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Catalan Generating Functions for
Generators of Uni-parametric Families
of Operators

Alejandro Mahillo and Pedro J. Miana

Abstract. In this paper we study solutions of the quadratic equation
AY 2 − Y + I = 0 where A is the generator of a one parameter family of
operator (C0-semigroup or cosine functions) on a Banach space X with
growth bound w0 ≤ 1

4
. In the case of C0-semigroups, we show that a

solution, which we call Catalan generating function of A, C(A), is given
by the following Bochner integral,

C(A)x :=

∫ ∞

0

c(t)T (t)x dt, x ∈ X,

where c is the Catalan kernel,

c(t) :=
1

2π

∫ ∞

1
4

e−λt

√
4λ − 1

λ
dλ, t > 0.

Similar (and more complicated) results hold for cosine functions. We
study algebraic properties of the Catalan kernel c as an element in
Banach algebras L1

ω(R+), endowed with the usual convolution product,
∗ and with the cosine convolution product, ∗c. The Hille–Phillips func-
tional calculus allows to transfer these properties to C0-semigroups and
cosine functions. In particular, we obtain a spectral mapping theorem for
C(A). Finally, we present some examples, applications and conjectures
to illustrate our results.

Mathematics Subject Classification. 47D03, 11B75, Secondary, 47D09,
46J10.

1. Introduction

The Catalan numbers (Cn)n≥0 given by,

Cn =
1

n + 1

(
2n

n

)
, n ≥ 0,

form an integer sequence deeply studied in number theory and combinatorics.
Historically, one of the first interpretation given to the Catalan number Cn
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was through the number of ways to triangulate a regular n+2-sided polygon,
known as Euler problem. Another example where this sequence appears is
counting the ways of constructing binary trees. Specifically, Cn represents
the number of ways to construct a binary tree with n nodes. In fact, a large
amount of applications and interpretations of (Cn)n≥0, more than 200, may
be found in [19].

The generating function of the Catalan numbers is given by

C(z) :=
∞∑

n=0

Cnzn =
1 − √

1 − 4z

2z
, z ∈ D

(
0,

1
4

)
:=

{
z ∈ C | |z| ≤ 1

4

}
,

which is one of the solution for y in the quadratic equation,

zy2 − y + 1 = 0.

In this context, one may wonder what happens when we replace the complex
values y and z by operators or elements in a general Banach algebra. Recently,
this point of view has been explored in [14] for bounded operators in a Banach
space X, obtaining a way to solve the equation presented above.

To extend these results to a wider family of operators, mainly non-
bounded operators, we consider generators of C0-semigroups and cosine op-
erators. A family of bounded operators (T (t))t≥0 on a Banach space X is
called a strongly continuous semigroup (or C0-semigroup) if it satisfies the
functional equation,{

T (t + s) = T (t)T (s), for all t, s ≥ 0

T (0) = I,

and limt→0+ T (t)x = x for all x ∈ X. The linear operator (A,D(A)) defined
as,

Ax := lim
h→0

T (h)x − x

h
, x ∈ D(A) := {x ∈ X |Ax exists on X}

is the infinitesimal generator of the semigroup (T (t))t≥0 with closed and
densely defined domain D(A). The solution of the Cauchy problem,{

u′(t)x = Au(t), for t ≥ 0,

u(0)x = x ∈ D(A),

is given by the orbit u(t) = T (t)x. In the case that A ∈ B(X), the set of
linear and bounded operators on X, the C0-semigroup is expressed by the
vector-valued exponential function,

T (t)x = etAx =
∞∑

n=0

tn

n!
An(x), x ∈ X,

see more details in [2, Theorem 1.4].
A family of bounded operators (Cos(t))t≥0 on a Banach space X is called

a strongly continuous cosine function if it satisfies the functional equation,{
Cos(t + s) + Cos(t − s) = 2Cos(t)Cos(s), for t ≥ s ≥ 0,

Cos(0) = I,
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and limt→0+ Cos(t)x = x for all x ∈ X. The linear operator (A,D(A)) defined
as,

Ax := 2 lim
h→0

Cos(h)x − x

h2
, x ∈ D(A) := {x ∈ X |Ax exists on X}

is the generator of the cosine function (Cos(t))t≥0 with closed and densely
defined domain D(A). The solution of the wave problem,⎧⎪⎨

⎪⎩
v′′(t)x = Av(t), for all t ≥ 0,

v(0)x = x ∈ D(A),

v′(0)x = 0,

is given by the orbit v(t) = Cos(t)x. In the case that A ∈ B(X) the cosine
function is expressed by the vector-valued hyperbolic cosine function,

Cos(t)x =
∞∑

n=0

t2n

(2n)!
A2n(x), x ∈ X,

see more details in [1, Section 3.14].
In this work we show that

C(A)x :=
∫ ∞

0

c(t)T (t)xdt, x ∈ X,

is a solution of the equation,

AY 2 − Y + I = 0, (1.1)

where A is the generator of a C0-semigroup (T (t))t≥0 bounded by ‖T (t)‖ ≤
Mew0t, with w0 ≤ 1

4 , see Theorem 4.2. The function c, called Catalan kernel,
is defined by

c(t) :=
1
2π

∫ ∞

1
4

e−λt

√
4λ − 1

λ
dλ, t > 0. (1.2)

Similarly, when A generates a cosine function (Cos(t))t≥0, ‖Cos(t)‖ ≤
Mew0t, with M ≥ 1 and w0 ≤ 1

4 , the operator

C(A)x =
∫ ∞

0

c(t)Cos(t)xdt, x ∈ X,

is a solution of the biquadratic equation

4AY 4 − Y 2 + I = 0, (1.3)

see Theorem 4.4.
The Catalan kernel c has already appeared in the literature and its

integral expression (1.2), see for example [16, formula 15]. The key point is
that the moments of this function are the Catalan numbers,

Cn =
∫ ∞

0

tn

n!
c(t) dt, n ≥ 0. (1.4)

Other integral representations of Catalan numbers may be found in [17,19].
However, other notable properties of this function have not yet been

considered. In Sect. 2, the following algebraic properties are shown,

(c ∗ c)′(t) = −c(t),
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(c ∗c c)(t) =
∫ ∞

0

1√
4πs

e− t2
16s c(s)ds,

4(c ∗c c ∗c c ∗c c)′′(t) = (c ∗c c)(t),

for t > 0, see Theorem 2.4, Lemma 2.7 and Theorem 2.8. Here we denote by
∗ and ∗c the usual convolution product and the cosine convolution product
defined in the weighted Lebesgue space L1

ω(R+), see Sects. 2.1, and 2.2.
The main idea in this paper is to obtain new information about the

Catalan kernel c in the algebras (L1
ω(R+), ∗) and (L1

ω(R+), ∗c) (Sect. 2) to
transfer later to C0-semigroups (Sect. 3) and cosine functions (Sect. 4).

The Laplace transform and the cosine transform are useful tools to
obtain those properties for the Catalan kernel c. Also, spectra of the element
c are identified and represented in both convolution algebras in Sect. 2.

For C0-semigroups, we define the Catalan operator in Sect. 3. We show
a spectral mapping theorem for this operator and the connection with the
square root in Theorem 3.2. In the case that A generates a C0-group, then
4A2 generates a C0-semigroup and

C(4A2) =
(

C(A) + C(−A)
2

)2

,

see Theorem 3.5.
For cosine operators, we define the Catalan operator in Sect. 4. We

also show a spectral mapping theorem for this operator and the connection
with the square root in Theorem 4.4. As A also generates a C0-semigroup,
C(4A) = (C(A))2 where C(4A) is given in Definition 3.1.

Finally, in the last section we present some concrete examples of opera-
tors A which generates C0-semigroups and cosine functions. We calculate the
Catalan operator C(A) for these operators. We also give some conjectures
and ideas to extend our results presented in a future research. For α-times
integrated semigroup, resolvent estimates or fractional powers of infinitesi-
mal generators of bounded C0-semigroups, the Catalan operator C(A) may
be interesting to consider in further research.

2. Algebraic Properties of the Catalan Kernel

The Catalan numbers (Cn)n≥0 form a sequence of integers defined by the
recurrence relation

Cn =
n−1∑
i=0

CiCn−1−i, n ≥ 1,

and C0 = 1. They can also be expressed by the following explicit formula
using binomial numbers,

Cn =
1

n + 1

(
2n

n

)
, n ≥ 0,
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see [19, Section 1.4]. The generating function of this sequence is,

C(z) :=
∞∑

n=0

Cnzn =
1 − √

1 − 4z

2z
, z ∈ D

(
0,

1
4

)
:=

{
z ∈ C | |z| ≤ 1

4

}
,

(2.1)
and it satisfies the following quadratic equation,

zC2(z) − C(z) + 1 = 0, z ∈ D

(
0,

1
4

)
, (2.2)

see [19, Section 1.3]. Moreover, the function 1
zC(z) = 1+

√
1−4z

2z also satisfies
this equation,

z

(
1

zC(z)

)2

− 1
zC(z)

+ 1 = 0, z ∈ D

(
0,

1
4

)
\{0}.

Lastly, it’s worth mentioning that the Catalan numbers admit the following
integral representation,

Cn =
1
2π

∫ 4

0

xn

√
4 − x

x
dx, (2.3)

see [16, Equation 10].
Remind that a measurable function f belongs to this weighted Lebesgue

space L1
ω(R+) if the following norm,

‖f‖L1
ω(R+) :=

∫ ∞

0

|f(t)| eωt dt,

is finite where ω ∈ R. In fact, the space L1
ω(R+) may be embedded with

different convolution products.

2.1. The Catalan Kernel in the Algebra (L1
ω (R

+), ∗)
The usual convolution product ∗ is defined by,

(f ∗ g)(t) =
∫ t

0

f(u)g(t − u) du, t > 0,

for f, g ∈ L1
ω(R+). We write (f ∗ g)(0) := limt→0+(f ∗ g)(t) whenever this

limit exists.
The convolution product ∗ is commutative, associative, with bounded

approximate identity and

‖f ∗ g‖L1
ω(R+) ≤ ‖f‖L1

ω(R+) ‖g‖L1
ω(R+) , f, g ∈ L1

ω(R+).

Then the space (L1
ω(R+), ∗) is, in fact, a Banach algebra whose spectrum

σ(L1
ω(R+), ∗) = {z ∈ C | �z ≥ −ω} and its Gelfand transform is the Laplace

transform given by

L(f)(z) =
∫ ∞

0

f(s)e−zsds, �z > −ω,

for f ∈ L1
ω(R+). As it is known, the Laplace transform verifies L(f ∗ g) =

L(f)L(g) and

sup
�z>−ω

|L(f)(z)| ≤ ‖f‖L1
ω(R+) , f ∈ L1

ω(R+).
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Figure 1. The Catalan kernel defined at Definition 2.1

Definition 2.1. The Catalan kernel is the positive function c : (0,∞) →
(0,∞) defined as,

c(t) :=
1
2π

∫ ∞

1
4

e−λt

√
4λ − 1

λ
dλ, t > 0. (2.4)

In the following theorem, we recollect some basic results about the Cata-
lan kernel c. We also present an alternate definition for c using the comple-
mentary error function erfc defined by

erfc(z) := 1 − erf(z) = 1 − 2√
π

∫
[0,z]

e−t2 dt, z ∈ C.

Since the following asymptotic behavior holds

1
2

erfc
(√

t

2

)
∼ e− t

4√
π
√

t

(
1 − 2

t
+

12
t2

− · · ·
)

, t → ∞,

([15, formula 40:6:3]), the erfc function belongs to L1
ω(R+) for ω < 1

4 , see its
graphic in fig. 1.

Theorem 2.2. Let the Catalan kernel c be defined by (2.4). Then the following
properties hold.

(i) limt→0+ c(t) = ∞, limt→∞ c(t) = 0, c′(t) < 0 for t > 0 and c is a
decreasing function.

(ii) For ω ≤ 1
4 , c ∈ L1

ω(R+) and

‖c‖L1
ω(R+) =

1 − √
1 − 4ω

2ω
≤ 2.

(iii) The Laplace transform of c is

L(c)(z) =
√

1 + 4z − 1
2z

=
2√

1 + 4z + 1
, �z ≥ −1

4
.
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(iv) An alternative expression of c is given by

c(t) =
e− t

4√
π
√

t
− 1

2
erfc

(√
t

2

)
, t > 0.

Proof. The item (i) is an exercise of elemental calculus. To prove (ii), as
ω ≤ 1

4 then,
∫ ∞

0

|c(t)| eωt dt

=
1
2π

∫ ∞

1
4

√
4λ − 1

λ

∫ ∞

0

e−(λ−ω) dt dλ =
2
π

∫ 1

0

√
1 − u√

u

du

(1 − 4ωu)

=
2
π

(
1
4ω

∫ 1

0

du√
u
√

1 − u
+

(
1 − 1

4ω

)∫ 1

0

du√
u
√

1 − u(1 − 4ωu)

)

=
2
π

(
1
4ω

β

(
1
2
,
1
2

)
+

(
1 − 1

4ω

)
π√

1 − 4ω

)
=

1 − √
1 − 4ω

2ω
,

where β is the Euler beta function, and we have used [4, formula 3.121(2)].
As the Catalan kernel is a positive function, the Laplace transform of the
function c is also checked in (ii) and

L(c)(z) =
√

1 + 4z − 1
2z

, �z ≥ −1
4
.

Finally, to check (iv), we split the Laplace transform of c in the following
way:

L(c)(z) =
2√

4z + 1
+

1 − √
4z + 1

2z
√

4z + 1
=

1√
z + 1

4

+
1

4z
√

z + 1
4

− 1
2z

.

As

L
(

e− t
4√

π
√

t

)
(z) =

1√
z + 1

4

, L
(

−1
2

)
(z) = − 1

2z
,

L
(

1
2

erf
(√

t

2

))
(z) = L

(∫ t

0

e− u
4

4
√

π
√

u
du

)
(z) =

1

4z
√

z + 1
4

,

and the Laplace transform is injective in L1(R+), we conclude the desired
equality in L1(R+) and then in L1

ω(R+) for ω ≤ 1
4 . �

Remark 2.3. Since σ(L1
ω(R+),∗)(c) = L(c)(σ(L1

ω(R+), ∗)) ∪ {0} ([8, Theorem
3.4.1(ii)]), we may identify the boundary of σ(L1

ω(R+),∗)(c), i.e.,

∂
(
σ(L1

ω(R+),∗)(c)
)

= L(c)(−ω + iR) =
{

2√
1 − 4ω + 4ti + 1

: t ∈ R

}
,

and we plot ∂
(
σ(L1

ω(R+),∗)(c)
)

in Fig. 2 for several values of ω.

Let the Catalan kernel
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Figure 2. The boundary of the spectrum of c in the algebra
(L1

ω(R+), ∗)

Notice that the Laplace transform of the Catalan kernel c is in fact the
generating function of the Catalan numbers evaluated at −z, Eq. 2.1, that
is,

L(c)(z) = C(−z) =
√

1 + 4z − 1
2z

.

Using that the generating function C(z) satisfies the quadratic Catalan equa-
tion (2.2), we have that L(c) is a solution of the quadratic equation

− zY 2 − Y + 1 = 0, (2.5)

which motivates the study of the function c ∗ c, with property (c ∗ c)′ = −c
that will be useful in the next section.

Theorem 2.4. The function c ∗ c satisfies the following properties:
(i) It is a strictly positive function for t > 0.
(ii) The Laplace transform of c ∗ c is

L(c ∗ c)(z) =
(√

1 + 4z − 1
2z

)2

, z ≥ −1
4
.

(iii) For ω ≤ 1
4 , c ∗ c ∈ L1

ω(R+) and

‖c ∗ c‖L1
ω(R+) =

(
1 − √

1 − 4ω

2ω

)2

.

(iv) It admits the following representation in terms of the Catalan kernel,

(c ∗ c)(t) = 1 −
∫ t

0

c(u) du, t > 0.

(v) The function c∗c is bounded, decreasing, (c∗c)′ = −c and (c∗c)(0) = 1.
(vi) An alternative expression of c ∗ c is given by,

(c ∗ c)(t) = −e− t
4
√

t√
π

+
(

1 +
t

2

)
erfc

(√
t

2

)
, t > 0.
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Proof. The third first properties are direct consequences of Theorem 2.2. To
show (iv), notice that

L(c ∗ c)(z) =
1 − √

1 + 4z
2z2

+
1
z

= −L(c)(z)
z

+ L(1)(z) = L
(

−
∫ t

0

c(u) du + 1
)

(z)

for �z ≥ − 1
4 . As the Laplace transform is injective, we conclude the equality.

Note that item (v) is a consequence of item (iv)
To show item (vi), we apply Theorem 2.2 (4), and get

1 −
∫ t

0

c(u) du = 1 −
∫ t

0

e− u
4√

π
√

u
− 1

2
erfc

(√
u

2

)
du

= −2 erf
(√

t

2

)
+ 1 +

1
2

∫ t

0

erfc
(√

u

2

)
du

= −2 erf
(√

t

2

)
+ 1 +

1
2
I(t)

where I(t) :=
∫ t

0
erfc

(√
u

2

)
du. As

∫
erf(x) dx = x erf(x) + e−x2

√
π

+ C ([4,
formula 5.41]), we integrate by parts twice to compute I(t), i.e.,

I(t) =
∫ t

0

erfc
(√

u

2

)
du = t − 8

∫ √
t

2

0

x erf(x) dx

= t − t erf
(√

t

2

)
+ 8

∫ √
t

2

0

x2e−x2

√
π

dx

= t erfc
(√

t

2

)
− 2e− t

4
√

t√
π

+ 2
2√
π

∫ √
t

2

0

e−x2
dx.

By item (4), we conclude the following equality

(c ∗ c)(t) = −e− t
4
√

t√
π

+
(

1 +
t

2

)
erfc

(√
t

2

)
,

for t > 0. �
Remark 2.5. Note that the function c ∗ c is a positive, decreasing function
and limt→0+(c ∗ c)(t) = 1. We plot c ∗ c in Fig. 3.

2.2. The Catalan Kernel in the Algebra (L1
ω (R

+), ∗c)
For ω ≥ 0, a second convolution product is introduced in the Lebesgue space
L1

ω(R+), the cosine convolution product ∗c. Given f, g ∈ L1
ω(R+), we define

f ∗c g by

(f ∗c g)(t) :=
1
2

((f ∗ g)(t) + (f ◦ g)(t) + (g ◦ f)(t)) , t > 0,

where f ◦ g(t) :=
∫ ∞

t
f(s − t)g(s)ds for t > 0. This product is also commu-

tative, associative, with bounded approximate identity and

‖f ∗c g‖L1
ω(R+) ≤ ‖f‖L1

ω(R+) ‖g‖L1
ω(R+) , f, g ∈ L1

ω(R+),
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Figure 3. The function c ∗ c

see for example [13, Theorem 1.1]. Then the space (L1
ω(R+), ∗c) is a Banach

algebra whose Gelfand transform is the cosine transform given by

C(f)(z) =
∫ ∞

0

f(s) cosh(zs)ds, f ∈ L1
ω(R+), z ∈ Π+

ω ,

where Π+
ω : {z ∈ C : −ω ≤ �z ≤ ω; �z ≥ 0} = σ(L1

ω(R+),∗c). The cosine
transform is injective and verifies C(f ∗c g) = C(f)C(g) and

sup
z∈Π+

ω

|C(f)(z)| ≤ ‖f‖L1
ω(R+) , f ∈ L1

ω(R+),

see [11, Theorem 1.5].
In the next lemma we present two technical results about f∗c2 and f∗c3,

where f∗c2 := f ∗c f and f∗c3 := f∗c2 ∗c f .

Lemma 2.6. Let f ∈ L1
ω(R+) with ω ≥ 0. Then

(i) f∗c2 = 1
2 (f ∗ f) + (f ◦ f).

(ii) f∗c3 = 1
4 (f ∗ f ∗ f) + 3

4 (f ∗ f) ◦ f + 3
4f ◦ (f ∗ f) = 3

2 (f ∗ f) ∗c f

− 1
2 (f ∗ f ∗ f).

Proof. The first item is a direct consequence of the definition of cosine con-
volution product. To show (ii), note that

f∗c3 =
1
2
(f ∗ f) ∗c f + (f ◦ f) ∗c f =

1
4
(f ∗ f ∗ f) +

1
4
(f ∗ f) ◦ f

+
1
4
(f ◦ (f ∗ f)) +

1
2
((f ◦ f) ∗ f) +

1
2
(f ◦ f) ◦ f +

1
2
(f ◦ (f ◦ f)).

As f ◦ (f ◦ f) = (f ∗ f) ◦ f and (f ◦ f) ◦ f = (f ∗ f) ◦ f − f ◦ (f ∗ f), see for
example [12, Theorem 3.2 and 4.1], we conclude that

f∗c3 =
1
4
(f ∗ f ∗ f) +

3
4
(f ∗ f) ◦ f +

3
4
f ◦ (f ∗ f),

for f ∈ L1
ω(R+). �
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In the following lemma, we present some interesting algebraic properties
about the Catalan kernel and the cosine convolution product ∗c.

Lemma 2.7. Let c be the Catalan kernel given in Definition 2.1 and 0 ≤ ω ≤
1
4 . Then

(i) (c ◦ c)(t) = 1
π

∫ ∞
1
4

√
4λ−1

λ(
√

4λ+1+1)
e−λtdλ for t > 0 and (c ◦ c)′ �∈ L1

ω(R+).

(ii) (c ∗c c)′(t) = − 1
4π

∫ ∞
1
4

√
16λ2−1

λ e−λtdλ for t > 0 and (c ∗c c)′ �∈ L1
ω(R+).

(iii) (c ∗c c)(t) =
∫ ∞
0

1√
4πs

e− t2
16s c(s)ds, for t > 0.

(iv) (c∗c3)′ = − 1
2c − 1

4c ∗ c and (c∗c3)′ ∈ L1
ω(R+).

(v) (c∗c4)′ = − 1
4 (c ∗ c) − 1

8c ∗ c ∗ c − 1
2 (c∗c3) ◦ c + 1

2c ◦ (c∗c3) and (c∗c4)′ ∈
L1

ω(R+).
(vi) (c∗c4)′(0) = − 1

4 .

Proof. (i) Take t > 0, and

(c ◦ c)(t) =
1

4π2

∫ ∞

1
4

√
4λ − 1

λ
e−λt

(∫ ∞

1
4

√
4μ − 1

μ

1
λ + μ

dμ

)
dλ.

As an elemental exercise of calculus, we have that
∫ ∞

1
4

√
4μ − 1

μ

1
λ + μ

dμ =
π

λ

(√
4λ + 1 − 1

)
=

4π√
4λ + 1 + 1

, λ > 0,

and we conclude the result. As (c ∗c c)′(t) = 1
2 (c ∗ c)′ + (c ◦ c)′, we apply (i)

and Theorem 2.4(v) to have

(c ∗c c)′(t) = −1
2
c(t) − 1

4π

∫ ∞

1
4

√
4λ − 1

λ

(√
4λ + 1 − 1

)
e−λtdλ

= − 1
4π

∫ ∞

1
4

√
16λ2 − 1

λ
e−λtdλ,

and we finish the proof of item (ii).

Now we define F (t) :=
∫ ∞
0

1√
4πs

e− t2
16s c(s)ds, for t > 0. Then,

F ′(t) = −
∫ ∞

0

1√
πs

t

16s
e− t2

16s c(s)ds

= − t

32π
3
2

∫ ∞

1
4

√
4λ − 1

λ

∫ ∞

0

1
s

3
2
e− t2

16s e−λsdsdλ

= − t

32π
3
2

∫ ∞

1
4

√
4λ − 1

λ

4
√

π

t
e− t

√
λ

2 dλ

= − 1
4π

∫ ∞

1
4

√
16μ2 − 1

μ
e−tμdμ = (c ∗c c)′(t),

where we have applied [4, Formula 3.471, 15] and we have done the change
of variable μ = λ

2 . Since limt→∞ F (t) = limt→∞(c ∗c c)(t) = 0, we conclude
F = c ∗c c.
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To show item (iv), we apply Lemma 2.6 (ii)

(c∗c3)′(t) =
1
4
(c ∗ c ∗ c)′(t) +

3
4
((c ∗ c) ◦ c)′(t) +

3
4
(c ◦ (c ∗ c))′(t)

=
1
4
(c ∗ c)(0)c(t) +

1
4
((c ∗ c)′ ∗ c)(t)

− 3
4
(c ∗ c)(0)c(t) − 3

4
((c ∗ c)′ ◦ c)(t) +

3
4
(c ◦ (c ∗ c)′)(t)

= −1
2
c(t) − 1

4
(c ∗ c)(t),

and we use that c ∗ c(0) = 1 and (c ∗ c)′ = −c, see Theorem 2.4 (iv).
To show (v), note that (c∗c4)′ = (c∗c3 ∗c c)′ and

(c∗c3 ∗c c)′ =
1
2

(
(c∗c3)′ ∗ c − (c∗c3)′ ◦ c + c ◦ (c∗c3)′)

= −1
4
(c ∗ c) − 1

8
(c ∗ c ∗ c) − 1

2
(c∗c3)′ ◦ c +

1
2
(c ◦ (c∗c3)′),

where we have applied item (iv). Finally, the equality (c∗c4)′(0) = − 1
4 follows

from (v) and (c ∗ c)(0) = 1. �

Finally, we present the main result of this section.

Theorem 2.8. Let c be the Catalan kernel given in Definition 2.1 and 0 ≤
ω ≤ 1

4 .

(i) The cosine transform of c, C(c), is given by

C(c)(z) =
2√

1 + 4z +
√

1 − 4z
, −ω < �z < ω.

(ii) (C(c))2(z) = C(4z) for −ω < �z < ω.
(iii) The function C(c)(z) is a solution of the biquadratic equation 4z2Y 4 −

Y 2 + I = 0.
(iv) The Catalan kernel satisfies the algebraic-differential equation

4(c ∗c c ∗c c ∗c c)′′ = c ∗c c.

Proof. (i) Note that

C(c)(z) =
1
2

(L(c)(z) + L(c)(−z))) =
1
2

(√
1 + 4z − 1

2z
−

√
1 − 4z − 1

2z

)

=
2√

1 + 4z +
√

1 − 4z
,

for −ω < �z < ω.
(ii) Take −ω < �z < ω and then

(C(c))2(z) =
(

2√
1 + 4z +

√
1 − 4z

)2

=
2

1 +
√

1 − (4z)2
= C(4z).

(iii) As L(c)(z) satisfies the Eq. (2.5) and similarly L(c)(−z), we apply [14,
Theorem 2.1] to conclude that C(c) is a solution of 4z2Y 4 −Y 2 + I = 0.
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Figure 4. The boundary of spectrum of c in the algebra
(L1

ω(R+), ∗c)

(iv) As C(f ′′)(z) = −f ′(0) + z2C(f)(z), for f ∈ L1
ω(R+) with f ′′ ∈ L1

ω(R+),
we have, for −ω < �z < ω, that

C(4(c∗c4)′′)(z) = −4(c∗c4)′(0) + 4z2C((c∗c4))(z) = 1 + 4z2(C(c)(z))4

= C(c)(z))2 = C(c ∗c c)(z),

where we have applied Lemma 2.7 (v) and the map C is an algebra
homomorphism in (L1

ω(R+), ∗c). Since C is injective, we conclude that
4(c ∗c c ∗c c ∗c c)′′ = c ∗c c. �

Remark 2.9. Since σ(L1
ω(R+),∗c)(c) = C(c)(σ(L1

ω(R+), ∗c)) ∪ {0} ([8, Theorem
3.4.1(ii)]), we may identify the boundary of σ(L1

ω(R+),∗c)(c), i.e.,

∂
(
σ(L1

ω(R+),∗c)(c)
)

= C(c)(−ω + iR)

=
{

2√
1 − 4ω + 4ti +

√
1 + 4ω − 4ti

: t ∈ R

}
,

and plot ∂
(
σ(L1

ω(R+),∗c)(c)
)

in Fig. 4 for several values of ω.

3. The Catalan Operator for C0-Semigroups

In this section we solve the general quadratic Eq. (1.1) in the case that A
generates a C0-semigroup with growth bound less than 1

4 . To accomplish this
we apply the Hille–Phillips functional calculus to the Catalan kernel c.

A C0-semigroup (T (t))t≥0 is always exponentially bounded, i.e. there
exists constants M ≥ 1 and ω ∈ R such that, ‖T (t)‖ ≤ Meωt with t ≥ 0. The
infimum of these values ω is called the growth bound of (T (t))t≥0, see for
example [2, Definition I.5.6]. For ω = 0, it is said that (T (t))t≥0 is bounded.

As usual, the complex set where the operator λI−A is invertible in B(X)
is called the resolvent set of A, and it’s denoted by ρ(A). The complement
C\ρ(A) it’s the spectrum of A, and it’s denoted by σ(A). The set ρ(A) is
open in C, thus σ(A) is closed. If λ ∈ ρ(A) then the operator (λ − A)−1 is
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the resolvent of A at λ, and denoted by R(λ,A). Moreover, if λ ∈ C with
�λ > ω, then λ ∈ ρ(A) and,

R(λ,A)x =
∫ ∞

0

e−λtT (t)x dt, x ∈ X, (3.1)

where this integral has to be understood in the Bochner sense.
Now we consider the Hille–Phillips functional calculus Θ : (L1

ω(R+), ∗)→
B(X),

Θ(f)x =
∫ ∞

0

f(t)T (t)x dt, f ∈ L1
ω(R+), x ∈ X.

The application Θ is an algebra homomorphism, i.e., Θ(f ∗ g) = Θ(f)Θ(g),
‖Θ(f)‖ ≤ C‖f‖L1

ω(R+), and Θ(eλ) = R(λ,A) where eλ(t) := e−λt for �λ > ω,
see for example [6, Section 3.3].

As σ(A) ⊂ {z ∈ C : �z < ω}, a holomorphic function calculus (some-
times called Dunford–Schwartz calculus) is defined for holomorphic functions
in a neighborhood of σ(A). This functional calculus is defined by the integral
Cauchy-formula,

f(A)x :=
∫

Γ

f(z)(z − A)−1xdz, x ∈ X.

As usual, the path Γ rounds the spectrum set σ(A). Both homomorphism,
Θ(f) and f(A) coincides under common conditions Θ(f) = L(f)(−A), for
“enough good functions” see for example [6].

In this section, we consider a C0-semigroup (T (t))t≥0 with growth bound
less than 1

4 . We start to give a formal definition for the Catalan operator for
C0-semigroups.

Definition 3.1. Let (A,D(A)) be the generator of the C0-semigroup (T (t))t≥0

such that ‖T (t)‖ ≤ Meωt with M ≥ 1 and ω ≤ 1
4 for all t > 0. Then we

define the Catalan operator C(A) ∈ B(X) as,

C(A)x := Θ(c)x =
∫ ∞

0

c(t)T (t)x dt, x ∈ X,

where c is the Catalan kernel seen in Definition 2.1.

Recall, that if (T (t))t≤0 is a uniformly bounded C0-semigroup with gen-
erator (A,D(A)) we have the following definition for the fractional power of
the generator,

(−A)αx :=
1

Γ(−α)

∫ ∞

0

(T (t) − I)x
t1+α

dt, x ∈ D(A),

see [20, section IX.11]. In the next theorem, we prove the main properties of
the Catalan operator C(A) defined by C0-semigroups.

Theorem 3.2. Let A be the generator of the C0-semigroup (T (t))t≥0 as in
Definition 3.1.

(i) The Cataln operator C(A) is well-defined and

‖C(A)‖ ≤ M
1 − √

1 − 4ω

2ω
.
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(ii) The Catalan operator C(A) satisfies the quadratic Catalan Eq. (1.1),
i.e.,

AC(A)2 − C(A) + I = 0.

(iii) The Catalan operator C(A) has the following integral representation

C(A)x =
1
2π

∫ ∞

1
4

√
4λ − 1

λ
R(λ,A)x dλ, x ∈ X.

(iv) The following representation holds,

AC(A)x =
1
2
x −

√
1
4

− A(x), x ∈ D(A).

(v) The spectral mapping theorem holds for C(A), i.e.,

σ(C(A)) =

{
C(σ(A)), A ∈ B(X)
C(σ(A)) ∪ {0}, A /∈ B(X).

Proof. The proof of item (i) is a consequence of Theorem 2.2 (i). To show
(ii), note that AΘ(f) = −f(0) − Θ(f ′) for f, f ′ ∈ L1

ω(R+) and then,

AC(A)2 = AΘ(c ∗ c) = −(c ∗ c)(0) − Θ((c ∗ c)′) = −1 + Θ(c) = −1 + C(A),

where we have applied Theorem 2.4 (v).
To show the item (iii), we have that

1
2π

∫ ∞

1
4

√
4λ − 1

λ
R(λ,A)x dλ =

1
2π

∫ ∞

1
4

√
4λ − 1

λ

∫ ∞

0

e−λtT (t)xdt dλ

= C(A)x,

for x ∈ X.
(iv) Now take x ∈ D(A). Then we have that

AC(A)x =
1
2π

∫ ∞

1
4

√
4λ − 1

λ
AR(λ,A)x dλ

=
1
2π

∫ ∞

1
4

√
4λ − 1

λ
(λR(λ,A) − I)x dλ

=
1
2π

∫ ∞

1
4

√
4λ − 1

(∫ ∞

0

e−λt(T (t) − I)x dt

)
dλ

=
1

2
√

π

∫ ∞

0

(T (t) − I)x
t
3
2

e− t
4 dt.

Therefore,

AC(A)x =
1

2
√

π

∫ ∞

0

(T (t) − I)x
t
3
2

e− t
4 dt

=
1

2
√

π

(∫ ∞

0

(e− t
4 T (t) − I)x

t
3
2

dt −
∫ ∞

0

(e− 1
4 t − I)x
t
3
2

dt

)

=
1
2
x −

√
1
4

− A(x)
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Finally, to show item (v), we write Aω = A − ω, and the function gω defined
by

gω(z) =

√
1 + 4(z − ω) − 1

2(z − ω)
= L(eωtc(t))(z), �z > ω − 1

4
.

Note that C(A) = gω(−Aω) and the function

gω ∈ H∞(C+) := {f : C+ → C | f is holomorphic and bounded}.

Observe that we can extend holomorphically the function gω to the set
C\(−∞, ω− 1

4 ). In addition, note that gω(0) = 1−√
1−4ω

2ω which is well-defined
for ω ≤ 1

4 and then gω has finite polynomial limit at 0. Also, lim|z|→∞
gω(z) = 0 with z ∈ C\(−∞, ω − 1

4 ) so gω has polynomial limit at ∞. Using
[6, Lemma 2.2.3] we have that the function gω ∈ Eϕ0 , the extended Dunford–
Riesz class, for ϕ0 ∈ [π

2 , π). Note that −Aω is a sectorial operator of angle π
2

because (e−ωtT (t))t≥0 is a uniformly bounded C0-semigroup. Therefore, we
can apply the spectral mapping theorem [6, Theorem 2.7.8] to obtain,

σ(C(A))=σ((gω(−Aω))=

{
gω(σ(−Aω))=C(σ(A)), A∈B(X),
gω(σ(−Aω))∪{0}=C(σ(A))∪{0}, A /∈B(X),

and we conclude the proof. �
In the case that A ∈ B(X) with 4A of power-bounded, we check that

the definition of C(A) given in Definition 3.1 coincides with the power series
presented in [14, Section 5].

Corollary 3.3. Let A∈B(X) with 4A of power-bounded, i.e., supn≥0 ‖4nAn‖<
∞. Then

C(A) =
∑
n≥0

CnAn.

Proof. Note that A generates a C0-semigroup, T (t) =: etA and

‖T (t)‖ =

∥∥∥∥∥∥
∑
n≥0

tnAn

n!

∥∥∥∥∥∥ ≤ sup
n≥0

‖4nAn‖
∑
n≥0

tn

4nn!
= sup

n≥0
‖4nAn‖ e

t
4 ,

for t ≥ 0. Then

C(A)x=
∫ ∞

0

c(t)etA(x) dt=
∑
n≥0

An(x)
∫ ∞

0

tn

n!
c(t)dt=

∑
n≥0

CnAn(x), x∈X,

where we have applied formula (1.4). �
Remark 3.4. An alternative approach to Catalan operator C(A) may be fol-
lowed using fractional powers of sectorial operators. As it is commented in
the proof of Theorem 3.2 (v), −(A − ω) is a sectorial operator of angle π/2.
Then B := I − 4A is also a sectorial operator of angle (at most) π/2, the
fractional power

√
B is sectorial of angle π/4, and its square is B. Using stan-

dard properties of fractional powers (see, for example [10]) one may establish
that

C(A) = 2(I +
√

B)−1.
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However this approach hides the rich algebraic properties of function c which
are commented in Sect. 2.

Even in the case that dim(X) = 2, the quadratic equation (1.1) may
have one, two, infinite or no solutions, see [14, Section 6.1]. In the case that
(AC(A))−1 ∈ B(X), then this operator provides a second solution of (1.1).
Note that

(AC(A))−1 =

(
1
2

+

√
1
4

− A

)
A−1

which might give a way to apply the natural functional calculus treated in
[6].

In the case that A and −A generates C0-semigroups, (T+(t))t≥0 and
(T−(t))t≥0 it is said that A generates a C0-group (T (t))t∈R given by

T (t) =

{
T+(t), for t ≥ 0,

T−(t), for t ≤ 0.

Note that an algebra homomorphism Φ, which extends the map Θ, is defined
by

Φ(F )x =
∫ ∞

−∞
F (t)T (t)x dt, x ∈ X, F ∈ L1

ω(R),

and Φ(F �G) = Φ(F )Φ(G), where F �G(t) =
∫ ∞

−∞ F (t− s)G(s)ds for F,G ∈
L1

ω(R).
When A generates a bounded C0-group, (T (t))t∈R, then A2 generates a

bounded C0-semigroup (TA2(t))t>0 given by

TA2(t)x :=
1√
4πt

∫ ∞

−∞
e− s2

4t T (s)x ds, t ≥ 0, (3.2)

see [1, Corollary 3.7.15].

Theorem 3.5. Let A be the generator of a bounded C0-group, (T (t))t∈R. Then

C(4A2) =
(

C(A) + C(−A)
2

)2

.

Proof. As the operator A2 generates a C0-semigroup, (TA2(t))t≥0 given by
(3.2), then 4A2 also generates a bounded C0-semigroup, (T4A2(t))t≥0 and
T4A2(t) = TA2(4t) for t ≥ 0. By Definition 3.1, we have

C(4A2)x

=
∫ ∞

0

c(t)TA2(4t)x dt =
∫ ∞

0

c(t)
1√
16πt

∫ ∞

−∞
e− s2

16t T (s)x ds dt

=
1
2

∫ ∞

−∞
T (s)x

∫ ∞

0

1√
4πt

e− s2
16t c(t) dt ds =

1
2

∫ ∞

−∞
(c ∗c c)(|s|)T (s)x ds

=
1
4

∫ ∞

−∞
(c̃ � c̃)(s)T (s)x ds =

1
4
(Φ(c̃))2x =

(
C(A) + C(−A)

2

)2

x,

where we have applied Lemma 2.7 (iii) and we have defined c̃(s) := c(|s|) for
s ∈ R. �
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4. The Catalan Operator for Cosine Functions

In this section we consider the general quartic Eq. (1.3) in the case that A
generates a cosine operator with growth bound less than 1

4 . We follow similar
(and more complicated) ideas than in the case of C0-semigroups.

A cosine function (Cos(t))t≥0 is always exponentially bounded, i.e. there
exists constants M ≥ 1 and ω ≥ 0 such that, ‖Cos(t)‖ ≤ Meωt with t ≥ 0.
Moreover, if λ ∈ C with �λ > ω, then λ2 ∈ ρ(A) and,

λR(λ2, A)x =
∫ ∞

0

e−λt Cos(t)x dt, x ∈ X, (4.1)

where this integral has to be understood in the Bochner sense, see [1, Section
3.14]. The spectrum σ(A) of A is contained in the parabola {ξ + iη : η ∈
R, ξ ≤ ω2 − η2/4ω2}, see for example [1, Proposition 3.14.18].

Now we consider the vector-valued cosine transform Θ : (L1
ω(R+), ∗c) →

B(X),

Ψ(f)x =
∫ ∞

0

f(t)Cos(t)x dt, f ∈ L1
ω(R+), x ∈ X.

The application Ψ is an algebra homomorphism, i.e., Ψ(f ∗c g) = Ψ(f)Ψ(g),
‖Ψ(f)‖ ≤ C‖f‖L1

ω(R+) for f ∈ L1
ω(R+), and Ψ(eλ) = λR(λ2, A) for �λ > ω,

see [13].
As σ(A) is contained in the parabola {ξ + iη : η ∈ R, ξ ≤ ω2 − η2/4ω2},

a (holomorphic) Dunford-Schwartz calculus is defined for holomorphic func-
tions in a neighborhood of σ(A). This functional calculus is also defined by
the integral Cauchy-formula,

g(A)x :=
∫

Γ

g(z)(z − A)−1x dz, x ∈ X,

see [5, Section 3.2]. The path Γ rounds the spectrum set σ(A). Both homo-
morphism, Ψ(f) and g(A) coincides when g(z) := C(f)(

√
z) for z ∈ Π+

ω , see
[5, Theorem 4.3].

We give formal definition for the Catalan operator for generators of
cosine functions.

Definition 4.1. Let (A,D(A)) be the generator of a cosine function (Cos(t))t≥0

such that ‖Cos(t)‖ ≤ Meωt with M ≥ 1 and ω ≤ 1
4 for all t > 0. Then we

define the Catalan operator C(A) ∈ B(X) as,

C(A)x := Ψ(c)x =
∫ ∞

0

c(t)Cos(t)x dt, x ∈ X,

where c is the Catalan kernel given in Definition 2.1.

Theorem 4.2. Let A be the generator of a cosine function (Cos(t))t≥0 as in
Definition 4.1.

(i) The Catalan operator C(A) is well-defined and

‖C(A)‖ ≤ M
1 − √

1 − 4ω

2ω
.
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(ii) The Catalan operator C(A) satisfies the biquadratic Catalan Eq. 1.1,
i.e.,

4AC(A)4 − C(A)2 + I = 0.

(iii) The Catalan operator C(A) has the following integral representation

C(A)x =
1
2π

∫ ∞

1
4

√
4λ − 1R(λ2, A)x dλ, x ∈ X.

Proof. The proof of item (i) is a consequence of Theorem 2.2 (i). To show
(ii), note that AΨ(f) = f ′(0) + Ψ(f ′′) for f, f ′′ ∈ L1

ω(R+) and then

4AC(A)4 = 4AΨ(c∗c4) = 4(c∗c4)′(0) + 4Ψ((c∗c4)′′) = −1 + Ψ(c ∗c c)
= −1 + C(A)2,

where we have applied Lemma 2.7 (vi) and Theorem 2.8 (iv).
Finally, to show the item (iii), we have that

1
2π

∫ ∞

1
4

√
4λ − 1R(λ2, A)x dλ =

1
2π

∫ ∞

1
4

√
4λ − 1

λ

∫ ∞

0

e−λt Cos(t)xdt dλ

= C(A)x,

for x ∈ X. �

Remark 4.3. In the case that A ∈ B(X) then Cos(t) =
∑

n≥0
t2n

(2n)!A
n. If 4A

is of power-bounded, then

C(A)x =
∫ ∞

0

c(t)Cos(t)x dt =
∑
n≥0

An(x)
∫ ∞

0

t2n

(2n)!
c(t)dt

=
∑
n≥0

C2nAn(x), x ∈ X,

where we have applied formula (1.4).
Now we suppose that A generates a C0-group (T (t))t∈R such that

‖T (t)‖ ≤ Meω|t| for t ∈ R and M ≥ 1 and ω ≥ 0. Then A2 generates a
cosine function (C(t))t≥0 where

Cos(t) :=
T (t) + T (−t)

2
, t ≥ 0,

[1, Example 3.14.15]. If ω ≤ 1
4 , we obtain that

C(A2) =
C(A) + C(−A)

2
, (4.2)

where the Catalan generating functions C(A2), C(A) and C(−A) are defined
by the uni-parametric families (Cos(t))t≥0, (T (t))t≥0 and (T (−t))t≥0, respec-
tively.

A converse result holds in UMD-spaces for bounded cosine functions.
Let A a bounded cosine function on a UMD-space. Then i(−A)

1
2 generates

a bounded C0-group (T 1
2
(t))t∈R [7, Theorem 1.1] and

C(A) =
C(i(−A)

1
2 ) + C(−i(−A)

1
2 )

2
.
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Suppose that A is the generator of a cosine function (Cos(t))t≥0 such
that ‖Cos(t)‖ ≤ Meωt for t ≥ 0, M ≥ 1 and ω > 0. Then A is the generator
of a C0-semigroup (T (t))t>0 where

T (t)x =
1√
πt

∫ ∞

0

e− s2
4t Cos(s)x ds, x ∈ X, (4.3)

with ‖T (t)‖ ≤ Meω2t for t > 0, see [1, Theorem 3.14.17].

Theorem 4.4. Let A be the generator of a cosine function (Cos(t))t≥0 as in
Definition 4.1.

(i) C(4A) = (C(A))2 where C(4A) is given in Definition 3.1 and C(A) in
Definition 4.1.

(ii)

A(C(A))2x =
1
2

(
1
4
x −

√
1
16

− A(x)

)
, x ∈ D(A).

(iii) The spectral mapping theorem holds for C(A), i.e.,

σ(C(A)) =

{
C(c)(

√
σ(A)), A ∈ B(X)

C(c)(
√

σ(A) ∪ {0}, A /∈ B(X).

Proof. (i) As the operator A generates a C0-semigroup, (T (t))t>0 given by
(4.3), then 4A also generates a C0-semigroup, (T4A(t))t≥0 and T4A(t) = T (4t)
with ‖T4A(t)‖ ≤ Me4ω2t, for t ≥ 0. By Definition 3.1, we have

C(4A)x =
∫ ∞

0

c(t)T (4t)x dt =
∫ ∞

0

c(t)
1√
4πt

∫ ∞

0

e− s2
16t Cos(s)x ds dt

=
∫ ∞

0

Cos(s)x
∫ ∞

0

1√
4πt

e− s2
16t c(t) dt ds

=
∫ ∞

0

(c ∗c c)(s)Cos(s)x ds

= (C(A))2x,

where we have applied Lemma 2.7 (iii).
We apply Theorem 3.2 (iv) to get that

4A(C(A))2x = 4AC(4A) =
1
2
x − 2

√
1
16

− 4A(x), x ∈ D(A).

Finally, we suppose that A ∈ B(X). As C(4A) and C(A) are bounded
operators, σ(C(A)) =

√
σ(C(4A)). We apply Theorem 3.2 (v) to get

σ(C(A)) = {
√

C(z) | z ∈ σ(4A)} =
{

C(c)
(√

z

4

)
| z ∈ σ(4A)

}

= {C(c)(
√

z) ; z ∈ σ(A)}.

Similarly, the equality holds for A �∈ B(X). �
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5. Examples, Applications and Conjectures

In this section we illustrate our results with different examples of operators
A and the correspondent solution of the quadratic Catalan Eq. (1.1). Finally,
we present some conjectures and ideas to continue this research in future
projects in Sect. 5.2.

5.1. Examples and Applications

Here we discuss the Catalan generating functions for generators of transla-
tion, multiplication and composition semigroups on the space Lp(R) and in
�p(Z) for A a finite difference operator.

Catalan operator for generators of translation semigroups Consider in the
Banach space Lp(R+) for 1 ≤ p < ∞ the left-translation semigroup

Tl(t)f(s) := f(s + t), t, s ∈ R
+,

which defines a strongly continuous C0-semigroup uniformly bounded. As
seen in [2, Section II.2.10] the generator of the left translation semigroup
(Tl(t))t≥0 on Lp(R+) is given by

Af := f ′,

with domain D(A) = {f ∈ Lp(R+) : f absolutely continuous and f ′ ∈
Lp(R+)}. Then we can define the Catalan operator for A as follows,

C(A)f(s)=
∫ ∞

0

Tl(t)f(s)c(t) dt=
∫ ∞

s

f(s)c(u − s) ds=(c ◦ f)(s), s ∈ R
+.

In Lp(R) for 1 ≤ p < ∞, the right-translation semigroup

Tr(t)f(s) := f(s − t), s, t ∈ R,

defines a strongly continuous C0-group uniformly bounded whose generator
is given by

Af := −f ′,

with domain D(A) = {f ∈ Lp(R) : f absolutely continuous and f ′ ∈ Lp(R)}.
Then we can define the Catalan operator for A as follows,

C(A)f(s) =
∫ ∞

0

Tr(t)f(s)c(t) dt =
∫ ∞

0

f(s − t)c(t) dt = (c � f)(s), s ∈ R.

Note that A2f = f ′′ defines a bounded cosine function and

C(A2)f(s) =
1
2
(c̃ � f)(s), s ∈ R,

where we have used formula (4.2) and c̃(s) := c(|s|) for s ∈ R.

Catalan operator for generators of multiplication semigroups Consider in the
Banach space Lp(R) for 1 ≤ p < ∞, the multiplication semigroup

Tm(t)f(s) := etm(s)f(s), s ∈ R, t ∈ R
+,

and m ∈ L∞(R) with ‖m‖∞ ≤ 1/4. Then (Tm(t))t≥0 is a strongly continuous
C0-semigroup with growth bound ‖m‖∞. The generator of the multiplica-
tion semigroup (Tm(t))t≥0 on Lp(R) is given by the multiplication operator



238 Page 22 of 27 A. Mahillo and P. J. Miana MJOM

Mmf := mf, with domain D(Mm) = {f ∈ Lp(R) : mf ∈ Lp(R)}, see [2,
Section II.2.9]. Then we can define the Catalan operator for Mm, C(Mm),
given by

C(Mm)f(s) =

∫ ∞

0

etm(s)f(s)c(t) dt = L(c)(−m(s))f(s) = C(m(s))f(s), s ∈ R
+,

where we have used Theorem 2.2 (iii) in the last equality and C(m(s))f(s)
denotes the usual product of C(m(s)) and f(s). Therefore, the Catalan op-
erator C(Mm) is a multiplication operator.

Catalan operator for generators of composition semigroups For this subsection
we consider the following family of operators

Tp(t)f(s) := e− t
p f(e−ts), s ∈ R

+, t ∈ R,

in the Banach space Lp(R+) for 1 ≤ p < ∞. This family has been studied
recently in [9] due to its connection with the generalized Cesàro operator. In
particular, we have that the family of operators (Tp(t))t∈R is a C0-group of
isometries on Lp(R+) whose infinitesimal generator Λ is given by

Λf(s) := −sf ′(s) − 1
p
f(s), s ∈ R

+,

with domain D(Λ) = {f ∈ Lp(R+) : f ′ ∈ Lp(R+)}. Thus, we can define the
Catalan operator for Λ,

C(Λ)f(s) =

∫ ∞

0

e
− t

p f(e−ts)c(t) dt =
1

s

∫ s

0

(u

s

) 1
p

−1

c
(
log

( s

u

))
f(u) du, s ∈ R

+.

To simplify this expression we introduce the incomplete Gamma function
Γ(z, α) :=

∫ ∞
α

tz−1e−t dt for |arg(α)| < π. In particular, we are interested in
the following recursion formula,

Γ(z + 1, α) = zΓ(z, α) + αze−α,

and its relation with the complementary error function,

erfc(z) =
1√
π

Γ
(

1
2
, z2

)
, (5.1)

see [18, pages 10 and 11].

Let β(u, s) = log
((

u
s

) 1
4
)
. From Theorem 2.2 (iv) and (5.1) we have

that,

c
(
log(

s

u
)
)

=
(u

s

) 1
4 1√

2π
√−β(u, s)

− 1
2
√

π
Γ

(
1
2
,−β(u, s)

)
,

and using the recursion formula for the incomplete gamma function, we get,

Γ
(

1
2
,−β(u, s)

)
= −1

2
Γ

(
−1

2
,−β(u, s)

)
+

1√−β(u, s)

(u

s

) 1
4

.

Thus,

c
(
log

s

u

)
=

1
4
√

π
Γ

(
−1

2
,− log

((u

s

) 1
4
))

.
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Finally, we can express the Catalan operator as,

C(Λ)f(s) =
1

4
√

πs

∫ s

0

(u

s

) 1
p −1

Γ
(

−1
2
,− log

((u

s

) 1
4
))

f(u) du, s ∈ R
+.

Catalan operators on the sequence space Consider the Banach space of com-
plex sequences �p(Z), formed by sequences of the form a = (an)n∈Z ⊂ C

where the following norm,

‖a‖p :=

(∑
n∈Z

|an|p
) 1

p

, 1 ≤ p < ∞,

is finite. In this space the usual product to consider is the discrete convolution
∗ given by,

(a ∗ b)(n) :=
∑
j∈Z

a(j)b(n − j), a, b ∈ �p(Z).

Consider the element a = δ1 − δ0 where δj(i) = 1 if j = i and 0 in other
case. The element −a defines the classical backward difference operator

∇(f)(n) := f(n) − f(n − 1) = −a ∗ f(n), f ∈ �p(Z), n ∈ Z.

The norm of the operator is ‖∇‖ = 2, and we have that −∇ generates the
following C0-group,

T (t)f(n) = (eat ∗ f)(n), f ∈ �p(Z), t ∈ R, n ∈ Z,

with eat(n) := e−t tn

n! if n ≥ 0 and 0 in other case. In addition, we have that
‖T (t)‖ = 1 for t > 0, see [3, Theorem 3.3]. Therefore, we can define the
Catalan operator as in Definition 3.1 as,

C(−∇)f(n) =

∫ ∞

0

(eat ∗ f)(n)c(t) dt =
∞∑

j=0

(∫ ∞

0

e−t tj

j!
c(t) dt

)
f(n − j), n ∈ Z.

Now, we calculate the value of the integral
∫ ∞
0

e−t tj

j! c(t) dt for j ∈ Z
+ ∪ {0}.

By Definition 2.1,
∫ ∞

0

e−t t
j

j!
c(t) dt =

1
2π

∫ ∞

1
4

√
4λ − 1

λ

∫ ∞

0

e−(λ+1)t t
j

j!
dt dλ

=
1
2π

∫ ∞

1
4

√
4λ − 1

λ(λ + 1)j+1
dλ

=
4j+1

2π

∫ ∞

0

√
u

(u + 1)(u + 5)j+1
du =

1√
5

∞∑
k=j

Ck

5k
,

where we have applied [14, Theorem 2.4] for z = 5 and Ck is the kth Catalan
number. Finally, we conclude

C(−∇)f(n) =
∞∑

j=0

⎛
⎝ 1√

5

∞∑
k=j

Ck

5k

⎞
⎠ f(n − j), n ∈ Z.
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The associated cosine function, generated by a, is given by

Cos(z)(n) =
√

π

n!

(z

2

)n+ 1
2

Jn− 1
2
(z)χN0(n), n ∈ N0,

where Jn− 1
2
(z) is the Bessel function and z ∈ C ([3, Theorem 3.3]). We

calculate C(a) using Definition 4.1

C(a)(n) =

∫ ∞

0

c(t) Cos(t)(n)dt =
1

2π

√
π

n!

∫ ∞

1
4

4λ − 1

λ

∫ ∞

0

(
t

2

)n+ 1
2

Jn− 1
2
(t)dtdλ

=
1

2π

∫ ∞

1
4

4λ − 1

λ(λ2 + 1)n+1
dλ,

where we have applied [4, Formula 6.623] for n ≥ 0 and equal to 0 for n < 0.
A similar result holds for the forward difference operator defined by

Δf(n) := f(n + 1) − f(n), see [3, Theorem 3.2].

5.2. Conjectures and Future Research

In this section we present some conjectures and ideas to continue the research
which we have developed in this article.

α-times integrated semigroups and cosine functions A generalization of C0-
semigroups are called α-times integrated semigroups, (Tα(t))t≥0 for α > 0
([1, Section 3.2]). Similarly, a generator (A,D(A)) for α-times integrated
semigroups is defined and

R(λ,A)x = λα

∫ ∞

0

e−αtTα(t)xdt, x ∈ X,λ > ω.

A Catalan generating function may be defined by

C(A)x :=
∫ ∞

0

Wαc(t)Tα(t)xdt, x ∈ X,

where Wαc(t) = 1
2π

∫ ∞
1
4

√
4λ − 1λα−1e−λtdλ, for t > 0. Here we denote by

Wαc the Weyl fractional derivative of Catalan kernel c. Algebraic properties
and the Hille–Phillips functional calculus, similar to Θ, for α-times integrated
semigroups may allow to check that C(A) is solution of the quadratic Eq. (1.1)
and extend other interesting results for these operators.

α-Times integrated cosine functions, (Cα(t))t≥0, extend the notion of
cosine functions. A generator (A,D(A)) is defined and, in this case,

R(λ2, A)x = λα−1

∫ ∞

0

e−αtCα(t)xdt, x ∈ X,λ > ω.

A Catalan generating function may be defined by

C(A)x :=
∫ ∞

0

Wαc(t)Cα(t)xdt, x ∈ X.

Using again algebraic properties and a homomorphism similar to Ψ (see [11])
for α-times integrated cosine might allow to check that C(A) is solution of
the biquadratic Eq. (1.3).
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Resolvent estimates Suppose that (A,D(A)) is a closed operator on a Banach
space X such that

(
1
4 ,∞) ⊂ ρ(A) and

‖R(λ,A)‖ ≤ C

(4λ − 1)ε
, λ >

1
4
,

for ε > 1
2 . Then the following integral

1
2π

∫ ∞

1
4

√
4λ − 1

λ
R(λ,A)x dλ, x ∈ X

converges and defines a bounded operator which we may call the Catalan
operator of A, C(A), compare with Theorem 3.2 (iii).

Catalan generating functions for fractional powers Suppose that (T (t))t≥0

is a uniformly bounded C0-semigroup with generator (A,D(A)). Then the
fractional power −(−A)α for 0 < α < 1 also defines a uniformly bounded
C0-semigroup see [20, section IX.11]. It is natural to ask about the connection
between C(A) and C(−(−A)α) given by Definition 3.1.

New identities for Catalan numbers In this paper we have presented inter-
esting formulae for the Catalan kernel c, see for example Lemma 2.7 and
Theorem 2.8 (iv). The similar nature of Catalan kernel c and the Catalan
numbers (Cn)n≥0 allows to conjecture that new formulae for Catalan num-
bers hold. Some of them may involve a discrete cosine convolution product.
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[3] González-Camus, J., Lizama, C., Miana, P.J.: Fundamental solutions for
semidiscrete evolution equations via Banach algebras. Adv. Differ. Equ. Pa-
per No. 35, 32 (2021)

[4] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 8th
edn. Elsevier/Academic Press, Amsterdam (2015)

[5] Haase, M.: The functional calculus approach to operator cosine functions. In:
Davidson, K.R., Borichev, A. (eds.) Recent Trends in Analysis: Proceedings of
the Conference in Honor of Nikolai Nikolski, pp. 123–147. American Mathe-
matical Society, Providence (2013)

[6] Haase, M.: The Functional Calculus for Sectorial Operators. Operator Theory:
Advances and Applications, vol. 169. Birkhäuser, Basel (2006)
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