLG equation [Eq. (15)], with the linear operator S
given by

S = ω0

[
(J − αI )K + b j j

v0

β − α

α
(I + αJ )U

]
, (B2)
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where ω0 = v0q0/(1 + α2),

I =
(

1 0
0 1

)
, J =

(
0 −1
1 0

)
, (B3)

K is a 2 × 2 matrix of operators with matrix elements

K11 = −q−2
0 ∇2

⊥ − ∂2
w + cos 2θ (ϕ′ 2 − 2ϕ′ + κ )

+ hy sin θ cos ϕ, (B4)

K12 = 2(ϕ′ − 1) cos θ ∂w + cos θϕ′′, (B5)

K21 = −2(ϕ′ − 1)(cos θ ∂w − sin θθ ′) − cos θϕ′′, (B6)

K22 = −q−2
0 ∇2

⊥ − ∂2
w − θ ′2

+ cos2 θ (ϕ′ 2 − 2ϕ′ + κ ) + hy sin θ cos ϕ, (B7)

with ∇2
⊥ = ∂2

x + ∂2
y , and

U =
(

∂w − cos θϕ′
cos θϕ′ ∂w

)
. (B8)

The primes stand for derivatives with respect to w. The func-
tions θ (w) and ϕ(w) characterize the steady solution, which
is stable if the spectrum of the S operator lies on the left half
plane of the complex plane, that is, if all of its eigenvalues
have nonpositive real part.

Since the functions θ and ϕ are periodic, with the period of
the CSL, S is a periodic operator (it commutes with the lattice
translations). Therefore, we used the Bloch-Floquet theorem
to reduce the spectral problem of S to the spectral problem
of a related operator, which acts on the space of periodic
functions. The eigenvalue of S with largest real part has
been estimated by discretizing the operator acting on periodic
functions and obtaining the relevant part of its spectrum with
an Arnoldi method.

APPENDIX C: THE CSL VELOCITY FROM
AUTOCORRELATION

In order to obtain the velocity of the CSL from the simula-
tions, and considering the intrinsic periodicity of the system,

we compute the autocorrelation function

C(t ) = 〈n(z, 0) · n(z, t )〉 = 1

R

∫ R

0
n(z, 0) · n(z, t )dz,

(C1)

where n(z, t ) is the magnetization field at time t and position
z. If the dynamical evolution of the magnetization field corre-
sponds to a steady and rigid translation of the CSL, then C(t )
presents a periodic structure characterized predominantly by a
single frequency. For a CSL of period L, we can expand each
component of the magnetization in the form

ni(z) =
∑

k

Ai,k cos

(
z

k2π

L
+ φk

)
, (C2)

where i = x, y, z. Since we fix the number N of chiral solitons
in the system of size R we have that L = R/N . Then we find

∫ R

0
ni(z)ni(z − z0)dz = R

2

∑
k

{
A2

i,k cos

(
kz02πN

R

)}
.

(C3)

If we replace z0 = v t and sum over i = x, y, z we get

C(t ) = 1

2

∑
k

{[ ∑
i=x,y,z

A2
i,k

]
cos

(
N2πkvt

R

)}
, (C4)

which represents the Fourier expansion of the C(t ) function
in terms of the frequencies νk = 2πkvN/R. In practice, it
results that Ak,i ≈ 0 for |k| > 1, and the Fourier expansion in
Eq. (C4) is dominated essentially by the ν1 term. The velocity
of the CSL can finally be obtained from the lowest nonzero
frequency ν1, v = ν1R

2πN .
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