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Abstract. We introduce a sequence of random linear operators arising
from piecewise linear interpolation at a set of random nodes on the unit
interval. We show that such operators uniformly converge in probability
to the target function, providing at the same time rates of convergence.
Analogous results are shown for their deterministic counterparts, de-
rived by taking expectations of the aforementioned random operators.
Special attention is paid to the case in which the random nodes are the
uniform order statistics, where an explicit form for their associated de-
terministic operators is provided. This allows us to compare the speed
of convergence of the aforementioned operators with that of the random
and deterministic Bernstein polynomials.
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1. Introduction

Let N be the set of positive integers and N0 = N ∪ {0}. Denote by 1A the
indicator function of the set A, and by ei, i ∈ N0, the monomial function
ei(x) = xi. As usual, C[0, 1] stands for the space of all real continuous func-
tions defined on [0, 1] endowed with the supremum norm ‖ · ‖∞, and Cm[0, 1]
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denotes the subspace of all m-times continuously differentiable functions.
Throughout this paper, we assume that n ∈ N and f ∈ C[0, 1].

Let x ∈ [0, 1]. The classical Bernstein polynomials, defined by

Bn(f ;x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1 − x)n−k,

are the paradigmatic example of positive linear operators. Rates of uniform
convergence for these operators are well known. In fact, let ωϕ

2 (f ;h) be the
Ditzian–Totik modulus of smoothness of f with weight function ϕ(x) =√

x(1 − x), that is,

ωϕ
2 (f ;h) = sup

x ± ϕ(x)ε ∈ [0, 1]
0 ≤ ε ≤ h

|f(x − ϕ(x)ε) − 2f(x) + f(x + ϕ(x)ε)|,

for h ≥ 0. It turns out (c.f. Ditzian and Ivanov [7] and Totik [15]) that

K1ω
ϕ
2 (f ; 1/

√
n) ≤ ‖Bn(f ;x) − f(x)‖∞ ≤ K2ω

ϕ
2 (f ; 1/

√
n), (1.1)

for some absolute constants K1 and K2. Păltănea [12, Corollary 4.1.10] gave
K2 = 2.5 (see also Bustamante [5]).

On the other hand, the Bernstein polynomials can be written in prob-
abilistic terms as follows (see, for instance, Adell and de la Cal [3] and Adell
and Cárdenas–Morales [1]). Let (Uk)1≤k≤n be a finite sequence of indepen-
dent identically distributed random variables having the uniform distribution
on [0, 1]. Let

0 = Un:0 ≤ Un:1 ≤ · · · ≤ Un:n ≤ Un:n+1 = 1 (1.2)

be the order statistics obtained by arranging (Uk)1≤k≤n in increasing order
of magnitude. Consider the random variable

Sn(x) =
n∑

k=1

1[0,x](Uk) =
n∑

k=1

1[0,x](Un:k). (1.3)

Since Sn(x) has the binomial law with parameters n and x, we have

Bn(f ;x) = Ef

(
Sn(x)

n

)
, (1.4)

where E stands for mathematical expectation.
Let x ∈ [0, 1). By (1.2) and the second equality in (1.3), we have the

identity of events {Sn(x) = k} = {Un:k ≤ x < Un:k+1}, k = 0, 1, . . . , n. Thus,
we can write

f

(
Sn(x)

n

)
=

n∑

k=0

f

(
k

n

)
1{Sn(x)=k} =

n∑

k=0

f

(
k

n

)
1[Un:k,Un:k+1)(x),

whereas

f

(
Sn(1)

n

)
= f(1).
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Denote by Un = (Un:k)0≤k≤n+1. Accordingly, we define for x ∈ [0, 1)

Bn(f,Un;x) := f

(
Sn(x)

n

)
=

n∑

k=0

f

(
k

n

)
1[Un:k,Un:k+1)(x), (1.5)

together with Bn(f,Un; 1) := f(1). From (1.4) and (1.5), we see that

Bn(f ;x) = EBn(f,Un;x), 0 ≤ x ≤ 1.

In other words, formula (1.5) defines a random positive linear operator whose
expectation is the classical Bernstein polynomial of f .

From (1.3), we see that Sn(x) ≤ Sn(y), 0 ≤ x ≤ y ≤ 1, thus imply-
ing that the random operator Bn(f,Un;x) preserves monotone functions.
However, this operator produces, in general, discontinuous functions. This
notwithstanding, Bn(f,Un;x) − f(x) uniformly converges in probability to
0. To be more precise, recall that a sequence of random variables (Xn)n≥1

converges in probability to 0, denoted by Xn
(P)−→ 0, if

lim
n→∞ P (|Xn| > ε) = 0, ε > 0.

It will be shown in Theorem 5.5 at the end of this paper that

‖Bn(f,Un;x) − f(x)‖∞
(P)−→ 0,

providing at the same time rates of convergence.
Having in mind the previous considerations, suppose we are given a

random vector Vn = (Vk)0≤k≤n+1 such that

0 = V0 ≤ V1 ≤ · · · ≤ Vn ≤ Vn+1 = 1. (1.6)

We define the following random linear operator, arising from piecewise linear
interpolation at the set of the random nodes defined in (1.6), that is,

Ln(f,Vn;x) =
n∑

k=0

(
f(Vk) +

f(Vk+1) − f(Vk)
Vk+1 − Vk

(x − Vk)
)

1[Vk,Vk+1)(x),

(1.7)
for 0 ≤ x < 1, together with Ln(f,Vn; 1) = f(1).

As pointed out by the referee, “the algorithm in (1.7) does not have
a strong numerical stability from the point of view of a computer program-
mer. From time to time, any random number generator can produce two
consecutive numbers whose difference is so small that many computers treat
it as zero due to computers limited machine precision . . . However, random
piecewise linear interpolating is theoretically appealing”. In fact, we describe
below the approximation properties of the random operator Ln(f,Vn;x) and
the deterministic operator Ln(f ;x) defined in (1.8), and compare them with
those of Bernstein polynomials.

Taking expectations in (1.7), we obtain the (deterministic) linear oper-
ator

Ln(f ;x) = ELn(f,Vn;x)

=
n∑

k=0

E

(
f(Vk) +

f(Vk+1) − f(Vk)
Vk+1 − Vk

(x − Vk)
)

1[Vk,Vk+1)(x), (1.8)
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for 0 ≤ x < 1, whereas Ln(f ; 1) = f(1). Observe that

Ln(f,Vn; 0) = Ln(f ; 0) = f(0). (1.9)

By construction, both operators are positive and preserve affine functions,
since

Ln(ei,Vn;x) = Ln(ei;x) = ei(x), x ∈ [0, 1], i = 0, 1. (1.10)

It is also clear that both operators preserve convex functions. Apart from
these shape preserving properties, the most interesting fact is that both op-
erators approximate the target function f(x) at a faster rate of convergence
than the standard positive linear operators do.

The interest of replacing deterministic nodes by random ones comes
from the fact that, in applications, a variety of circumstances may cause that
the data are contaminated by random errors. This is one of the main reasons
for the introduction of the so-called stochastic Bernstein polynomials by Wu
et al. [16], further investigated in recent papers (see [2,13,17]).

We point out two main differences between the operators defined in
(1.7) and (1.8). In the first place, the construction of the random operator
Ln(f,Vn;x) is very simple in comparison with that of Ln(f ;x). In this regard,
see Proposition 4.1 in Sect. 4 for the specific form of Ln(f ;x) in the case of
uniform order statistics. As a counterpart, Ln(f ;x) approximates f(x) at
slightly better rates of convergence than Ln(f,Vn;x) does. As an illustration
of this fact, we have from Corollaries 5.1 and 5.2 in Sect. 5 the following
approximation results in the case of uniform order statistics

‖Ln(f ;x) − f(x)‖∞ ≤ 5
2
ωϕ
2

(
f ;

1√
n + 1

)
, (1.11)

and

P

(
‖Ln(f,Vn;x) − f(x)‖∞ >

5
2
ωϕ
2 (f ; εn)

)
≤ 1

(n + 1)τn−1
, (1.12)

for an appropriate τn > 1, where

εn =

√
τn log(n + 1)

n
. (1.13)

Inequality (1.11) tells us that, with probability one, Ln(f ;x) is in the confi-
dence band f(x) ± 5/2ωϕ

2 (f ; (n + 1)−1/2), x ∈ [0, 1], whereas, by (1.12), the
random operator Ln(f,Vn;x) is within the confidence band f(x) ± 5/2ωϕ

2

(f ; εn), x ∈ [0, 1], with asymptotically high probability. The confidence band
in this second case is larger since εn > (n + 1)−1/2, as follows from (1.13).

In view of (1.1) and (1.11), it seems that Ln(f ;x) behaves like the
classical Bernstein polynomials. However, it will be shown in Corollary 5.1
in Sect. 5 that

|Ln(f ;x) − f(x)| ≤ 5
2
ωϕ
2

(
f ;

1
(n + 1)ϕ(x)

)
, x ∈ (0, 1), n ≥ 3

showing in this way that the local behavior of Ln(f ;x) is much better than
that of Bn(f ;x). In addition, when acting on smooth functions, Ln(f ;x)
produces better rates of convergence than Bn(f ;x) (see Corollary 5.3 in Sect.
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5). With respect to the random operators defined in (1.5) and (1.7), the rate
of uniform convergence in probability of Ln(f,Vn;x) is also faster than that
of Bn(f,Un;x), as seen in Corollary 5.2 and Theorem 5.5.

We finally mention that the notion of linear interpolation in definition
(1.7) could be replaced by polynomial interpolation or by a general random
linear operator. In our opinion, the approximation properties of the resulting
operators would be an interesting topic of research.

This paper is organized as follows. In the next section, we prove quan-
titative convergence results for the new sequences of operators defined, re-
spectively, in (1.7) and (1.8). In Sect. 3, we show that the given rates of
uniform convergence are improved whenever the target functions belong to
Cm+1[0, 1], m ∈ N0. In Sects. 4 and 5, special attention is paid to the par-
ticular case when the random vector of nodes defined in (1.6) coincides with
Un. This will allow us to compare the behavior of the operators considered in
this paper with the deterministic and random Bernstein polynomials defined
in (1.4) and (1.5), respectively.

2. Pointwise and Uniform Quantitative Results

In view of (1.9), we assume here, and onwards, that x ∈ (0, 1). A basic
ingredient in our approach is the following quantitative approximation result
shown by Păltănea [12, Theorem 2.5.1]. Given a positive linear operator L,
acting on functions f ∈ C[0, 1], such that L(ei;x) = ei(x), i = 0, 1, one has

|L(f ;x) − f(x)| ≤
(

1 +
3
2

L((e1 − xe0)2;x)
(hϕ(x))2

)
ωϕ
2 (f ;h), 0 < h ≤ 1

2
. (2.1)

Recalling (1.7), we consider the random variables

Yn(x) =
Ln((e1 − xe0)2,Vn;x)

ϕ2(x)
, (2.2)

and
Wn = max

0≤k≤n
(Vk+1 − Vk). (2.3)

With these notations, we state the following auxiliary result.

Lemma 2.1. We have

Yn(x) =
1

ϕ2(x)

n∑

k=0

(x − Vk)(Vk+1 − x)1[Vk,Vk+1)(x) ≤
(

Wn

2ϕ(x)

)2

, (2.4)

and
Yn(x) ≤ Wn. (2.5)

Proof. The equality in (2.4) readily follows from definition (1.7), whereas the
inequality follows from the property

(x − a)(b − x) ≤
(

b − a

2

)2

, 0 ≤ a ≤ x ≤ b ≤ 1.
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On the other hand, (2.5) follows from the equality in (2.4) and the fact that
x − a

x

b − x

1 − x
≤ b − a

b

b − a

1 − a
≤ b − a

b
b = b − a, 0 ≤ a ≤ x ≤ b ≤ 1.

�
We see from (2.3) and (2.5) that the random variable Yn(x) takes values

in [0, 1]. In the following result, we give pointwise and uniform quantitative
estimates for the deterministic operator Ln defined in (1.8).

Theorem 2.2. Assume that

δn := sup
0<x<1

EYn(x) ≤ 1/4. (2.6)

Then
|Ln(f ;x) − f(x)| ≤ 5

2
ωϕ
2

(
f ;

√
EYn(x)

)
(2.7)

and
‖Ln(f ;x) − f(x)‖∞ ≤ 5

2
ωϕ
2

(
f ;

√
δn

)
. (2.8)

Proof. Let 0 < h ≤ 1/2. By (2.2), we have

EYn(x) =
Ln((e1 − xe0)2;x)

ϕ2(x)
.

We, therefore, obtain from (1.10) and (2.1)

|Ln(f ;x) − f(x)| ≤
(

1 +
3
2
EYn(x)

h2

)
ωϕ
2 (f ;h).

By assumption (2.6), we can choose h =
√
EYn(x) in the preceding inequality

to show (2.7). Inequality (2.8) directly follows from (2.6) and (2.7). �
Inequality (2.5) implies that assumption (2.6) is fulfilled, at least asymp-

totically, provided that Wn converges in probability to 0. In the case of
the aforementioned uniform order statistics, we will show in Sect. 4 that
EYn(x) ∼ 1/n2, as n → ∞, for a fixed x ∈ (0, 1), whereas δn ∼ 1/n, as
n → ∞. This means, in contraposition to the classical Bernstein polynomi-
als, that estimate (2.7) may be significantly better than (2.8).

With respect to the random linear operator defined in (1.7), we give the
following result.

Theorem 2.3. Let 0 < h ≤ 1/2. Then

P

(
|Ln(f,Vn;x) − f(x)| >

5
2
ωϕ
2 (f ;h)

)
≤ P (Wn > 2hϕ(x)) (2.9)

and

P

(
‖Ln(f,Vn;x) − f(x)‖∞ >

5
2
ωϕ
2 (f ;h)

)
≤ P

(
Wn > h2

)
. (2.10)

In addition,

E‖Ln(f,Vn;x) − f(x)‖∞ ≤ 5
2
ωϕ
2

(
f ;

√
EWn

)
, (2.11)

whenever EWn ≤ 1/4.
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Proof. By (1.10), (2.1), and (2.2), we have

|Ln(f,Vn;x) − f(x)| ≤
(

1 +
3
2

Yn(x)
h2

)
ωϕ
2 (f ;h). (2.12)

This implies that

P

(
|Ln(f,Vn;x) − f(x)| >

5
2
ωϕ
2 (f ;h)

)
≤ P

(
Yn(x) > h2

)

≤ P (Wn > 2hϕ(x)) ,

as follows from (2.4). This shows (2.9).
The proof of (2.10) follows the same pattern starting from the inequality

‖Ln(f,Vn;x) − f(x)‖∞ ≤
(

1 +
3
2

Wn

h2

)
ωϕ
2 (f ;h), (2.13)

which, in turn, follows from (2.5) and (2.12). Finally, taking expectations in
(2.13) and choosing h =

√
EWn, we obtain inequality (2.11). �

Theorem 2.3 is only meaningful if Wn converges in probability to 0, as
n → ∞. By dominated convergence, this implies that EWn converges to 0,
as well. This theorem not only implies that

‖Ln(f,Vn;x) − f(x)‖∞
(P)−→ 0, as n → ∞,

but also that the random operator Ln(f,Vn;x) is within the confidence band
f(x) ± (5/2)ωϕ

2 (f ;h) with high probability, as n → ∞. More specific state-
ments will be given in Sect. 5 for the uniform order statistics.

3. Approximation for Smooth Functions

For smooth functions, the rates of convergence given in Theorems 2.2 and 2.3
can be considerably improved. In this respect, recall the usual first modulus
of smoothness of f is defined as

ω1(f ; δ) = sup{|f(x) − f(y)| : x, y ∈ [0, 1], |x − y| ≤ δ}, δ ≥ 0.

The following subadditivity property is well known

ω1(f ; aδ) ≤ (1 + a)ω1(f ; δ), a, δ ≥ 0. (3.1)

We will need the following auxiliary result.

Lemma 3.1. Let m ∈ N0, δ > 0, and 0 ≤ y ≤ x < z ≤ 1. If f ∈ Cm+1[0, 1],
then

f(y) − f(x) − f(z) − f(y)
z − y

(y − x)

=
m∑

j=0

f (j+1)(x)
(j + 1)!

(
(y − x)j+1 −

j∑

r=0

(
j + 1
r + 1

)
(z − y)r(y − x)j−r+1

)
+ Rm,

(3.2)
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where

|Rm| ≤ m + 2
(m + 1)!

(z − y)m(x − y)
(

1 +
z − y

(m + 1)δ

)
ω1

(
f (m+1); δ

)
. (3.3)

Proof. For any r ∈ N, let βr be a random variable having the beta density

νr(θ) = r(1 − θ)r−1, 0 ≤ θ ≤ 1. (3.4)

Set β0 = 1. The Taylor’s formula of order m + 1 for f with reminder in
integral form can be written as

f(y) = f(x) +
m∑

j=0

f (j+1)(x)
(j + 1)!

(y − x)j+1

+
(y − x)m+1

(m + 1)!
E

(
f (m+1) (x + (y − x)βm+1) − f (m+1)(x)

)
. (3.5)

On the other hand, let U be a random variable having the uniform distribu-
tion on [0, 1] and independent of the sequence (βr)r≥0. Denote

T = y + (z − y)U. (3.6)

By (3.5) and (3.6), we can write

f(z) − f(y)
z − y

(y − x)

= (y − x)Ef ′(T ) =
m∑

j=0

f (j+1)(x)
j!

(y − x)E(T − x)j

+
y − x

m!
E(T − x)m

(
f (m+1) (x + (T − x)βm) − f (m+1)(x)

)
. (3.7)

Since EUr = 1/(r + 1), r ∈ N0, we see from (3.6) that

(y − x)E(T − x)j = (y − x)
j∑

r=0

(
j

r

)
(z − y)r

r + 1
(y − x)j−r

=
1

j + 1

j∑

r=0

(
j + 1
r + 1

)
(z − y)r(y − x)j−r+1.

This, together with (3.5) and (3.7), shows (3.2), provided that we denote by
Rm the sum of the last terms in (3.5) and (3.7).

As follows from (3.4), Eβr = 1/(r+1), r ∈ N0. This fact and (3.1) imply
that the absolute value of the last term in (3.5) is bounded above by

(x − y)m+1

(m + 1)!
Eω1

(
f (m+1); (x − y)βm+1

)

≤ (x − y)m+1

(m + 1)!

(
1 +

x − y

δ
Eβm+1

)
ω1

(
f (m+1); δ

)

≤ (z − y)m(x − y)
(m + 1)!

(
1 +

z − y

(m + 1)δ

)
ω1

(
f (m+1); δ

)
. (3.8)
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Definition (3.6) implies that |T − x| ≤ z − y. Thus, proceeding as in (3.8),
the absolute value of the last term in (3.7) is bounded above by

(z − y)m(x − y)
m!

Eω1

(
f (m+1); (z − y)βm

)

≤ (z − y)m(x − y)
m!

(
1 +

z − y

(m + 1)δ

)
ω1

(
f (m+1); δ

)
.

This, in conjunction with (3.8), shows estimate (3.3) and completes the
proof. �

Remark 3.2. The term corresponding to j = 0 in (3.2) is null. Hence, the
main terms in (3.2) for m = 0 and m = 1 are, respectively,

f(x) and f(x) +
1
2
f ′′(x)(x − y)(z − x).

For any r, s ∈ N0, consider the [0, 1]-valued random variable

Y (r,s)
n (x) =

n∑

k=0

(Vk+1 − Vk)r(x − Vk)s1[Vk,Vk+1)(x), (3.9)

together with the moments

μ(r,s)
n (x) = EY (r,s)

n (x), μ(r,s)
n = sup

0<x<1
EY (r,s)

n (x). (3.10)

Let f ∈ Cm+1[0, 1] and δ > 0. From (1.7), Lemma 3.1, and Remark 3.2,
we can write

Ln(f,Vn;x) = Mn(x) + Rn(x), (3.11)

where the main term Mn(x) is given by

Mn(x) = f(x)+
m∑

j=1

(−1)j+1f (j+1)(x)
(j + 1)!

×
(

Y (0,j+1)
n (x) −

j∑

r=0

(
j + 1
r + 1

)
(−1)rY (r,j−r+1)

n (x)

)
(3.12)

and the remainder term Rn(x) satisfies the inequality

|Rn(x)| ≤ m + 2
(m + 1)!

(
Y (m,1)

n (x) +
Y

(m+1,1)
n (x)
(m + 1)δ

)
ω1

(
f (m+1); δ

)
. (3.13)

In view of (3.9)–(3.13), the following result for the deterministic operator
Ln(f ;x) acting on smooth functions f is immediate.

Theorem 3.3. Let m ∈ N0 and δ > 0. If f ∈ Cm+1[0, 1], then

‖Ln(f ;x) − EMn(x)‖∞ ≤ m + 2
(m + 1)!

(
μ(m,1)

n +
μ
(m+1,1)
n

(m + 1)δ

)
ω1

(
f (m+1); δ

)
.

We are also in a position to state and prove the corresponding result for
the random operator Ln(f,Vn;x).



223 Page 10 of 18 J. A. Adell and D. Cárdenas-Morales MJOM

Theorem 3.4. Let m ∈ N0 and δ > 0. If f ∈ Cm+1[0, 1], then

P

(
‖Ln(f,Vn;x) − Mn(x)‖∞ >

(m + 2)2

(m + 1)!(m + 1)
δm+1ω1

(
f (m+1); δ

))

≤ 2P (Wn > δ),

where Wn is defined in (2.3).

Proof. From (2.3), (3.9), (3.11), and (3.13), we have

‖Ln(f,Vn;x) − Mn(x)‖∞ ≤ m + 2
(m + 1)!

(
Wm+1

n +
Wm+2

n

(m + 1)δ

)
ω1

(
f (m+1); δ

)
.

(3.14)
Note that, for any two random variables X and Y , we have

P (X + Y > a + b) ≤ P (X > a) + P (Y > b), a, b ∈ R.

We, therefore, have from (3.14)

P

(
‖Ln(f,Vn;x) − Mn(x)‖∞ >

(m + 2)2

(m + 1)!(m + 1)
δm+1ω1

(
f (m+1); δ

))

≤ P

(
Wm+1

n +
Wm+2

n

(m + 1)δ
> δm+1 +

δm+1

m + 1

)
≤ 2P (Wn > δ),

thus showing the result. �

4. The Case of Uniform Order Statistics: Moment
Computations

Let Un = (Un:k)0≤k≤n+1 be the ordered statistics defined in (1.2). For the
sake of simplicity, denote

V0 = 0, Vk = Un:k, k = 1, . . . , n, Vn+1 = 1. (4.1)

We recall the following well-known facts (see, for instance, Arnold et al. [4,
Chap. 2]). For any k = 1, . . . , n, Vk has probability density

ρk(θ) =
θk−1(1 − θ)n−k

β(k, n − k + 1)
= n

(
n − 1
k − 1

)
θk−1(1 − θ)n−k, 0 ≤ θ ≤ 1, (4.2)

whereas for k = 1, . . . , n − 1, the random vector (Vk, Vk+1) has probability
density

gk(θ, u) = n(n − 1)
(

n − 2
k − 1

)
θk−1(1 − u)n−k−1, 0 ≤ θ ≤ u ≤ 1. (4.3)

Finally, the random variables (Vk+1 − Vk)0≤k≤n, called spacings, are identi-
cally distributed with common beta density

dn(θ) = n(1 − θ)n−1, 0 ≤ θ ≤ 1. (4.4)

In the case at hand, the analytic form of the operator Ln defined in
(1.8) is given in the following result.
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Proposition 4.1. Let Vk be as in (4.1). Then

Ln(f ;x) = n(n − 1)
∫ x

0

dθ

∫ 1

x

I(f, θ, u;x)(1 − u + θ)n−2du

+n

∫ 1

x

I(f, 0, u;x)(1 − u)n−1du + n

∫ x

0

I(f, θ, 1;x)θn−1dθ,

where

I(f, θ, u;x) = f(θ) +
f(u) − f(θ)

u − θ
(x − θ), 0 ≤ θ < u ≤ 1.

Proof. Note that (4.3) implies that
n−1∑

k=1

gk(θ, u) = n(n − 1)(1 − u + θ)n−2, 0 ≤ θ ≤ u ≤ 1.

Hence, the result follows from (1.8) and (4.2). �

To apply the results in Sect. 2 to the case of uniform order statistics, we
need to compute the moments EYn(x) and μ

(r,s)
n (x) (see (2.4) and (3.10), re-

spectively). This is done in the following two auxiliary results. Recall that the
random variable Sn(x) defined in (1.3) has the binomial law with parameters
n and x, i.e.,

P (Sn(x) = j) =
(

n

j

)
xj(1 − x)n−j , j = 0, 1, ..., n. (4.5)

Lemma 4.2. Let Yn(x) be as in (2.4). Then

EYn(x) =
P (Sn+2(x) ∈ [1, n + 1])
(n + 1)(n + 2)x(1 − x)

= E
1

(Sn(x) + 1)(n − Sn(x) + 1)
≤ 1

n + 1
.

(4.6)
As a consequence,

lim
x→0

EYn(x) = lim
x→1

EYn(x) =
1

n + 1
. (4.7)

Proof. Let k = 1, . . . , n − 1. By (4.3), we have

E(x−Vk)(Vk+1 −x)1[Vk,Vk+1)(x) =
∫ x

0

(x− θ)dθ

∫ 1

x

(u−x)gk(θ, u)du. (4.8)

Making the change θ = xy and u = x + (1 − x)v, (4.8) equals to

n! xk+1(1 − x)n−k+1

(k − 1)!(n − k − 1)!
β(k, 2)β(2, n − k) =

P (Sn+2(x) = k + 1)
(n + 1)(n + 2)

. (4.9)

Replacing in (4.8) the probability density gk(θ, u) by g1(θ) and gn(θ), as
defined in (4.2), it can be checked that formula (4.9) also holds for k = 0
and k = n. Hence, the first equality in (4.6) follows from (2.4), whereas the
second is an easy consequence of (4.5).

The inequality in (4.6) follows from the fact that (j+1)(n−j+1) ≥ n+1,
j = 0, 1, . . . , n. Finally, formula (4.7) readily follows from the second equality
in (4.6) and the fact that Sn(0) = 0 and Sn(1) = n. �
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Lemma 4.3. Let μ
(r,s)
n (x) be as in (3.10), r, s ∈ N0. Then

μ(r,s)
n (x) =

n!r!s!
(n + r + s)!

r∑

l=0

(
s + l

l

)
P (Sn+r+s(x) ∈ [s + l, n + s + l]). (4.10)

As a consequence,

μ(r,s)
n (x) ≤ (s + r + 1)!

s + 1
n!

(n + r + s)!
. (4.11)

Proof. Proceeding as in the proof of Lemma 4.2, it can be checked that

E(Vk+1 − Vk)r(x − Vk)s1[Vk,Vk+1)(x)

=
n!r!s!

(n + r + s)!

r∑

l=0

(
s + l

l

)
P (Sn+r+s(x) = s + k + l).

Thus, formula (4.10) follows from (3.9). Inequality (4.11) follows from (4.10)
and the combinatorial identity

r∑

l=0

(
s + l

l

)
=

s+r∑

k=s

(
k

s

)
=

(
s + r + 1

s + 1

)
.

�

To conclude this section, we compute the expectation EWn of the ran-
dom variable Wn defined in (2.3) in terms of the harmonic numbers

Hn =
n∑

j=1

1
j
.

Recall that if X is a nonnegative random variable, then

EX =
∫ ∞

0

P (X > θ)dθ. (4.12)

Lemma 4.4. Let Wn be as in (2.3). Then

EWn =
Hn+1

n + 1
.

Proof. It is shown in David [6, p. 81] that

P (Wn > θ) =
n+1∑

i=1

(
n + 1

i

)
(−1)i−1(1 − iθ)n

+, 0 ≤ θ < 1, (4.13)

where x+ = max(0, x). By (4.12), this implies that

EWn =
n+1∑

i=1

(
n + 1

i

)
(−1)i−1

∫ 1

0

(1 − iθ)n
+dθ =

n∑

j=0

(
n

j

)
(−1)j 1

(j + 1)2
.

(4.14)
Let U and V be two independent random variables having the uniform dis-
tribution on [0, 1]. Since E(UV )j = 1/(j + 1)2, j ∈ N0, we have from (4.14)

EWn =
n∑

j=0

(
n

j

)
E(−UV )j = E(1 − UV )n. (4.15)
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By Fubini‘s theorem, the right-hand side in (4.15) equals to

E

∫ 1

0

(1 − Uv)ndv = E

(
1 − (1 − U)n+1

(n + 1)U

)
=

1
n + 1

n∑

j=0

E(1 − U)j =
Hn+1

n + 1
.

This, together with (4.15), completes the proof. �

5. The Case of Uniform Order Statistics: Approximation
Results

We keep here the same notations as in Sect. 4. Particularly, the random
nodes defining the operators Ln(f ;x) and Ln(f,Vn;x) are the order statistics
defined in (4.1). In first place, we consider the deterministic operator Ln(f ;x).

Corollary 5.1. Let n ≥ 3. Then

|Ln(f ;x) − f(x)| ≤ 5
2
ωϕ
2

(
f ;

1
(n + 1)ϕ(x)

)
(5.1)

and

‖Ln(f ;x) − f(x)‖∞ ≤ 5
2
ωϕ
2

(
f ;

1√
n + 1

)
. (5.2)

Proof. By Lemma 4.2, assumption (2.6) in Theorem 2.2 is fulfilled. Therefore,
the first inequality follows from (2.7) and the first equality in (4.6), whereas
the second follows from (2.8) and the upper bound in (4.6). The proof is
complete. �

Note that for a fixed x ∈ (0, 1), the argument of the Ditzian–Totik
modulus of smoothness of f has the order of 1/(n + 1). In contrast, the rate
of uniform convergence in Corollary 5.1 is the same as that for the classical
Bernstein polynomials, as seen in (1.1).

Corollary 5.2. Let τn > 1. If

τn log(n + 1)
nϕ(x)

≤ 1
2
,

then

P

(
|Ln(f,Vn;x) − f(x)| >

5
2
ωϕ
2

(
f ;

τn log(n + 1)
nϕ(x)

))
≤ 1

(n + 1)2τn−1
.

(5.3)
If

τn log(n + 1)
n

≤ 1
4
,

then

P

(
‖Ln(f,Vn;x) − f(x)‖∞ >

5
2
ωϕ
2

(
f ;

√
τn log(n + 1)

n

))
≤ 1

(n + 1)τn−1
.

(5.4)
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In addition,

E‖Ln(f,Vn;x) − f(x)‖∞ ≤ 5
2
ωϕ
2

(
f ;

√
Hn+1

n + 1

)
. (5.5)

Proof. By (2.3) and (4.4), we have

P (Wn > 2hϕ(x))

≤
n∑

k=0

P (Vk+1 − Vk > 2hϕ(x)) = (n + 1)P (V1 > 2hϕ(x))

= (n + 1)(1 − 2hϕ(x))n ≤ (n + 1)e−2hϕ(x)n.

Inequality (5.3) follows by choosing h = τn log(n + 1)/(nϕ(x)) in (2.9). Sim-
ilarly,

P (Wn > h2) ≤ (n + 1)e−nh2
.

Therefore, inequality (5.4) follows by choosing h =
√

τn log(n + 1)/n in
(2.10). Finally, (5.5) directly follows from (2.11) and Lemma 4.4. �

Concerning Corollary 5.2, some remarks are in order. In its proof, we
have used (4.4) instead of the exact formula for P (Wn > θ) given in (4.13).
This approach simplifies the upper bounds without loosing accuracy.

On the other hand, denote by εn =
(
τnn−1 log(n + 1)

)1/2. Inequality
(5.4) tells us that the random operator Ln(f,Vn;x) is within the confidence
band f(x)±(5/2)ωϕ

2 (f ; εn), x ∈ (0, 1), with (asymptotically) high probability.
We are free to choose τn with the restriction that εn → 0, as n → ∞. In
making this choice, one has to balance the length of the confidence band and
the speed of convergence of (n + 1)1−τn towards 0.

Inequality (5.3) gives us a confidence interval for Ln(f,Vn;x), for any
fixed x ∈ (0, 1). In this case, its length is much more shorter than that of the
aforementioned confidence band.

Comparing (1.7) with Proposition 4.1, we see that the stochastic oper-
ator Ln(f,Vn;x) is constructed in a much more simpler way than the deter-
ministic operator Ln(f ;x). The price to pay for it is that the rates of conver-
gence to the target function f are slightly worse in the case of Ln(f,Vn;x),
as shown in Corollaries 5.1 and 5.2.

Finally, the harmonic number Hn has the same order of magnitude as
that of log n, as n → ∞. As follows from (5.5), this implies that Ln(f,Vn;x)
converges uniformly in L1 to f(x) at the rate ωϕ

2 (f ; (log n/n)1/2).
The following two results are concerned with smooth functions.

Corollary 5.3. Let m ∈ N0. If f ∈ Cm+1[0, 1], then
∥∥∥∥∥∥
Ln(f ;x) − f(x) −

m∑

j=1

(−1)j+1f (j+1)(x)
(j + 1)!

×
(

μ(0,j+1)
n (x) −

j∑

r=0

(
j + 1
r + 1

)
(−1)rμ(r,j−r+1)

n (x)

)∥∥∥∥∥
∞
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≤ (m + 2)3

m + 1
n!

(n + m + 1)!
ω1

(
f (m+1);

1
n + m + 2

)
.

In particular, we have the Voronovskaja’s formula
∥∥∥∥Ln(f ;x) − f(x) − 1

2
f ′′(x)

P (Sn+2(x) ∈ [1, n + 1])
(n + 1)(n + 2)

∥∥∥∥
∞

≤ 27
2

1
(n + 1)(n + 2)

ω1

(
f ′′;

1
n + 3

)
.

Proof. The first statement follows by choosing δ = 1/(n + m + 2) in Theo-
rem 3.3 and using estimate (4.11) to bound above the moments μ

(m,1)
n and

μ
(m+1,1)
n .

The second statement follows from the first one by choosing m = 1.
Note that, by (2.2) and Remark 3.2, the main term is given by

EMn(x) = f(x) +
1
2
f ′′(x)x(1 − x)EYn(x)

= f(x) +
1
2
f ′′(x)

P (Sn+2(x) ∈ [1, n + 1])
(n + 1)(n + 2)

,

where the last equality follows from (4.6). The proof is complete. �

It is interesting to note that Corollary 5.3 gives us a quantitative gener-
alized Voronovskaja’s formula with an explicit upper bound for the remainder
of the order of

1
nm+1

ω1

(
f (m+1);

1
n

)
.

In the analogous result for the classical Bernstein polynomials (see, for in-
stance, Gonska and Păltănea [10], Tachev [14], Gavrea and Ivan [9], and Adell
and Cárdenas-Morales [1]), the remainder term has the order of

1
n(m+1)/2

ω1

(
f (m+1);

1√
n

)
.

Corollary 5.4. Let m ∈ N0 and τn > 1. If f ∈ Cm+1[0, 1], then

P

(
‖Ln(f,Vn;x) − Mn(x)‖∞

>
(m + 2)2

(m + 1)!(m + 1)

(
τn log(n + 1)

n

)m+1

ω1

(
f (m+1);

τn log(n + 1)
n

))

≤ 2
(n + 1)τn−1

, (5.6)

where Mn(x) is defined in (3.12).
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In particular, we have the Voronovskaja’s formula

P

(
‖Ln(f,Vn;x) − f(x) − 1

2
f ′′(x)x(1 − x)Yn(x)‖∞

>
9
4

(
τn log(n + 1)

n

)2

ω1

(
f ′′;

τn log(n + 1)
n

) )

≤ 2
(n + 1)τn−1

. (5.7)

Proof. Let Wn be as in (2.3). As in the proof of Corollary 5.2, we have

P (Wn > δ) ≤ (n + 1)e−nδ, δ > 0.

Hence, (5.6) follows from Theorem 3.4 by choosing δ = τn log(n + 1)/n.
Estimate (5.7) follows from (5.6) by setting m = 1. Note that, by (2.2) and
Remark 3.2, the main term for m = 1 is

Mn(x) = f(x) +
1
2
f ′′(x)x(1 − x)Yn(x).

This completes the proof. �

We conclude this section by considering the approximation properties of
the random operator defined in (1.5). To this end, we will use the Dvoretzky–
Kiefer–Wolfowitz inequality (c.f. [8]) in the final form shown by Massart [11],
that is,

P (‖Sn(x)/n − x‖∞ > ε) ≤ 2e−2nε2 , ε > 0. (5.8)

Theorem 5.5. Let Bn(f,Un;x) be as in (1.5) and let rn > 0. Then,

P
(
‖Bn(f,Un;x) − f(x)‖∞ > 2ω1

(
f ;

√
rn/n

)) ≤ 2e−2rn (5.9)

and

E‖Bn(f,Un;x) − f(x)‖∞ ≤
(
1 +

√
π/2

)
ω1(f ; 1/

√
n). (5.10)

Proof. Using the subadditivity property in (3.1), we get

‖Bn(f,Un;x)−f(x)‖∞ ≤
(

1 +
‖Sn(x)/n − x‖∞

h

)
ω1(f ;h), h > 0, (5.11)

thus implying that

P (‖Bn(f,Un;x) − f(x)‖∞ > 2ω1(f ;h))

≤ P (‖Sn(x)/n − x‖∞ > h) ≤ 2e−2nh2
,

where the last inequality follows from (5.8). Thus, (5.9) follows by choosing
h2 = rn/n in (5.11).

From (4.12) and (5.8), we see that

E‖Sn(x)/n − x‖∞ ≤ 2
∫ ∞

0

e−2nθ2
dθ =

1√
n

∫ ∞

0

e−y2/2dy =
√

π

2n
.

Therefore, (5.10) follows by taking expectations in (5.11) and setting h =
1/

√
n. �
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Clearly, estimate (5.9) is only meaningful if rn → ∞ and rn/n → 0, as
n → ∞. On the other hand, the comments following Corollary 5.2 can be
applied, with the obvious modifications, to Theorem 5.5.

Finally, it is interesting to note that the rates of convergence in Corollary
5.2 are much faster that those in Theorem 5.5. Despite the sharpness of
inequality (5.8) used in the proof of Theorem 5.5, we cannot expect to replace
ω1(f ; ·) by ωϕ

2 (f ; ·) in (5.9). In contraposition to Ln(f,Vn;x) as defined in
(1.7), the random operator Bn(f,Un;x) does not satisfy (1.10), since

Bn(e1,Un;x) =
Sn(x)

n
�= e1(x),

whereas ωϕ
2 (e1; δ) = 0, δ ≥ 0. In other words, the event

{‖Bn(e1,Un;x) − e1(x)‖ ≥ Cnωϕ
2 (e1, δn)} = {‖Sn(x)/n − x‖ ≥ 0}

has probability 1 for any positive constants Cn and δn.

Acknowledgements

The authors would like to thank an anonymous referee for her/his care-
ful reading of the manuscript and for her/his constructive criticism, which
greatly improved the final outcome.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement
with Springer Nature.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Adell, J.A., Cárdenas-Morales, D.: Quantitative generalized Voronovskaja’s
formulae for Bernstein polynomials. J. Approx. Theory 231, 41–52 (2018)

[2] Adell, J.A., Cárdenas-Morales, D.: Stochastic Bernstein polynomials: uniform
convergence in probability with rates. Adv. Comput. Math. 46, 16 (2020)

[3] Adell, J.A., de la Cal, J.: Bernstein-type operators diminish the Φ-variation.
Constr. Approx. 12, 489–507 (1996)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


223 Page 18 of 18 J. A. Adell and D. Cárdenas-Morales MJOM

[4] Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Sta-
tistics. SIAM, Philadelphia (2008)

[5] Bustamante, J.: Estimates of positive linear operators in terms of second-order
moduli. J. Math. Anal. Appl. 345, 203–212 (2008)

[6] David, H.A.: Order Statistics. Wiley, New York (1970)

[7] Ditzian, Z., Ivanov, K.G.: Strong converse inequalities. J. Anal. Math. 61, 61–
111 (1993)

[8] Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the
sample distribution function and of the classical multinomial estimator. Ann.
Math. Stat. 27(3), 642–669 (1956)

[9] Gavrea, I., Ivan, M.: The Bernstein Voronovskaja-type theorem for positive
linear approximation operators. J. Approx. Theory 192, 291–296 (2015)
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Universidad de Jaén
23071 Jaén
Spain
e-mail: cardenas@ujaen.es

Received: June 19, 2021.

Revised: December 17, 2021.

Accepted: August 6, 2022.


	Random Linear Operators Arising from Piecewise Linear Interpolation on the Unit Interval
	Abstract
	1. Introduction
	2. Pointwise and Uniform Quantitative Results
	3. Approximation for Smooth Functions
	4. The Case of Uniform Order Statistics: Moment Computations
	5. The Case of Uniform Order Statistics: Approximation Results
	Acknowledgements
	References




