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Abstract
A stratified Lie system is a nonautonomous system of first-order ordinary differ-
ential equations on a manifold M described by a t-dependent vector field X =∑r

α=1gαXα, where X1, . . . , Xr are vector fields on M spanning an r-dimensional
Lie algebra that are tangent to the strata of a stratification F of M while
g1, . . . , gr : R× M → R are functions depending on t that are constant along
integral curves of X1, . . . , Xr for each fixed t. We analyse the particular solutions
of stratified Lie systems and how their properties can be obtained as gener-
alisations of those of Lie systems. We illustrate our results by studying Lax
pairs and a class of t-dependent Hamiltonian systems. We study stratified Lie
systems with compatible geometric structures. In particular, a class of strati-
fied Lie systems on Lie algebras are studied via Poisson structures induced by
r-matrices.

Keywords: integrable system, superposition rule, Lax pair, Poisson structure,
r-matrix, foliated superposition rule, foliated Lie system

1. Introduction

A Lie system is a nonautonomous system of first-order ordinary differential equations (ODEs)
in normal form whose general solution can be written as a function, a so-called superposi-
tion rule, of a family of particular solutions and some constants related to initial conditions
[12, 13, 15, 16, 38, 73]. The Lie–Scheffers theorem [13, 38, 41, 73] states that a Lie system
amounts to a t-dependent vector field taking values in a finite-dimensional Lie algebra of vector
fields, called the Vessiot–Guldberg Lie algebra of the Lie system.
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By applying the Lie–Scheffers theorem, Lie proved that every Lie system on the real line
is locally diffeomorphic, around a generic point, to a Riccati differential equation3

dx
dt

= a1(t) + a2(t)x + a3(t)x2,

where a1(t), a2(t), a3(t) are arbitrary t-dependent functions [15, 38, 41, 73]. Although Lie also
classified all finite-dimensional Lie algebras of vector fields on the plane around a generic
point up to local diffeomorphisms, his results presented several unclear points (see [32]).
González–López, Kamran, and Olver clarified Lie’s classification and, as a result, they proved
that there exist 28 families of finite-dimensional Lie algebras of vector fields on R

2, the here-
after called GKO classification. From their results and the Lie–Scheffers theorem, one can
classify, up to local diffeomorphisms, Lie systems at generic points of the plane [4, 32].

Previous facts illustrate that most systems of differential equations are not Lie systems
[10, 15]. Notwithstanding, Lie systems have a plethora of geometric properties and relevant
applications [2, 7, 12, 15, 17, 20, 41, 42, 59, 60, 73], e.g. matrix Riccati equations are Lie sys-
tems appearing in the study of Bäcklund transformations and other fields [21, 22, 49, 50, 73],
which motivates their analysis.

The theory of Lie systems has been extended in different manners to analyse much more
general families of systems of differential equations. Partial differential equation (PDE) Lie
systems [13, 48, 55] were applied to the study of conditional symmetries and Bäcklund transfor-
mations [11, 40]. Quasi-Lie schemes and quasi-Lie systems were developed to investigate inte-
grability conditions for systems of ODES and PDEs, e.g. dissipative Milne–Piney equations
and nonlinear oscillators [10, 11, 14]. Superposition rules for discrete differential equations
were considered by Winternitz and his collaborators [53, 56, 63]. Super-superposition rules,
which are aimed at the analysis of general solutions to superdifferential equations, were anal-
ysed in [5, 6]. A detailed survey on the previous and other generalisations of the theory of Lie
systems can be found in [15, 41].

This work focuses on another generalisation of Lie systems that has been scarcely analysed
so far: the foliated Lie systems [12], which are here more properly called stratified Lie systems.
Recall that a stratification of a manifold N is a partition of N into connected disjoint immersed
submanifolds, the so-called strata, of not necessarily the same dimension [52, 67–69]. If all
the strata have the same dimension, the stratification is said to be regular. In this case, it is said
that the stratification is a foliation and its strata are called leaves.

A stratified Lie system is a nonautonomous system of first-order ODEs in normal form
describing the integral curves of a t-dependent vector field on a manifold N of the form

X(t, x) =
r∑

α=1

gα(t, x)Xα(x), ∀t ∈ R, ∀x ∈ N, (1.1)

where X1, . . . , Xr are vector fields on N that span an r-dimensional Lie algebra V, i.e. [Xα, Xβ] =∑r
γ=1cαβγXγ for certain real constants cαβγ with α, β, γ = 1, . . . , r, and they therefore span an

integrable Stefan–Sussmann distribution DV = {Y(x) : Y ∈ V , x ∈ N} on N (see [36, 67–69]
for details), while g1, . . . , gr ∈ C∞(R× N) are common t-dependent constants of motion of
X1, . . . , Xr, namely if we consider X1, . . . , Xr as vector fields on R× N in the natural way [15],
then Xαgβ = 0 for α, β = 1, . . . , r. Finally, if g1, . . . , gr depend only on time, (1.1) is called a
Lie system.

3 Some works additionally assume that a1(t)a3(t) must not be equal to zero for every t ∈ R (see [62]).
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An integrable Stefan–Sussmann distribution on N, like DV (see [36, 67–69]), gives rise to a
stratification so that the tangent bundles to their strata are determined by the Stefan–Sussman
distribution. If F is the stratification by integral submanifolds induced by DV , we call X and V
an F -stratified Lie system and a Vessiot–Guldberg Lie algebra of X, respectively. The elements
of V are tangent to the leaves of F . It follows from (1.1) that each vector field Xt : x ∈ N �→
X(t, x) ∈ TN, for every fixed t ∈ R, is also tangent to the strata of F . Hence, the restriction of X
to any stratum of F is a Lie system admitting as a Vessiot–Guldberg Lie algebra the restriction
of V to the stratum.

Now it is clear that although our definition of stratified Lie system matches what is called
a foliated Lie system in [12], the change of terminology is due to the fact that (1.1) is, more
precisely, associated with a stratification than with a foliation. In fact, the latter only occurs
when the strata of the stratification of DV have all the same dimension. Anyhow, we shall
show that assuming that DV gives rise to a foliation is a very mild condition and allows for
studying relevant problems while avoiding technical minor details. In fact, most results in this
paper are proved for stratified Lie systems whose associated stratification is a foliation.

The work [12] provided a few applications of stratified Lie systems to the theory of inte-
grable systems and many other theoretical examples. Apart from [44], where stratified Lie
systems are applied to describe relative equilibrium points of a t-dependent energy–momentum
method, no new result on stratified Lie systems seems to have been analysed in the literature.
Meanwhile, our work provides new theoretical results and physical applications of stratified
Lie systems.

We prove that foliated Lie systems appear naturally while transforming a t-dependent
Hamiltonian system onto a new simpler one through a t-dependent canonical transformation
[70]. It is also shown that such foliated Lie systems admit a Lax pair formulation, providing a
nonautonomous generalisation of results given by Babelon and Viallet in [3].

Then, we define an F -foliated superposition rule notion for a nonautonomous system of
first-order ODEs in normal form on N as a function Ψ : Nm+1 → N such that Ψ(Fm+1

k ) ⊂ Fk

for every leafFk ofF , andΨ allows us to describe the particular solutions of the system passing
through any leaf of F in terms of a generic family of m particular solutions contained in the
same leaf and a parameter in Fk related to the initial conditions of each particular solution in
Fk. As an application, we provide foliated superposition rules for certain Lax pairs (understood
as systems of ODEs in normal form in a natural way) and a class of t-dependent Hamiltonian
systems.

It is here proved that a foliated Lie system admits a foliated superposition rule. As a byprod-
uct, we provide an analogue of the Lie’s condition for foliated Lie systems. We also devise a
method to obtain foliated superposition rules by means of a modification of the technique
developed in [13] to derive superposition rules for Lie systems. Additionally, our work studies
the properties of first-order systems of ODEs in normal form admitting a foliated superposi-
tion rule. Next, we prove that solving a foliated Lie system reduces to integrating a type of
foliated Lie system on a trivial principal bundle, called an automorphic foliated Lie system.
In turn, given an automorphic foliated Lie system on the total space P of a trivial principle
bundle π : P = G × N → N, a Lie group action ϕ : G × M → M whose set of orbits, M/G, can
be endowed with a differentiable structure diffeomorphic to N, i.e. M/G 	 N, allows one to
construct a stratified Lie system on M whose general solution can be determined by a particular
solution of the automorphic foliated Lie system within each fibre of the principal bundle on
P. These results constitute the generalisation to stratified Lie systems of the relations between
standard Lie systems and automorphic Lie systems appearing in [12, 15, 41, 71, 72].

Finally, foliated Lie systems are employed to provide a new generalisation of Ermakov sys-
tems admitting a Lewis–Riesenfeld invariant [57, 58, 61]. We also prove that a class of Lax
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pairs and their associated t-dependent Hamiltonian systems are related to the same automorphic
foliated Lie system. As a last application, it is shown how r-matrices and several associated
Poisson brackets on Lie algebras can be applied to the study of foliated Lie systems related
to Lax pairs and automorphic foliated Lie systems. Moreover, r-matrices are also utilised to
study certain stratified Lie systems. These examples allow us to define the so-called stratified
Lie–Hamilton systems, which generalise standard Lie–Hamilton systems [19]. The general-
isation of the theory of Lie systems with compatible geometric structures (see [41]) can be
developed analogously.

The structure of the paper goes as follows. In section 2 we survey the theory of Lie systems.
Section 3 introduces the definition of stratified and foliated Lie systems by providing several
new examples. Examples of foliated Lie systems are studied in section 4. Section 5 introduces
foliated superposition rules, while section 6 shows that foliated Lie systems admit a foliated
superposition rule, gives an algorithm to derive it, and it analyses the properties of a system
admitting a foliated superposition rule. This can be understood as the extension to foliated
Lie systems of the Lie–Scheffers theorem. We define automorphic foliated Lie systems and
explain how they can be used to solve foliated Lie systems in section 7. Section 8 develops
several applications of our methods. In section 9 we summarise our achievements and describe
some further work in progress.

2. Fundamentals of Lie systems

Let us survey the basic theory of Lie systems and related notions needed to understand the
results of our paper. To simplify our presentation and to stress our main results, we assume all
mathematical structures to be smooth and globally defined (see [12, 15, 41] for further details).
If not otherwise stated, every differential equation is hereafter considered nonautonomous and
every manifold is connected. In what follows, N is an n-dimensional manifold.

We call generalised or Stefan–Sussmann distribution D on N a correspondence mapping
each point x ∈ N to a subspace Dx ⊂ TxN (see [36, 52, 67, 68] for details). If the dimen-
sion of Dx is the same at every x ∈ N, then D is called regular. In some works, a regular
Stefan–Sussmann distribution is simply called a distribution. If there exists a decomposition
of N as a sum of disjoint connected immersed submanifoldsFλ such that TxFλ = Dx for every
x ∈ Fλ an each Fλ, then D is said to be integrable. To simplify the terminology, generalised
distributions will just be hereafter called distributions.

Let us define π2 : (t, x) ∈ R× N �→ x ∈ N and let τN : TN → N be the tangent bundle pro-
jection. A t-dependent vector field on N is a mapping X : (t, x) ∈ R× N �→ X(t, x) ∈ TN such
that τN ◦ X = π2. An integral curve of X is a particular solution γ : R→ N of

dx
dt

= X(t, x), ∀(t, x) ∈ R× N. (2.1)

Consequently, γ̃ : t ∈ R �→ (t, γ(t)) ∈ R× N is an integral curve of the autonomization (or sus-
pension) of X, i.e. the vector field X̃ on R× N given by X̃ = ∂t + X, where we use the natural
diffeomorphism ϕ̃ : T(R× N) 	 TR× TN [1, 15]. The other way around, if γ̃ : R→ R× N
is an integral curve of X̃ and a section of the bundle π1 : (t, x) ∈ R× N �→ t ∈ R, then π2 ◦ γ̃
is a solution to (2.1). This one-to-one correspondence permits us to identify system (2.1) and
its associated t-dependent vector field X. In turn, this allows us to simplify the notation.

Every t-dependent vector field X on N gives rise to a family of standard vector fields on N
of the form {Xt : x ∈ N �→ X(t, x) ∈ TN}t∈R. The smallest Lie algebra of X is the smallest (in
the sense of inclusion) Lie algebra of vector fields on N, let us say VX, including the family of
vectors {Xt}t∈R. If V is a Lie algebra of vector fields on N, we write DV for the distribution
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on N spanned by the vector fields of V. Every distribution DV is regular in the connected
components of a dense open subset of N [41, 69]. In particular, if V is finite-dimensional, then
DV is integrable (cf [36, 67, 68]).

Each t-dependent vector field X on a manifold N can be considered as a vector field on
R× N via ϕ̃ : T(R× N) 	 TR× TN. Moreover, every f ∈ C∞(R× N) can be considered as a
t-parametrised family of functions f t ∈ C∞(N), with t ∈ R, of the form f t : x ∈ N �→ f (t, x) ∈
R. Consequently, if X is a vector field on N and f ∈ C∞(R× N), we can understand X f as
the function on R× N such that (X f)t = X ft for every t ∈ R. Hence, a t-dependent constant of
motion of X is an f ∈ C∞(R× N) such that X f = 0.

A superposition rule [13, 15, 73] for a system X on a manifold N is a map Ψ : Nm × N → N
satisfying that the general solution, x(t), to X can be written as

x(t) = Ψ(x(1)(t), . . . , x(m)(t), k),

for a generic family of particular solutions x(1)(t), . . . , x(m)(t) of X and a parameter k ∈ N to be
related to the initial condition of X. We call Lie system a system of first-order ODEs admitting
a superposition rule [13, 15, 38, 73].

Theorem 2.1 (the Lie–Scheffers theorem [12, 13, 38, 73]). A system X on N admits
a superposition rule if and only if X =

∑r
α=1bα(t)Xα for a certain family X1, . . . , Xr of

vector fields on N spanning an r-dimensional Lie algebra of vector fields, a so-called
Vessiot–Guldberg Lie algebra of X, and a family b1(t), . . . , br(t) of t-dependent functions.

One of the simplest non-trivial nonlinear examples of Lie systems is given by the Riccati
equation [38]. Every Riccati equation is related to a t-dependent vector field on R of the form

XRic(t, x) = (a1(t) + a2(t)x + a3(t)x2)
∂

∂x
,

for certain t-dependent functions a1(t), a2(t), and a3(t). We recall that it is sometimes assumed
that a1(t)a3(t) is not identically equal to zero. Then, XRic =

∑3
α=1aα(t)Xα, where

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = x2 ∂

∂x

are vector fields on R satisfying the commutation relations

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3,

and they therefore span a Lie algebra of vector fields isomorphic to sl2 [38, 73]. According
to the Lie–Scheffers theorem, Riccati equations must admit a superposition rule. Indeed, it is
known [12, 34, 38] that the general solution, x(t), to a Riccati equation can be written in terms
of a function Ψ : R3 × R→R in the form

x(t) = Ψ(x(1)(t), x(2)(t), x(3)(t), k), k ∈ R,

where x(1)(t), x(2)(t), x(3)(t) are three different particular solutions to X and

Ψ(u1, u2, u3; k) =
u1(u3 − u2) − ku2(u3 − u1)

(u3 − u2) − k(u3 − u1)
, (2.2)

and the limit k →∞ should be admitted to retrieve the particular solution x(2)(t). This latter
remark about recovering x(2)(t) and the fact that (2.2) is only well defined in an open dense
subset of R

3 × R explain why Ψ is called, more properly, a local superposition rule [15].
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We will not study this aspect in detail here as it is not relevant to our purposes and it is not
important for practical applications (see [15, 41] for details).

Another relevant example of Lie system (see [12, 15, 41]) is given by the system of first-
order differential equations on an r-dimensional Lie group G of the form

XG(t, g) =
r∑

α=1

bα(t)XR
α(g), ∀g ∈ G, ∀t ∈ R, (2.3)

where XR
1 , . . . , XR

r stand for a basis of right-invariant vector fields on G and b1(t), . . . , br(t) are
arbitrary t-dependent functions. Indeed, if Rg : h ∈ G �→ hg ∈ G is the right-translation map
and {e1, . . . , er} is a basis of TeG, then the right-invariant vector fields XR

1 , . . . , XR
r , defined by

XR
α(g) = Rg∗eeα, span an r-dimensional Lie algebra of vector fields on G. Consequently, the

t-dependent vector field (2.3) defines a Lie system. The Lie–Scheffers theorem states that the
differential equation determining the integral curves of a t-dependent vector field XG on G that
takes the form

dg
dt

= XG(t, g) (2.4)

admits a superposition rule. A simple application of the right-translation Rg−1∗g to both sides
of (2.4) leads to an equivalent equation for the solutions g(t), i.e.

Rg−1∗g
dg
dt

=

r∑
α=1

bα(t)eα ∈ TeG. (2.5)

The right-invariance of the t-dependent vector field (2.3) relative to the right action of G on
itself, namely Rh∗gXG(t, g) = XG(t, hg) for every g, h ∈ G and t ∈ R, shows the right-invariance
of equation (2.4), or its equivalent (2.5), i.e. any particular solution gp(t) to (2.4) gives rise to
a new particular solution Rhgp(t) of (2.4) for every h ∈ G. As the initial conditions at t = 0
determine univocally particular solutions of (2.4), the general solution to (2.4), let us say g(t),
can be brought into the form

g(t) = Rhgp(t),

where gp(t) is any particular solution to (2.4) and h ∈ G. Then, XG admits a superposition rule
involving one particular solution given by Ψ : (g, h) ∈ G × G �→ Rhg ∈ G.

Lie systems of the form (2.3) are called automorphic Lie systems [15]. Their special role in
the theory of Lie systems is explained by the following theorem, which states that the general
solution to every Lie system can be obtained from the knowledge of any particular solution of
a related automorphic Lie system [12, 15, 41, 71, 72].

Theorem 2.2. Let X be a Lie system on N of the form X =
∑r

α=1bα(t)Xα for certain t-
dependent functions b1(t), . . . , br(t) and an r-dimensional Vessiot–Guldberg Lie algebra V =
〈X1, . . . , Xr〉. Let G be the unique connected and simply connected Lie group whose Lie algebra
is isomorphic to V. Let ϕ : G × N → N be the local Lie group action whose fundamental vector
fields4 are spanned by X1, . . . , Xr. Then, the general form of the integral curves, x(t), of X
can be written as x(t) = ϕ(g(t), x0), where x0 ∈ N and g(t) is any particular solution to (2.4)

4 We hereafter define the fundamental vector fields of a Lie group action ϕ : G × N → N by Xv(x) =
d
dt

∣
∣

t=0
ϕ(exp(−tv), x) for every v ∈ TeG and x ∈ N.
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associated with the automorphic Lie system on G of the form XG(t, g) = −
∑r

α=1bα(t)XR
α(g)

for every g ∈ G and t ∈ R.

3. On the definition of stratified Lie systems

Let us introduce our stratified Lie system notion and illustrate its usefulness with several exam-
ples of physical and mathematical interest. Our terminology slightly differs from the one in
the previous literature, where stratified Lie systems are known as foliated Lie systems [12, 44]
because of the reasons already given in the previous sections.

Definition 3.1. We call a stratified Lie system on a manifold N a t-dependent vector field on
N of the form

X(t, x) =
r∑

α=1

gα(t, x)Xα(x), ∀t ∈ R, ∀x ∈ N, (3.1)

where X1, . . . , Xr span an r-dimensional real Lie algebra V of vector fields and g1, . . . , gr are
common t-dependent constants of motion of the elements of V, i.e. Xαgβ = 0 on N for every
α, β = 1, . . . , r. We call (3.1) and V a decomposition and a Vessiot–Guldberg Lie algebra of the
stratified Lie system X, respectively. If X admits a decomposition (3.1) for a Vessiot–Guldberg
Lie algebra V so that the generalised distribution DV is regular, we say that X is a foliated Lie
system.

In virtue of the results by Stefan and Sussmann [36, 67, 68], the generalised distribution DV

associated with a Vessiot–Guldberg Lie algebra V of a stratified Lie system is integrable and
gives rise to a stratificationF of N such that the tangent spaces to its strata coincide withDV . We
call F -stratified Lie system a stratified Lie system with a Vessiot–Guldberg Lie algebra V such
that DV consists of the tangent spaces to the strata of F . As the vector fields of V are tangent
to the strata of the stratification F , the system X can be restricted to the strata of F . Since
Xβgα = 0 for every α, β = 1, . . . , r, the restrictions of g1, . . . , gr to a stratum Fλ of F give
rise to r functions depending only on t. Indeed, consider a smooth curve5 γ : u ∈ [0, 1] ⊂ R �→
γ(u) ∈ Fλ connecting two points of a stratum Fλ. Then, the tangent vector at γ(u) to the curve
γ, let us say γ̇(u), can be written as a linear combination γ̇(u) =

∑r
α=1 fα(u)Xα(γ(u)) of the

values of the tangent vectors X1(γ(u)), . . . , Xr(γ(u)) spanning Tγ(u)Fλ for certain u-dependent
functions f 1, . . . , fr : [0, 1] → R. Moreover,

g(t, γ(1)) − g(t, γ(0)) =
∫ 1

0

∂

∂u
[g(t, γ(u))]du =

∫ 1

0

r∑
α=1

fα(u)(Xαgt)(γ(u))du = 0.

Consequently, g(t, x) = g(t, x′) for arbitrary points x, x′ ∈ Fλ and any t ∈ R. Therefore, the
restriction of (3.1) to a stratum Fλ becomes a Lie system. More specifically, an F -stratified
Lie system gives rise to a Lie system on each stratum ofF with a Vessiot–Guldberg Lie algebra
given by the restriction to the stratum of the vector fields of the Vessiot–Guldberg Lie algebra
of the stratified Lie system. As a consequence of previous comments, the dimensions of all the
induced Vessiot–Guldberg Lie algebras on the strata are bounded. This last result can be used
to show that defining a Lie system on each stratum of a stratification of a manifold does not
necessarily give rise to a stratified Lie system.

5 Smooth relative to the manifold structure with boundary on [0, 1] (see [1] for details).

7
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In fact, for instance, the t-dependent vector field on R
3 of the form

X(t, x, y, z) =
∂

∂x
+

∞∑
n=0

et(n+1) fn(z)xn ∂

∂y
,

where it is assumed that f0(z) does never vanish and each fn(z), for n ∈ N, is a smooth function
that vanishes for every z ∈ [−n, n] and it is different from zero off this interval. Then, X gives
rise to a regular integrable generalised distribution DVX

spanned by the vector fields

DVX

(x,y,z) =

〈
∂

∂x
,
∂

∂y

〉
,

with leaves given by the foliation G by planes in R
3 of the form

Gz = {(x, y, z) ∈ R
3 : x, y ∈ R}, ∀z ∈ R.

The system X, at points with k � |z0| � k + 1, where k ∈ {0, 1, 2, 3, . . .}, takes the form

X(t, x, y, z0) =
∂

∂x
+

k∑
n=0

et(n+1) fn(z0)xn ∂

∂y
,

and, since the t-dependent vector field X on R
3 is tangent for every fixed t to the subman-

ifolds in R
3 of the form z = k for any k ∈ R, the restriction of X to Gz0 , let us say Xz0 ,

exists and it has a smallest Lie algebra Vz0
k+1 = {∂/∂x, ∂/∂y, . . . , xk∂/∂y}. Then, all remain-

ing Vessiot–Guldberg Lie algebras of the restriction of X to Gz0 must contain Vz0
k+1, which has

dimension k + 1. It turns out that the restrictions of X to the leaves of G admit smallest Lie
algebras whose dimensions cannot be bounded. Therefore, X is not a stratified Lie system.

Assume for a while that DV is not regular. As each finite-dimensional Lie algebra of vector
fields on N spans a generalised distribution whose rank is a lower semi-continuous function,
then its rank is locally constant on an open dense subset of N (see [69] for details). Hence,
every stratified Lie system is a foliated Lie system around a generic point.

4. Examples of foliated Lie systems

Let us provide several examples of foliated Lie systems with relevant physical applications.
As a first instance, given a Lie system defined by a t-dependent vector field on a manifold

N of the form

X(t, x) =
r∑

α=1

bα(t)Xα(x), ∀x ∈ N, ∀t ∈ R, (4.1)

for arbitrary t-dependent functions b1(t), . . . , br(t), so that there exist r3 real numbers cαβγ ,
with α, β, γ = 1, . . . , r, such that [Xα, Xβ] =

∑r
γ=1cαβγXγ . If f ∈ C∞(N), then fX is not, in

general, a Lie system any more because the vector fields X̄α = f Xα, with α = 1, . . . , r, do not
need to close on a finite-dimensional Lie algebra. However, if f ∈ C∞(N) is such that Xα f = 0
for α = 1, . . . , r, then the new t-dependent vector field fX is a stratified Lie system.

Consider a t-dependent completely integrable Hamiltonian system (h,ω, T∗
R

n), where
h ∈ C∞(R× T∗

R
n) and T∗

R
n is equipped with its canonical symplectic form ω0. Assume

that there exists a t-dependent canonical transformation h(t, q1, . . . , qn, p1, . . . , pn), where

8
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{q1, . . . , qn, p1, . . . , pn} stand for some cotangent bundle coordinates for T∗
R

n, onto a new t-
dependent Hamiltonian H(t, P1(t), . . . , Pn(t)) that depends only on the momentum coordinates
of a new Darboux coordinate system, {Q1(t), . . . , Qn(t), P1(t), . . . , Pn(t)}, on T∗

R
n for every

t ∈ R (see [1, 31]). In this case, the Hamilton equations for H(t, P) read

dQi

dt
=

∂H
∂Pi

(t, P),
dPi

dt
= 0, i = 1, . . . , n. (4.2)

This system is associated with the t-dependent vector field on T∗
R

n given by

XHJ(t, Q, P) =
n∑

i=1

∂H
∂Pi

(t, P)
∂

∂Qi
. (4.3)

The vector fields {XHJ
t }t∈R span an Abelian Lie algebra VXHJ

of vector fields. If VXHJ
is finite-

dimensional, then XHJ is a Lie system. Nevertheless, this does not need to be the case. For
instance, if H(t, P) =

∑n
i=1 cos(tPi), then

XHJ(t, Q, P) = −
n∑

i=1

sin(tPi)t
∂

∂Qi
(4.4)

and VXHJ
is the infinite-dimensional Abelian Lie algebra spanned by the vector fields Yλ =∑n

i=1 sin(λPi) ∂
∂Qi

, with λ ∈ R+ = {x ∈ R|x > 0}. Therefore, in this particular case, XHJ is
not a Lie system.

Independently of the specific form of H(t, P), the manifold T∗
R

n always admits a foliation
FHJ by leaves

FHJ
k = {(Q, P) ∈ T∗

R
n|P1 = k1, . . . , Pn = kn}, (4.5)

parametrised via an n-tuple k = (k1, . . . , kn) ∈ R
n. System (4.2) reduces on each FHJ

k to

dQi

dt
=

∂H
∂Pi

(t, k), i = 1, . . . , n, (4.6)

which describes the integral curves of the restriction of (4.3) to each FHJ
k , namely

XHJ
k =

n∑
i=1

∂H
∂Pi

(t, k)
∂

∂Qi
.

The vector fields {(XHJ
k )t}t∈R on FHJ

k , for any fixed k ∈ R
n, span a Lie algebra of vector fields,

Vk, contained in the finite-dimensional Lie algebra spanned by the restrictions to FHJ
k of the

vector fields on T∗
R

n given by

VHJ =

〈
∂

∂Q1
, . . . ,

∂

∂Qn

〉
. (4.7)

Hence, Vk is finite-dimensional and XHJ
k is a Lie system for every k ∈ R

n. Moreover, the vec-
tor fields in VHJ span an n-dimensional integrable regular distribution on T∗

R
n, whose leaves

are given by (4.5). Therefore, (4.2) becomes a foliated Lie system and VHJ is an associated
Vessiot–Guldberg Lie algebra.

Every XHJ
k is related to a Lie system whose smallest Lie algebra is contained in the Lie

algebra spanned by the restriction to FHJ
k of the elements of VHJ. Consequently, although the

9
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Lie systems XHJ
k may be different for distinct values of k, they all are restrictions of a Lie system

on T∗
R

n with a Vessiot–Guldberg Lie algebra VHJ. This relation will be studied more carefully
in forthcoming sections.

To illustrate more in detail the properties and applications of foliated and stratified Lie sys-
tems, let us consider another example: a t-dependent generalisation of a Lax pair studied in
[3] to analyse integrable systems. Let glp = R

n
�R

n be the semi-direct sum of Lie algebras
admitting a basis {ei, hi}i=1,...,n such that Rn 	 〈e1, . . . , en〉, Rn 	 〈h1, . . . , hn〉 are Abelian Lie
algebras and

[hi, e j] = 2δi
je j, i, j = 1, . . . , n, (4.8)

where δi
j is the Kronecker delta. Let {v1, . . . , v2n} be the basis of glp∗ dual to the basis

{v1 = e1, . . . , vn = en, vn+1 = h1, . . . , v2n = hn} of glp. Hence, {v1, . . . , v2n} becomes a
global coordinate system on glp. Define a family of t-dependent functions fα : R× glp �→ R

of the form fα = fα(t, vn+1, . . . , v2n) for α = 1, . . . , n i.e. the function really depends on the
last n last variables. We set

dv
dt

= −
n∑

α=1

fα(t, v)advαv =: Xlp(t, v), ∀v ∈ glp, ∀t ∈ R, (4.9)

where advαv = [vα, v].
If glp is a matrix Lie algebra, the Lie bracket of glp becomes the matrix commutator. Then,

(4.9) can be rewritten in the more common manner as a Lax pair

dv
dt

= [v, m(t, v)], m(t, v) =
n∑

α=1

fα(t, v)vα. (4.10)

If glp is a general Lie algebra (not necessarily a matrix Lie algebra), one can alternatively extend
by C∞(R× glp)-linearity the Lie bracket in glp to the space C∞(R× glp) ⊗ glp of glp-valued
t-dependent functions on glp. This allows us to use the expression (4.10) to describe every
system (4.9).

Consider the unique connected and simply connected Lie group GLP with Lie algebra
glp. Then, GLP acts on glp via the adjoint action Ad : (g, v) ∈ GLP × glp �→ Adgv ∈ glp. The
fundamental vector fields of the adjoint action read

Xad
w (v) =

d
dt

∣∣∣∣
t=0

Adexp(−tw)v = −adwv, ∀v,w ∈ glp. (4.11)

This enables us to bring (4.9) into the form

dv
dt

=

n∑
α=1

fα(t, v)Xad
vα

(v). (4.12)

In our chosen coordinate system and in view of (4.8), the fundamental vector fields of the
adjoint action for the Lie algebra glp take the form

Xad
eα (v) = 2vα+n ∂

∂vα
, Xad

hα (v) = −2vα
∂

∂vα
, α = 1, . . . , n.

Hence, Xad
vα

fβ = 0, for α = 1, . . . , 2n, β = 1, . . . , n. In particular, (4.9) takes the form

dvα

dt
= 2 fα(t, v)vα+n,

dvα+n

dt
= 0, α = 1, . . . , n.

10
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Consider the Lie algebra Vglp
= 〈Xglp

1 = 2∂/∂v1, . . . , Xglp

n = 2∂/∂vn〉. The previous system
can be rewritten as

dv
dt

=

n∑
α=1

gα(t, v)Xglp

α (v), gα(t, v) = fα(t, v)vα+n, α = 1, . . . , n. (4.13)

The elements of Vglp
span a distribution DVglp

of rank n on glp. The leaves of the foliation,

Fglp
, associated with DVglp

on glp take the form

Fglp

k = {(v1, . . . , v2n) ∈ glp|vn+1 = k1, . . . v2n = kn}, ∀k = (k1, . . . , kn) ∈ R
n.

(4.14)

Moreover, the functions gα, with α = 1, . . . , n, are t-dependent constants of motion of the
vector fields belonging to Vglp

. Therefore, (4.13) is a foliated Lie system associated with a

Vessiot–Guldberg Lie algebra Vglp
. In particular, the integration of the distributionDVglp

gives
rise to the foliation Fglp

. We can say then that X is an Fglp
-foliated Lie system.

The t-independent Lax pair studied in [3] can be considered as a t-independent foliated Lie
system of the form (4.13) with fα = ∂h/∂vα+n, with h = h(vn+1, . . . , v2n) and α = 1, . . . , n.

System (4.13) does not need to be a Lie system. For example, one can consider the case
when the t-dependent functions gα on ggl take the form

gα(t, v) = sin(tvα+n)vα+n, α = 1, . . . , n.

Then,

Xlp(t, v) = 2
n∑

α=1

sin(tvα+n)vα+n ∂

∂vα

and VXlp
is infinite-dimensional.

5. On foliated superposition rules

Let us now study how one can obtain all the solutions to an F -foliated Lie system passing
through a leaf ofF associated with the foliated Lie system in terms of other particular solutions
passing through the same leaf. This will lead to introduce the notion of a foliated superposition
rule.

Consider again the foliated Lie system (4.2) on T∗
R

n. This system was associated with a
foliation FHJ whose leaves FHJ

k , with k ∈ R
n, were given in (4.5). Particular solutions to (4.2)

have the form

(Q(1)(t), P1 = P0
1, . . . , Pn = P0

n)

for a point P0 = (P0
1, . . . , P0

n) ∈ R
n and a particular solution, Q(1)(t), to

dQi

dt
=

∂H
∂Pi

(t, P0), i = 1, . . . , n.

11
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Moreover, (Q(1)(t) + Q̂, P0
1, . . . , P0

n), for any Q̂ ∈ R
n, is another particular solution of (4.2)

within FHJ
k . In fact, every solution to (4.2) within FHJ

k can be written as

(Q(t), P0
1, . . . , P0

n) = (Q(1)(t) + Q̂, P0
1, . . . , P0

n), (5.1)

for a unique Q̂ ∈ R
n and every expression of this latter form is a solution. This allows for

defining a map ΨHJ : T∗
R

n × T∗
R

n → T∗
R

n given by

ΨHJ(Q(1), P(1); Q̂, P̂) = (Q(1) + Q̂, P̂),

which satisfies that every solution, ξ(t) = (Q(t), P(t)), to (4.2) with initial condition in a FHJ
k

can be brought into the form

ξ(t) = ΨHJ(ξ(1)(t),λ),

in terms of a particular solution ξ(1)(t) of (4.2) with an initial condition in FHJ
k and a parameter

λ ∈ FHJ
k . Moreover, there exists a one-to-one relation between the initial conditions of the

solutions ξ(t) of (4.2) in FHJ
k and the values of λ ∈ FHJ

k . Finally, one has that ΨHJ is a standard
superposition rule involving one particular solution for any Lie system on T∗

R
n of the form

dQi

dt
= bi(t),

dPi

dt
= 0, i = 1, . . . , n,

for arbitrary t-dependent functions b1(t), . . . , bn(t).
One can see that the foliated Lie system related to the Lax pair (4.10) shares similar prop-

erties. This motivates to introduce the following definition.

Definition 5.1. An F -foliated superposition rule depending on m-particular solutions for a
system X on a manifold N relative to a foliation F on N is a superposition rule Ψ : Nm × N → N
for a certain Lie system on N such that

(a) Ψ(Fm+1
k ) ⊂ Fk for every leaf Fk of F ,

(b) Every particular solution, x(t), of X containing a point of a leaf Fk of F , namely there
exists t0 ∈ R such that x(t0) ∈ Fk, takes the form

x(t) = Ψ(x(1)(t), . . . , x(m)(t),λ)

in terms of a particular set x(1)(t), . . . , x(m)(t) of m generic particular solutions of X con-
tained in Fk and a unique λ ∈ Fk.

Let us recall that it stems from the previous definition that if X admits an F -foliated superpo-
sition rule, then the particular solutions of X are always contained in a leaf of F . Note also that
the particular solutions of F taking values in each leaf of F are always described in terms of
the same number m of particular solutions within the same leaf. We will refer to an F -foliated
superposition rule simply as a foliated superposition rule if F is known from the context or
its specific form is irrelevant to our considerations. Note that if X is restricted to a leaf Fk of
F , then all the solutions of X within Fk can be written as a function of a generic family of
particular solutions of X within Fk. Moreover, X can be restricted to each Fk as every Xt, for
t ∈ R, is tangent to the leaves of F . Additionally, the foliated superposition rule becomes a
standard superposition rule for the restriction of X to Fk, which is a Lie system.

In view of definition 5.1, the foliated Lie system (4.2) admits an FHJ-foliated superposition
rule ΨHJ : T∗

R
n × T∗

R
n → T∗

R
n, where the leaves of FHJ take the form (4.5).

12
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Let us stress an interesting fact on the foliated superposition rule for (4.2). The foliated Lie
system (4.2) admits a Vessiot–Guldberg Lie algebra VHJ = 〈X1 = ∂/∂Q1, . . . , Xn = ∂/∂Qn〉.
Then, VHJ is a Vessiot–Guldberg Lie algebra of the Lie systems on T∗

R
n of the form

dQi

dt
= di(t),

dPi

dt
= 0, i = 1, . . . , n,

for arbitrary t-dependent functions d1(t), . . . , dn(t). These Lie systems admit a superposition
rule (cf [13]) given by

Ψ̃ : T∗
R

n × T∗
R

n → T∗
R

n

(Q(1), P(1); Q̂, P̂)) �→ (Q(1) + Q̂, P̂).

Then, ΨHJ becomes an FHJ-foliated superposition rule for (4.2). In other words, the foliated
superposition rule for the foliated Lie system (4.2) can be retrieved via a superposition rule for
the Lie systems related to its Vessiot–Guldberg Lie algebra. An explanation of this fact will
naturally appear in the next section.

Note that it is only the restrictions of a foliated superposition rule Ψ : Nm × N → N to⋃
kFm+1

k what really matters to the study of solutions of foliated Lie systems. Despite this
fact, foliated superposition rules take the form Ψ : Nm × N → N in applications (as in previous
examples) and this latter form can easily be obtained in next sections from the relation between
foliated superposition rules and standard superposition rules.

6. On a foliated Lie–Scheffers theorem

Let us now study the properties of first-order systems of ODEs admitting a foliated super-
position rule. Our results can be considered as a generalisation of the standard geometric
Lie–Scheffers theorem [13, 38, 73]. As a byproduct, our characterisation gives us an algorithm
to obtain foliated superposition rules and clarifies the relation between superposition rules of
Lie systems with a Vessiot–Guldberg Lie algebra V and the foliated superposition rules for
foliated Lie systems with the same Vessiot–Guldberg Lie algebra.

Let us first recall a standard definition and a lemma in the previous literature on Lie systems
(see [13, 15, 41]).

Definition 6.1. If X is a vector field on N, let us say X =
∑n

i=1Xi(x)∂/∂xi, its diagonal
prolongation to Nm is the vector field on Nm given by

X[m] =
m∑

a=1

n∑
i=1

Xi(x(a))
∂

∂xi
(a)

,

where {xi
(a)}a=1,...,m,i=1,...,n is the coordinate system on Nm obtained by defining the same

coordinate system x1, . . . , xn on each copy of N within Nm.

Lemma 6.2 (see [13, 15]). Let X1, . . . , Xr be vector fields on N whose diagonal prolon-
gations to Nm are linearly independent at a generic point. If b1, . . . , br ∈ C∞(Nm+1), then∑r

α=1bαX[m+1]
α = Y [m+1] for a vector field Y on N if and only if b1, . . . , br are constant.

Theorem 6.3. If X is an F -foliated Lie system, then it admits an F -foliated superposition
rule Ψ : Nm × N → N such that ms � dim V, where s is the dimension of the leaves of F .

Proof. Assume that X is an F -foliated Lie system admitting a decomposition (3.1) whose
Vessiot–Guldberg Lie algebra V is such that DV gives the tangent space to the foliation F . Let
us construct an F -foliated superposition rule for X.

13
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The F -foliated Lie system X gives rise on each leaf Fk of F to a Lie system

Xk(t, x) =
r∑

α=1

gα(t, k)Xα|Fk ,

where Xα|Fk is the restriction of Fk of Xα, that can be considered as the restriction to
Fk of a Lie system on N of the form Y(k) =

∑r
α=1gα(t, k)Xα possessing an r-dimensional

Vessiot–Guldberg Lie algebra V = 〈X1, . . . , Xr〉. All Lie systems Y(k) admit a common
superposition rule Ψ : Nm × N → N, but, in general, Ψ(Fm+1

k ) �= Fk. Hence, the curve
Ψ(x(1)(t), . . . , x(m)(t),λ), where x(1)(t), . . . , x(m)(t) are particular solutions to X and λ is within
Fk, is not in general a solution of Xk and, therefore, is not a particular solution to X. Let us pro-
vide a method to obtain a superposition rule for all the Y(k) such that Ψ(Fm+1

k ) ⊂ Fk. This will
give anF -foliated superposition rule for X, becauseΨ(x(1)(t), . . . , x(m)(t),λ) will be a particular
solution to Y(k) within Fk and, therefore, a particular solution to X.

On a neighbourhood of a generic point of N, there exists a local coordinate system adapted to
the foliation F with s-dimensional leaves. In other words, we can construct a local coordinate
system {θ1, . . . , θs, Is+1, . . . , In} whose first s coordinates give rise to a coordinate system on
each leaf Fk and the last n − s coordinates are constant on each leaf of F . Then, one can write
in coordinates

Xα =
s∑

i=1

Xi
α(θ, I)

∂

∂θi
, α = 1, . . . , r, θ = (θ1, . . . , θs), I = (Is+1, . . . , In),

for certain functions Xi
α(θ, I) for i = 1, . . . , s and α = 1, . . . , r. Let us restrict ourselves to a

generic leaf of F , e.g.

Fk = {(θ1, . . . , θs, Is+1, . . . , In) ∈ N : Is+1 = ks+1, . . . , In = kn}, k = (ks+1, . . . , kn).

The vector fields X1, . . . , Xr are tangent to Fk. Hence, their restrictions to Fk can be considered
as vector fields on the leaf. For m large enough, the diagonal prolongations X[m]

1 , . . . , X[m]
r on

Nm become linearly independent at a generic point (see [15] for a proof). As the vector fields
X[m]

1 , . . . , X[m]
r are tangent to Fm

k , one obtains

ms � dim V , (6.1)

where s is by assumption the dimension of a leaf of F . It is worth comparing the above
expression with Lie’s condition, which only shows that m dim N � dim V.

To obtain a foliated superposition rule for X, consider the diagonal prolongations
X[m+1]

1 , . . . , X[m+1]
r to Nm+1. Let us define a local coordinate system on Nm+1 given by

{θ(a)
1 , . . . , θ(a)

s , I(a)
s+1, . . . , I(a)

n } with a = 0, . . . , m. The vector fields X[m+1]
1 , . . . , X[m+1]

r admit

the common first-integrals Ψs+1 = I(0)
s+1, . . . ,Ψn = I(0)

n . Since X[m+1]
1 , . . . , X[m+1]

r span a dis-
tribution of rank dim V � m dim N, one can find, at least, s new functionally independent
first-integrals, Ψ1, . . . ,Ψs, common to X[m+1]

1 , . . . , X[m+1]
r such that

∂(Ψ1, . . . ,Ψn)

∂(θ(0)
1 , . . . , θ(0)

s , I(0)
s+1, . . . , I(0)

n )
�= 0 =⇒ ∂(Ψ1, . . . ,Ψs)

∂(θ(0)
1 , . . . , θ(0)

s )
�= 0.

This gives rise to a mapping Ψ̃ : Nm+1 → N of the form Ψ̃(θ(0), I(0), . . . , θ(m), I(m)) =
(Ψ1, . . . ,Ψn). Then, one can use the Implicit function theorem to find the unique mapping
Φ : Nm × N → N such that

x(0) = Φ(x(1), . . . , x(m), σ) ⇔ Ψ̃(x(0), . . . , x(m)) = σ.
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In particular, Φ(x(1), . . . , x(m),λ) ∈ Fk̄ for λ = (λ1, . . . ,λs, k̄), where λ1, . . . ,λs are arbitrary
and k̄ = (I(0)

s+1, . . . , I(0)
n ). In this way, given m particular solutions x(1)(t), . . . , x(m)(t) to Xk̄

belonging to the same leaf Fk̄, the mapping

Φ(x(1)(t), . . . , x(m)(t), k1, . . . , ks, k̄) = x(t)

gives us every solution x(t) to Xk̄ within the leaf Fk̄ for every (k1, . . . , ks, k̄) ∈ Fk̄. Then, x(t)
is a solution of X and the mapping Φ allows us to obtain all solutions to X within Fk̄ out of
particular solutions to X in the same leaf and a parameter in Fk̄.

Observe that the last theorem gives a procedure to construct a foliated superposition rule.
This will be detailed and illustrated with examples in section 8.2.

Theorem 6.4. If a system X on N admits an F -foliated superposition rule Ψ : Nm × N →
N, then there exists vector fields X1, . . . , Xr on N tangent to the leaves of F and common
t-dependent constants of motion f 1, . . . , fr ∈ C∞(R× N) for X1, . . . , Xr so that

X(t, x) =
r∑

α=1

fα(t, x)Xα(x)

and

[Xα, Xβ] =
r∑

γ=1

hγ
αβXγ , α, β = 1, . . . , r, (6.2)

where hγ
αβ are functions on N taking constant values on the leaves of F .

Proof. Consider that we have an F -foliated superposition rule for a system X on N and the
leaves of the foliation F have dimension s. By the definition of foliated superposition rules,
the particular solutions to X are contained in the leaves of F and the vector fields Xt must be
tangent to its leaves.

Let us fix a point (x(1), . . . , x(m)) ∈ Fm
k of a leaf Fk of F . We can then use the Implicit

function theorem to obtain a new function Φ̃ : Nm × N → N such that

F(x(1), . . . , x(m),λ) = x(0) ⇐⇒ Φ̃(x(0), x(1), . . . , x(m)) = λ.

The function Φ̃ is constant on generic families of m + 1 particular solutions of X, let say
x(0)(t), . . . , x(m)(t), belonging to the same leaf of the foliation F . Therefore,

0 =
d
dt
Φ̃(x(0)(t), . . . , x(m)(t)) = [X[m+1]

t Φ̃](x(0)(t), . . . , x(m)(t)) = 0.

Recall that the foliated superposition rule induces on Fm+1
k a horizontal foliation over Fm

k
relative to the projection onto the last m copies of Fk, i.e. the projection is a diffeomorphism
between a leaf in Fm+1 and its projection onto Fm. The coordinates of the function Φ̃ take
constant values exactly on the leaves of the horizontal foliation. Consequently, the vector fields
{X[m+1]

t }t∈R span a distributionD0 contained in the tangent space to the leaves of the horizontal
foliation onFm+1

k . We can extend such a distribution with the linear combinations of successive
Lie brackets of {X[m+1]

t }t∈R to obtain a regular distribution D, at a generic point of Fm+1
k̄

,
containing D0 and contained in the tangent space to the leaves of the foliation on Fm+1

k̄
.

Consider a finite family of elements X[m+1]
1 , . . . , X[m+1]

u forming a local basis of the distri-
bution D0. As the linear combinations of Lie brackets of diagonal prolongations are diagonal
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prolongations, the previous basis can be expanded to produce a family X[m+1]
1 , . . . , X[m+1]

r of
vector fields spanning a regular distribution D almost everywhere. Since the leaves of our hor-
izontal foliation on Fm+1

k̄
project diffeomorphically onto Fm

k̄ , the vector fields X[m]
1 , . . . , X[m]

r

on Fm
k̄ become linearly independent at a generic point. By lemma 6.2, the Lie brackets of

X[m+1]
1 , . . . , X[m+1]

r close a finite-dimensional Lie algebra of vector fields. Let us denote by

kX1, . . . , kXr the restrictions of X1, . . . , Xr to Fk. Hence,

[ k̄Xα, k̄Xβ] =
r∑

γ=1

cαβ
γ(k̄) k̄Xγ

on Fk̄. The previous procedure can be extended to other leaves Fk′ for different values k′ close
enough to k so that the vector fields X[m+1]

1 , . . . , X[m+1]
r for the initial Fk can also be used

locally. Moreover, X[m+1]
t must be on each leaf a linear combination of the X[m+1]

1 , . . . , X[m+1]
r

with coefficients given by t-dependent functions on Nm+1. Hence,

X[m+1]
t (ξ) =

r∑
α=1

gα(t, ξ)X[m+1]
α (ξ),

for certain functions gα(t, ξ). Let us restrict the above expression to an arbitrary leaf Fm+1
k .

Using lemma 6.2, we obtain on Fk that

Xt(x) =
r∑

α=1

gα(t, x)Xα(x),

and gα(t, x) = gα(t, x′) for points x, x′ in the same leaf of F and every t ∈ R. �
The proof of the last theorem almost reassembles the proof of the Lie–Scheffers theorem.

In despite of that, there exists a relevant difference. At the very end, we cannot ensure that we
obtain a foliated Lie system. The problem is that the vector fields X1, . . . , Xr, which are tangent
to the leaves of F , may close a different Lie algebra on each leaf (see the example in section 3).
Therefore, there will be no vector fields X̂α such that Xα =

∑r
β=1 fαβX̂β for functions fαβ that

are constants on the leaves of F in such a way that 〈X̂1, . . . , X̂r〉 is a Lie algebra of vector fields
on N. This is due to the fact that if such vector fields exist, then the vector fields X1, . . . , Xr

must span a Lie subalgebra of the one spanned by X̂1, . . . , X̂r.

7. Automorphic foliated Lie systems

We showed in section 2 that the evolution of a Lie system can be determined by an automorphic
Lie system. More generally, we are going to prove that the evolution of a foliated Lie system
can be obtained via a foliated Lie system on a principal bundle of a particular type.

Definition 7.1. Consider a trivial principal bundle π : G × M → M with structural r-
dimensional Lie group G acting on G × M by ϕπ : (g1, (g2, k)) ∈ G × (G × M) �→ (g1g2, k) ∈
G × M and a t-dependent vector field on G × M given by

XR
T (t, g, k) =

r∑
α=1

fα(t, k)XR
α(g, k), (7.1)

where XR
1 , . . . , XR

r form a basis of fundamental vector fields of the action of G on G × M, and
f 1, . . . , fr ∈ C∞(R× G × M) are t-dependent common constants of motion of XR

1 , . . . , XR
r ,
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which therefore can be considered as functions on R× M. We call (7.1) an automorphic
foliated Lie system.

Note that every vector field on G can be considered in a natural way as a vector field on G ×
M via the vector bundle isomorphism T(G × M) = TG × TM. Indeed, they can be considered
as vertical vector fields relative to the projection π : G × M → M. Then, XR

1 , . . . , XR
r can be

understood as right-invariantvector fields on G. They also span a finite-dimensional Lie algebra
of vector fields on G × M and a regular r-dimensional generalised distribution. In fact, at each
point of the bundle the values of XR

1 , . . . , XR
r span the vertical space at such point of the bundle

π : G × M → M. Since f1, . . . , f r are common t-dependent constants of motion for vertical
vector fields, they are constant on the fibres of π : G × M → M and they can be considered, in
a unique manner, as t-dependent functions on M. Therefore, (7.1) is a foliated Lie system.

When M is a point, f1, . . . , fr become functions depending only on t and (7.1) turns into a
standard automorphic Lie system [15]. More generally, every trivial principal bundle π : P →
M with a structural group G and fundamental vector fields spanned by X1, . . . , Xr gives rise to
a t-dependent vector field X on P of the form

X(t, x) =
r∑

α=1

fα(t, x)Xα(x), ∀x ∈ P, ∀t ∈ R,

where f 1, . . . , fr ∈ C∞(R× P) are t-dependent constants of motion of X1, . . . , Xr. The trivial-
isation of the principal bundle π : P → M maps diffeomorphically X onto XR

π . Consequently, X
is, up to a local bundle diffeomorphism, an automorphic foliated Lie system.

Let us prove that, in analogy with Lie systems, every F -foliated Lie system gives rise to
an automorphic foliated Lie system, whose solutions allow us to obtain the general solution
of the foliated Lie system. Recall that every t-dependent function on a fiber bundle that is a
t-dependent constant of motion of its vertical vector fields can be considered as a t-dependent
function on the base manifold in a canonical way.

Theorem 7.2. Let X(t, x) =
∑r

α=1 fα(t, x)Xα(x) be a foliated Lie system on N associated
with an r-dimensional Vessiot–Guldberg Lie algebra V = 〈X1, . . . , Xr〉. Let φ : (g, x) ∈ G ×
N �→ φx(g) = φ(g, x) ∈ N be the effective local Lie group action associated with the integra-
tion of the vector fields of V. Assume that the space M of leaves of DV admits a manifold
structure so that the π : N → N/G = M. Let us define the automorphic foliated Lie system on
the total space of the principal bundle π : G × M → M given by

XR
π (t, g, k) = −

r∑
α=1

fα(t, k)XR
α(g, k), ∀t ∈ R, ∀g ∈ G, ∀k ∈ M, (7.2)

where −XR
α and Xα are the fundamental vector fields associated with the same element of TeG

relative to the actions ϕπ and φ, correspondingly. Then, each particular solution x(t) of X
contained in the leaf indexed by k ∈ M can be written as

x(t) = φ(g(t), x(0)), (7.3)

where γ : t ∈ R �→ (g(t), k) ∈ G × M is a particular solution to XR
π (t, g, k) with g(0) = e.

Proof. Let us prove that x(t) given by (7.3) is a particular solution to X for every x(0). Using
(7.3), we have that
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dx
dt

(t0) =
d
dt

∣∣∣∣
t=t0

φ(g(t)g−1(t0),φ(g(t0), x(0)))

= Teφφ(g(t0),x(t0))

(
d
dt

∣∣∣∣
t=t0

g(t)g−1(t0)

)
. (7.4)

Since (g(t), x) is a particular solution to (7.2) and XR(g) = Rg∗eXR(e) for every g ∈ G, one
has that

dg
dt

(t0) = −
r∑

α=1

fα(t0, k)Rg(t0)∗eX
R
α(e) ⇒ Rg−1(t0)∗g(t0)

dg
dt

(t0)

= −
r∑

α=1

fα(t0, k)XR
α(e).

Since −XR
α and Xα are fundamental vector fields related to the same element of TeG relative

to the φ and ϕπ actions, one obtains, after considering XR
α as a right-invariant vector field in

the natural way, that −TeφxXR
α(e) = Xα(x) for every x ∈ N and α = 1, . . . , r. Substituting this

relation in (7.4) and since the functions fα(t, x) are just t-dependent on the orbits under the
action of φ, we obtain

dx
dt

(t0) = −Teφφ(g(t0),x(t0))

[
r∑

α=1

fα(t0, k)XR
α(e)

]
=

r∑
α=1

fα(t0, x(t0))Xα(x(t0)).

In fact, it worth noting that fα(t, x(t0)) depends only on t and π(x(t0)). Therefore, φ(g(t), x(0))
is a solution of X for every x(0) ∈ N. Note that every solution of X on N is of the above form
and the result of our theorem follows. �

8. Applications

Let us use our results of previous sections to study several physical problems. First, we focus
our attention on an extension of the generalised Ermakov system [37]. Next, we study Lax
pairs for t-dependent Hamiltonian systems, extending and explaining certain results in [3]. In
this case, we obtain the automorphic foliated Lie system associated with it. We also analyse
the existence of related Hamiltonian structures, which extends, in a geometric way, some of
the results given in [3].

8.1. A new class of generalised Ermakov systems

There exists an extensive literature on the so-called Ermakov systems and their generalisations
(see [18, 30, 37, 57, 58, 61] and references therein). We propose here a class of generalised
Ermakov systems that cannot be described through Lie systems but they admit a description in
terms of foliated ones.

Ray and Reid introduced the so-called generalised Ermakov systems [58, 61] on R
2
0 =

{(x, y) : xy �= 0} of the form

ẍ = −ω2(t)x +
g(y/x)

yx2
, ÿ = −ω2(t)y +

f (x/y)
xy2

, (x, y) ∈ R
2
0, t ∈ R, (8.1)

where f and g are real functions f , g : R→R and the dots over the variables x, y stand for
their time derivatives. The equation introduced by Milne [46] was given by one of the above
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equations, let us say the one depending on y with f (x/y) = x/y, and its mathematical study
can be found in [54]. Meanwhile, the so-called Ermakov–Pinney system corresponds to the
particularisation g(u) = u and f (u) = 0 for every u ∈ R. This generalisation admits a con-
stant of motion, the so-called generalised Lewis invariant (see [15] and references therein), of
the form

I(x, y, ẋ, ẏ) =
1
2

(xẏ − yẋ)2 +

∫ x/y

[ f (u) − u−2g(1/u)]du. (8.2)

It was noted by Ray, Reid, and Goedert [30, 57, 61], that the termω2(t) can be replaced by much
more general expressions (cf [37]). For instance, there exist generalisations of (8.1) where
ω(t) depends on the time-derivatives of x and y [61]. As a new generalisation, we propose the
second-order system of differential equations given by

ẍ = −ω2(t, I)x +
g(I, y/x)

x2y
, ÿ = −ω2(t, I)y +

f (I, x/y)
xy2

, (x, y) ∈ R
2
0, t ∈ R,

(8.3)

where f , g : R→ R are arbitrary non-vanishing functions and I is given by (8.2). In the case
where f (I, u) = u and g(I, u) = u for every u ∈ R, one recovers the generalised Ermakov sys-
tem studied in [37]. Consider the system of first-order differential equations on TR2

0 of the
form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= vx ,

dy
dt

= vy,

dvx

dt
= −ω2(t, I)x +

g(I, y/x)
x2y

,

dvy

dt
= −ω2(t, I)y +

f (I, x/y)
y2x

,

obtained by adding the variables vx = ẋ and vy = ẏ to (8.3) and where I is a function as in
(8.2) but with ẋ and ẏ replaced by vx and vy, respectively. This system is associated with the
t-dependent vector field X = ω2(t, I)X3 + X1 on TR2

0, where the vector fields

X1 =
f (I, x/y)

xy2

∂

∂vy
+ vy

∂

∂y
+

g(I, y/x)
x2y

∂

∂vx
+ vx

∂

∂x
,

X2 =
1
2

[
y
∂

∂y
− vy

∂

∂vy
+ x

∂

∂x
− vx

∂

∂vx

]
,

X3 = −y
∂

∂vy
− x

∂

∂vx
,

have the commutation relations

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3,

and therefore span a Lie algebra of vector fields VgES isomorphic to sl(2,R). A straightforward
calculation shows that I is a common first-integral to X1, X2, X3 and X1 ∧ X2 ∧ X3 �= 0 on a
dense open subset O ⊂ TR2

0. Then, X becomes a foliated Lie system on O ⊂ TR2
0.
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Let us comment on fact that (8.3) admits a Lie algebra of Lie symmetries isomorphic to
sl(2,R) [37]. Indeed, note that the restriction of X to every leaf of the foliation determined
by the integral leaves of the distribution with DVgES

becomes a Lie system. Since X1 ∧ X2 ∧
X3 �= 0 on these leaves, one obtains a so-called locally automorphic Lie system on each leaf
(see [33]). It was proved in [33] that such a Lie system admits a Lie algebra of Lie symmetries
isomorphic to sl(2,R). Gluing together these vector fields on each leaf, we obtain a Lie algebra
of Lie symmetries of X on TR2

0 isomorphic to sl(2,R). This feature is common to many other
generalisations of Ermakov systems [37].

8.2. How to obtain foliated superposition rules

The proof of theorem 6.3 shows in an implicit way how to obtain a foliated superposition rule
for a foliated Lie system. This section aims to illustrate this method and to describe it in detail.
A careful reading of the proof of theorem 6.3 shows that the steps of the method go as follows:

• Consider a Vessiot–Guldberg Lie algebra VF of an F -foliated Lie system X on an dT-
dimensional manifold T.

• Find the smallest m ∈ N so that the diagonal prolongations of the vector fields of VF span
a distribution of rank dim VF at a generic point of Tm. This states the number of particular
solutions of the foliated superposition rule, namely m.

• Consider a coordinate system θ1, . . . , θs, Is+1, . . . , IdT , adapted to the foliation F around
a generic point x ∈ T, i.e. the first s coordinates give rise to a local coordinate system
on each leaf Fk of F , while the last dT − s coordinates are constant on the leaves of F .
Define the same coordinate system θ1, . . . , θs, Is+1, . . . , IdT on each copy T within Tm+1.
This gives rise to a coordinate system on Tm+1 of the form θ1

(a), . . . , θ
s
(a), Is+1

(a) , . . . , IdT
(a) for

a = 0, . . . , m.
• Define Ψs+1 = Is+1

(0) , . . . ,ΨdT = IdT
(0) and obtain s common first-integrals Ψ1, . . . ,Ψs for

the diagonal prolongations of the elements of VF to Tm+1 satisfying that

∂(Ψ1, . . . ,ΨdT )

∂(θ1
(0), . . . , θ

s
(0), Is+1

(0) , . . . , IdT
(0))

�= 0 ⇔ ∂(Ψ1, . . . ,Ψs)
∂(θ1

(0), . . . , θ
s
(0))

�= 0.

• Assume Ψ1 = k1, . . . ,ΨdT = kdT and obtain θ1
(0), . . . , θs

(0), Is+1
(0) , . . . , IdT

(0) as a function of

k1, . . . , kdT and θ1
(a), . . . , θs

(a), Is+1
(a) , . . . , IdT

(a) for a = 1, . . . , m, i.e.

θi
(0) = Fi(θ(1), I(1), . . . , θ(m), I(m), k1, . . . , kdT ), I j

(0) = k j,

for certain functions Fi : Tm × T → R, with i = 1, . . . , s and j = s + 1, . . . , dT. This gives
rise to a superposition rule Φ : Tm × T → T for every Lie system with a Vessiot–Guldberg
Lie algebra VF of the form (see [13, 15, 41] for details)

Φ(θ(1), I(1), . . . , θ(m), I(m), k1, . . . , kdT ) = (F1, . . . , Fs, Is+1
(0) , . . . , IdT

(0)).

Hence, the map Φ : Tm × T → T becomes an F -foliated superposition rule for X at a
generic point of T.

Let us illustrate our method by applying it to the Lax pair (4.13). In this case, the manifold
where the Lax pair is defined is 2n-dimensional and s = n. We recall that the foliated Lie
system given by the Lax pair (4.13) was related to the Vessiot–Guldberg Lie algebra Vglp

.
The vector fields of a basis of Vglp

are linearly independent at a generic point. Hence, we
can obtain a foliated superposition rule depending on one particular solution. The coordinates
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θ1 = v1, . . . , θn = vn, I1 = vn+1, . . . , In = v2n are adapted to the foliation Fglp
of the system

under study. Consider the coordinate system on (glp)2 of the form θ1
(a), . . . , θ

n
(a), I1

(a), . . . , In
(a)

with a = 0, 1. Take the diagonal prolongations of the elements of Vglp
to (glp)2. To obtain 2n

functionally independent constants of motion for such diagonal prolongations choose Ψs+1 =
I1
(0), . . . ,Ψ

n = In
(0) and Ψi = θi

(0) − θi
(1) for i = 1, . . . , n. Then,

∂(Ψ1, . . . ,Ψn)
∂(θ1

(0), . . . , θn
(0), I1

(0), . . . In
(0))

�= 0.

By fixingΨ1 = k1, . . . ,Ψ2n = k2n, a superposition ruleΦ : glp × glp → glp for every Lie system
with a Vessiot–Guldberg Lie algebra Vglp

reads

Φ(θ(1), I(1), k) = (θ1
(1) + k1, . . . , θn

(1) + kn, kn+1, . . . , k2n).

Restricting oneself to the case kn+1 = I1
(1), . . . , k2n = In

(1), one gets an Fglp
-foliated superpo-

sition rule Ψg : glp × glp → glp such that the particular solutions to Xlp in the leaf Fglp

k , with
k = I(1) ∈ R

n, are of the form

Ψ(θ(1)(t), I(1), k1, . . . , k2n) = (θ1
(1) + k1, . . . , θn

(1) + kn, I1
(1), . . . , In

(1))

for a particular solution (θ(1)(t), I(1)) of Xlp in Fglp

k .

8.3. Lax pairs and automorphic Lie systems

Let us study the systems (4.2) and (4.13) by means of a common automorphic foliated Lie
system.

The foliated Lie system (4.2) is associated with a Vessiot–Guldberg Lie algebra VHJ of the
form (4.7), which is isomorphic to the Lie algebra (Rn,+). We denote by {λ1, . . . ,λn} the dual
basis to the canonical basis {e1, . . . , en} on R

n. The Lie group action obtained by integrating
the vector fields of VHJ reads

ϕ: R
n × T∗

R
n → T∗

R
n,

(λ, Q, P) �→ (Q − λ, P),

where we denote Q = (Q1, . . . , Qn), λ = (λ1, . . . ,λn), and P = (P1, . . . , Pn). Observe that the
Lie group action has been chosen so that the fundamental vector fields of the elements of
the basis {e1, . . . , en} of the Lie algebra (Rn,+) be {∂/∂Q1, . . . , ∂/∂Qn}, respectively. The
space of leaves of the distribution spanned by the elements of VHJ is diffeomorphic to the
manifold M = R

n. Indeed, the variables P1, . . . , Pn on T∗
R

n 	 R
2n can be considered as a

global coordinate system on M, which parametrises the leaves of the foliation FHJ .
The automorphic foliated Lie system related to (4.2) is, in virtue of theorem 7.2, defined on

the (Rn,+)-principal bundle π : Rn × M → M, π : (λ, P) �→ P, and it reads

X(t,λ, P) = −
n∑

α=1

∂H
∂Pα

(t, P)
∂

∂λα
.

Consider now the Lax pair given by (4.10) with

m(t, v) =
n∑

α=1

∂H
∂Pα

(t,λ)eα. (8.4)
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This particular value of m(t, v) was studied in [3] for H being t-independent and it was shown
to lead to a Lax pair for (4.2) under a simple change of variables.

The system (4.13) admits a Vessiot–Guldberg Lie algebra Vad with a basis given by{
Ys

1 = 2vn+1 ∂

∂v1
, . . . , Ys

n = 2v2n ∂

∂vn

}
.

Such vector fields span an Abelian Lie algebra isomorphic to (Rn,+). The distribution spanned
by the vector fields of Vad on the submanifold of ggl of the form

Oad :=

{
(v1, . . . , v2n) ∈ ggl :

2n∏
α=n+1

vα �= 0

}
,

gives rise to a family of leaves of the form (4.14) for
∏n

i=1ki �= 0. Note indeed that Oad is the
submanifold of ggl where the coordinates θi, Ii used in [3] make sense. Therefore, the variables
vn+1, . . . , v2n can be considered as a coordinate system on the space of leaves, Mad, of Vad

within Oad, which becomes a manifold locally diffeomorphic to R
n. It is indeed an open subset

of Rn.
The vector fields Ys

1, . . . , Ys
n can be integrated to obtain a local Lie group action

ϕggl : R
n ×Oad → Oad,

(λ; v1, . . . , v2n) �→ (v1 − 2λ1v
n+1, . . . , vn − 2λnv

2n, vn+1, . . . , v2n),

such that the fundamental vector field of ei in the canonical basis {e1, . . . , en} of the Lie algebra
(Rn,+) of Rn is Ys

i for i = 1, . . . , n. The automorphic foliated Lie system associated with this
foliated Lie system on Oad, i.e.

dv
dt

=

n∑
α=1

gα(t, v)Xglp

α (v) =
n∑

α=1

fα(t, v)Ys
α, gα(t, v) =

∂H
∂Pα+n

vα+n, α = 1, . . . , n,

(8.5)

reduces to the form of a t-dependent vector fields on R
n × Mad of the form

X(t,λ, v) = −
n∑

α=1

∂H
∂Pα+n

(t, vn+1, . . . , v2n)
∂

∂λα
.

Consequently, the solution to the Lax pair (4.10) on Oad for the particular value of m(t, v)
given in (8.4) reduces to the same automorphic Lie system as the foliated Lie system (4.2) on
the submanifold H of T∗

R
n where P1 · · · · · Pn �= 0. Moreover, there exists a diffeomorphism

φ : H ⊂ T∗
R

n →Oad mapping (4.2) onto (4.10). It is easy to see that when two foliated Lie
systems are diffeomorphic, they share the same foliated automorphic Lie system. It is also
immediate that foliated Lie systems related to the same automorphic foliated Lie system do
not need to be diffeomorphic as they may be defined on manifolds of different dimension.

8.4. Stratified Lie–Hamilton systems and r-matrices

Let us illustrate the use of Poisson structures to investigate stratified Lie systems through a
couple of examples. This suggests how to generalise the theory of Lie–Hamilton systems in
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[19] to the realm of stratified Lie systems. As a byproduct, several results on the use of r-
matrices to study stratified Lie systems will be provided, which generalises previous findings
from [3].

• Let {e1, . . . , ed} be a basis of the Lie algebra g of a Lie group G and let {v1, . . . , vd} be its
dual basis. Consider the non-autonomous first-order system of differential equations on g

given by

dx
dt

=

d∑
α=1

fα(t, x)Xad
eα(x), ∀x ∈ g, ∀t ∈ R, (8.6)

where Xad
e1

, . . . , Xad
ed

are the fundamental vector fields of the adjoint action of G on g induced
by {e1, . . . , ed}, respectively, and f1, . . . , fd are common t-dependent constants of motion
for all the vector fields Xad

e1
, . . . , Xad

ed
. Note that (8.6) is a stratified Lie system on g.

Let x0 ∈ Dad be a point where the rank of the distribution Dad spanned by Xad
e1

, . . . , Xad
ed

reaches its maximum, amax, on g. Then, there exist amax vector fields taking values in Dad

which are linearly independent at x0. Such vector fields will also be linearly independent
at every point of a local neighbourhood U of x0, which causes the rank of Dad to be amax

on U (cf [69]). Hence, (8.6) may be restricted to an open submanifold Oad ⊂ g, where
Dad is a regular distribution of rank amax. Then, system (8.6) becomes a foliated Lie system
on Oad.

Let us endow g with a Poisson structure so as to study (8.6) via Poisson geometry
techniques. This will provide an intrinsic geometric definition of the so-called Kirillov
bracket on g introduced in [3] in an algebraic implicit manner. Assume that g admits an
ad-invariant non-degenerate constant metric g =

∑d
α,β=1gαβv

α ⊗ vβ , i.e. g([x, x′], x′′) +
g(x′, [x, x′′]) = 0 for all x, x′, x′′ ∈ g (see [47] for details on ad-invariant metrics). This
allows us to define a metric tensor G =

∑d
μ,ν=1gμν dvμ ⊗ dvν on g and a vector bundle

isomorphism G� : ex ∈ Tg �→ Gx(ex, ·) ∈ T∗g between the tangent and cotangent bundles
of g for all ex ∈ Txg and every x ∈ g. Since G is non-degenerate, G� has an inverse
G� : T∗g→ Tg. Let E be the Euler vector field on g generating dilatations, namely E =∑d

α=1v
α∂/∂vα. It is immediate that E does not depend on the dual basis in g∗ used to

define it, which turns E into a geometric object.
Define

{ f , h}K = G([G�(d f ),G�(dh)]X, E), ∀ f , h ∈ C∞(g), (8.7)

where [·, ·]X is an extension of the Lie bracket on g to X(g). More specifically, if cαβγ ,
with α, β, γ = 1, . . . , d, are the structure constants of the Lie algebra g in the basis
{e1, . . . , ed}, i.e. [eα, eβ] =

∑d
γ=1cαβγeγ for α, β = 1, . . . , d, then [ f ∂/∂vα, g∂/∂vβ]X =∑d

γ=1 f gcαβγ∂/∂vγ for α, β = 1, . . . , d and every f , g ∈ C∞(g). The [·, ·]X on X(g) is
sometimes called a bundle of Lie algebras. Let us prove that (8.7) recovers the expres-
sion of the Kirillov bracket given in [3]. Expression (8.7) is antisymmetric and satisfies
the Leibniz property. Let us prove that (8.7) fulfils the Jacobi identity. Since g is non-
degenerate and {e1, . . . , ed} is a basis of g, the linear functions fα : x ∈ g �→ g(eα, x) ∈ R,
with α = 1, . . . , d, form a coordinate system on g. In the coordinate system { f1, . . . , fd},
expression (8.7) becomes { fα, fβ}K(x) = g([eα, eβ], x) = f [eα ,eβ ](x) for α, β = 1, . . . , d
and every x ∈ g. Then, { fα, { fβ, fγ}K}K(x) = g([eα, [eβ, eγ]], x) for α, β, γ = 1, . . . , d
and x ∈ g. It follows that (8.7) satisfies the Jacobi identity for any three functions chosen
among f1, . . . , fd. Due to this and the fact that (8.7) satisfies the Leibniz property, (8.7)
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obeys the Jacobi identity for all functions on g. Hence, (8.7) becomes a Poisson bracket,
and its Poisson bivector reads

ΛK =
1
2

d∑
α,β=1

ΛK(d fα, d fβ)
∂

∂ fα
∧ ∂

∂ fβ
=

1
2

d∑
α,β,γ=1

cαβ
γ fγ

∂

∂ fα
∧ ∂

∂ fβ
. (8.8)

Recall that the vectors {e1, . . . , ed} can be considered as a coordinate system on the
dual space g∗. The Kirillov–Kostant–Souriau (KKS) bracket on g∗ reads (see [69] for
details)

Λ =
1
2

d∑
α,β,γ=1

cαβ
γeγ

∂

∂eα
∧ ∂

∂eβ
.

The diffeomorphism φ : x ∈ g �→ g(x, ·) ∈ g∗ yields that Λ = φ∗ΛK. Hence, (8.7) is
induced by the KKS bracket on g∗.

Let us use the fact that g is ad-invariant to prove that the vector fields Xad
1 , . . . , Xad

d

on g are Hamiltonian relative to ΛK. The ad-invariance of g gives that
d∑

δ=1
cαβδgδγ =

−
d∑

δ=1
cγβδgδα forα, β, γ = 1, . . . , d. If gαβ are the entries of the inverse matrix of the metric

g in the basis {e1, . . . , ed}, one gets that
d∑

δ,γ,α=1

gθαcαβ
δgδγgγπ = −

d∑
γ,α,δ=1

cγβ
δgδαgγπgθα ⇒

d∑
α=1

gθαcαβ
π = −

d∑
γ=1

cγβ
θgγπ.

Renaming indices and rewriting slightly,
∑d

β=1gγβcαβδ = −
∑d

β=1gδβcαβγ for every

γ,α, δ = 1, . . . , d. Since vμ =
∑d

γ=1gμγ fγ , using (8.8), and in view of previous results,
we have that

ΛK =
1
2

d∑
α,β,γ,μ,ν,σ=1

cαβ
γgγνv

νgμαgβσ ∂

∂vμ
∧ ∂

∂vσ

= −1
2

d∑
β,σ,μ,ν=1

gβσvνcνβ
μ ∂

∂vμ
∧ ∂

∂vσ
.

A short calculation shows that ΛK(dvσ̄ , ·) =
∑d

β=1gβσ̄Xad
eβ

for σ̄ = 1, . . . , d, and then

Xad
eβ

= ΛK

(
d

d∑
σ̄=1

gβσ̄v
σ̄ , ·

)
= ΛK(d fβ, ·) (8.9)

for everyβ = 1, . . . , d. This proves that the Vessiot–Guldberg Lie algebra of (8.6) consists
of Hamiltonian vector fields on g relative to the Kirillov bracket on g. The same applies to
the restriction of the Vessiot–Guldberg Lie algebra of (8.6) and ΛK to Oad. It is worth not-
ing that, in view of (8.9), the characteristic distribution of ΛK is spanned by Xad

1 , . . . , Xad
d .

Hence, the symplectic leaves induced by the Poisson bracket ΛK are indeed the integral
strata of the distribution spanned by Xad

1 , . . . , Xad
d and ΛK can be restricted to such strata.

Whether the Lax pair (8.6) is a Hamiltonian system or not relative to the Kirillov bracket
on Oad is not much relevant to us. In fact, it was proved in section 8.2 that our method
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to derive foliated superposition rules for (8.6) requires to determine some common first-
integrals for Xad

e1
, . . . , Xad

ed
on the strata ofDad onOad and their diagonal prolongations. This

can be achieved by using that these vector fields are Hamiltonian (see [19]). Moreover,
(8.6) can be restricted to the intersection of Oad with any leaf S of Dad. Since Dad is
regular with maximum rank on Oad, a leaf S of Dad, which always has a fixed dimension,
is totally included in Oad or disjoint to it. We can also consider the restriction to some
S ⊂ Oad of X(t, x) =

∑d
α=1 fα(t, x)Xad

α (x), where x ∈ S, which is a Lie–Hamilton system.
Again, whether (8.6) is a Hamiltonian system or not, per se, is not relevant.

• Let us consider now the automorphic foliated Lie system related to the foliated Lie system
(4.12), considered onOad, relative to its Vessiot–Guldberg Lie algebra Vad. The analysis of
this system will again support our idea about how one should endow stratified Lie systems
with a compatible Poisson structure to study their properties.

Consider the Lie algebra glp and its connected and simply connected Lie group GLP. We
consider the elements of glp as left-invariant vector fields on GLP and we set XR

1 , . . . , XR
2n

to be the right-invariant vector field on GLP related to a basis {e1, . . . , e2n} of glp. Let r
be an antisymmetric triangular r-matrix of glp, i.e. r ∈ Λ2

glp and [r, r]SN = 0 with [·, ·]SN

being the Schouten–Nijenhuis bracket (see [24, 35, 69] for details), and define

Λr =
1
2

2n∑
α,β=1

rαβXR
α ∧ XR

β ,

where r = 1
2

∑2n
α,β=1rαβeα ∧ eβ and the vector fields XR

1 , . . . , XR
2n satisfy that their non-zero

commutation relations read [XR
α+n, XR

α] = −2XR
α for α = 1, . . . , n. Then, Λr is a Poisson

bracket on GLP due to the fact that r is a triangular r-matrix. In particular, consider the
r-matrix r =

∑n
α=1eα ∧ hα+n in glp. This gives rise to a Poisson structure

ΛLP
r =

n∑
α=1

XR
α ∧ XR

α+n (8.10)

on GLP.
Let us prove that the right-invariant vector fields XR

1 , . . . , XR
n are Hamiltonian relative

to ΛLP
r . Take the basis of right-invariant differential one-forms {ηR

1 , . . . , ηR
2n} on GLP that

are dual {XR
1 , . . . , XR

2n}. Then,

dηR
α(XR

β , XR
γ ) = −ηR

α([XR
β , XR

γ ]), α, β, γ = 1, . . . , 2n.

Since [XR
β , XR

γ ] is a linear combination of XR
1 , . . . , XR

n , one gets that dηR
α = 0 for α = n +

1, . . . , 2n. Since GLP is simply-connected, ηR
α = dkα for α = n + 1, . . . , 2n and certain

functions kn+1, . . . , k2n on glp. Consequently, if follows from (8.10) that

XR
α = −ΛLP

r (dkα+n, ·), α = 1, . . . , n,

are Hamiltonian vector fields relative to ΛLP
r .

The t-dependent vector field given by (4.12) on Oad is related via theorem 7.2, when
one considers that it admits the restriction of a Vessiot–Guldberg Lie algebra VLP 	 glp

to Oad, to the automorphic foliated Lie system

dg
dt

= −
n∑

α=1

fα(t, vn+1, . . . , v2n)XR
α(g), g ∈ GLP, (8.11)
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on the principal bundle πPL : GLP × Mad → Mad. This automorphic foliated Lie system
admits a Vessiot–Guldberg Lie algebra 〈XR

1 , . . . , XR
n 〉 of Hamiltonian vector fields relative

to ΛLP
r . Hence, a superposition rule relative to this Lie algebra can be obtained using the

methods in [19]. Once again, one obtains that it is interesting to consider stratified Lie
systems whose Vessiot–Guldberg Lie algebras are Hamiltonian relative to some Poisson
bivector.

• Let us provide another example of foliated Lie system related to a Vessiot–Guldberg Lie
algebra of Hamiltonian vector fields relative to a Poisson structure induced by a general
r-matrix.

Recall that if r = 1
2

∑2n
α,β=1rαβeα ∧ eβ is an r-matrix for glp, the Sklyanin bracket on

GLP related to r (see [24]) is given by the Poisson bivector

ΛS =
1
2

2n∑
α,β=1

rαβ(XL
α ∧ XL

β − XR
α ∧ XR

β ). (8.12)

It can be proved that this Poisson bivector admits additionally properties (see [24]), which
justify to call it a Lie–Poisson bracket. It is well known that an r-matrix on g induces a
mapping δr : v ∈ g �→ [r, v]SN ∈ g ∧ g whose transpose leads to a Lie algebra structure on
g∗ and this, in turn, gives rise to a unique connected and simply connected Lie group G∗

related to g∗. Moreover, the r-matrix induces a unique Lie algebra structure, the Drinfeld-
double, on the vector space d = g⊕ g∗ that is ad-invariant, reduces on g to the original
Lie algebra, and it reduces on g∗ to the Lie algebra induced by r (see [24] for details). Let
D be the connected and simply connected Lie group associated to the Lie algebra d. The
embeddings g ↪→ d and g∗ ↪→ d allow us to consider G and G∗ as Lie subgroups of D.
Moreover, every f ∈ D in a close enough open neighbourhood U of e ∈ D can be written
in a unique manner as the product of an element of G by an element of G∗, in that order.
In particular, hg ∈ U, with h ∈ G∗ and g ∈ G admits a unique decomposition hg = ghhg

for gh ∈ G and hg ∈ G∗.
There exists for every elementϑ ∈ g∗ a unique left- and right-invariant differential one-

form on G, let us say ηR
ϑ , ηL

ϑ respectively, whose values at e are equal to ϑ. Then, we define
Xr,dr
ϑ = ΛS(ηR

ϑ , ·) and Xl,dr
ϑ = ΛS(ηL

ϑ, ·). It is known that the vector fields Xr,dr
ϑ , with ϑ ∈ g∗,

span a Lie algebra Vdr
l isomorphic to g∗. Its elements are called left dressing vector fields.

The same applies to the vector fields Xl,dr
ϑ , which generate a Lie algebra Vdr

r isomorphic
to g∗ whose elements are called right dressing vector fields. Both Lie algebras of vector
fields can be integrated to obtain an, at least local, action of G∗ on G, the so-called left and
right dressing actions, respectively.

Finally, let us define a last stratified Lie system related to a Poisson structure generalising
autonomous Hamiltonian systems studied in [9] (see that paper for details on further results).
Let us considerψdr : G∗ × G → G with ψdr(h, g) = gh to be the left-dressing action6. Consider
the cotangent bundle T∗G, which is naturally diffeomorphic to G × g∗ via the diffeomorphism
ϑg ∈ T∗G �→ (g, T∗

e Lgϑg) ∈ G × g∗ for every ϑg ∈ T∗
g G and any g ∈ G. It is also well-known

that ψdr can be lifted to a new Lie group action ψ̂dr of G∗ on T∗G 	 G × g∗ (see [1]). More
particularly (see [9, p 1511, equation (1)]),

ψ̂dr(h, (g,ϑ)) = (ψdr(h, g), Adhgϑ), ∀h ∈ G∗, ∀g ∈ G, ∀ϑ ∈ g∗.

6 There exists a little misprint [9, p 1511, line 5], where it should be h̃ ∈ B instead of h̃ ∈ B∗. This is a minor problem,
but it can lead to a misunderstood in the following.
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This Lie group action has a momentum map J : T∗G 	 G × g∗ → g∗∗ 	 g obtained out of the
fundamental vector fields of ψdr as standardly known (see [8] for details). Let Xdr

1 , . . . , Xdr
r be

a basis of fundamental vector fields for ψ̂dr. One can define the t-dependent vector field on
G × g∗ of the form

Xdr(t, g,ϑ) =
r∑

α=1

fα(t, g,ϑ)Xdr
α (g,ϑ), (8.13)

where f1(t, g,ϑ), . . . , fr(t, g,ϑ) are assumed to be common t-dependent constants of motion
for Xdr

1 , . . . , Xdr
r , which are Hamiltonian vector fields with Hamiltonian functions 〈J(g,ϑ), eα〉,

with α = 1, . . . , r, for a basis {e1, . . . , er} of g. Then, Xdr is a stratified Lie system admitting
a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields. Systems of this type are related
to collective Hamiltonian vector fields on g∗, which admit interesting applications (see [9]).

Previous examples justify the following definition.

Definition 8.1. A stratified Lie–Hamilton system is a stratified Lie system X on a manifold
N admitting a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields relative to a Poisson
structure on N.

Consider the two-dimensional Lie algebra b2 = 〈e1, e2〉 such that [e1, e2] = e2. Let {e1, e2}
be the dual basis to {e1, e2}. A short calculation shows that any ad-invariant symmetric
bilinear map on b2 is degenerate. Alternatively, the same result immediately stems from
[43, proposition 6.1]. Consequently, the first method of this section to relate (8.6) to a stratified
Lie–Hamilton system cannot be applied when (8.6) is defined on b2. Instead, one can use r-
matrices in other manners to define and to study the relations between stratified Lie–Hamilton
systems on b2, its dual b∗2, the connected and simply connected Lie group, B2, of b2,
etcetera.

The Lie algebra b2 is a so-called Frobenius Lie algebra, i.e. there exists f ∈ b∗2, e.g. f = e2,
such that f ([·, ·]), a so-called Kirillov form, is non-degenerate (cf [28, p 215] or [25]). In
fact, f ([·, ·]) = e1 ∧ e2. Additionally, r = e1 ∧ e2 can be inverted to give f ([·, ·]) ∈ b∗2 ⊗ b∗2.
This is why r is called an r-matrix of the Kirillov form f ([·, ·]) on b2. More particularly,
r = e1 ∧ e2 is sometimes called the Jordan r-matrix. Alternatively, one can see that b2 is a
Frobenius Lie algebra because two-dimensional Frobenius Lie algebras are isomorphic to
the unique, up to Lie algebra isomorphisms, non-commutative two-dimensional Lie algebra
[23, 51].

Note that B2 admits a Poisson bivector XL
1 ∧ XL

2 , where XL
1 , XL

2 are left-invariant vector
fields on B2 such that XL

1 (e) = e1 and XL
2 (e) = e2 at the neutral element e in B2. In view of

[28, proposition 7], there exists a local diffeomorphismφ f : g ∈ B2 �→ Ad∗
g f ∈ b∗2 for a certain

f ∈ b∗2. In fact, coadjoint orbits are the symplectic leaves of the KKS bracket on b∗2 [1] and,
since the KKS bracket on b∗2 is non-zero, there exists a two-dimensional coadjoint orbit of B2

in b∗2. Let f ∈ b∗2 belong to such a two-dimensional orbit. Hence, φ f (B2) is an open subset of
b∗2. Moreover,φ f is a Poisson map relative to the KKS bracket on φ f (B2) ⊂ b∗2 and the Poisson
bracket on B2 related to −r (see [28, proposition 7] for details). Moreover, the diffeomorphism
φ f allows for mapping the Poisson–Lie bracket {·, ·}∗ induced by the Poisson–Lie bivector
XL

1 ∧ XL
2 − XR

1 ∧ XR
2 on B2 with a new Poisson bracket on φ f (B2) ⊂ b∗2 (see [24] for details).

Note that functions {eα, ·}∗, with α = 1, 2, give rise to a stratified Lie–Hamilton system on
B2 of the form X =

∑2
α=1bα(t, �)Xα, where Xα = {eα, ·}∗ and � ∈ C∞(B2) is a certain Casimir

of {·, ·}∗. In turn, X can be mapped via the tangent map to φ f onto a stratified Lie–Hamilton
system in φ f (B2).

27



J. Phys. A: Math. Theor. 55 (2022) 385206 J F Cariñena et al

Finally, it stems from [1, 23, 24, 28, 51] that the previous procedure can potentially be
extended to other Frobenius Lie algebras and related r-matrices giving rise, potentially, to new
stratified Lie–Hamilton systems. Note also that our other techniques in this section can be
applied to the Jordan r-matrix. In particular, our second technique concerning (8.10) is related
to a Lie algebra given by a direct sum of n non-commutative two-dimensional Lie algebras and
an r-matrix, which can be considered, up to a non-zero proportional constant, as a sum of n
copies of the Jordan r-matrix. Hence, by fixing n = 1, one obtain results concerning the Jordan
r-matrix. Finally, our third technique (see (8.12) and comments after that) can also be applied
quite easily to the Jordan r-matrix. We leave this as an exercise.

9. Conclusions and outlook

We have provided new applications of stratified and foliated Lie systems, which signifi-
cantly extend the examples given in [12]. We have introduced and studied foliated super-
position rules and first-order systems of ODEs admitting foliated superposition rules. We
have defined automorphic foliated Lie systems and their relations to foliated Lie systems
have been analysed. As applications, we have applied our techniques to a generalisation
of Ermakov systems, we have illustrated our method to obtain foliated superposition rules,
we have studied automorphic Lie systems related to Lax pairs and certain Hamiltonian sys-
tems, and the theory of Lie–Hamilton systems has been extended to stratified Lie–Hamilton
systems.

Our results can be extended to the so-called PDE Lie systems [13, 15, 48, 55]. This can
be accomplished by using the same fundamental ideas here depicted, but the development is
technically much more complicated due to the nature of PDEs. We are studying the possible
applications of such a theory to physical models, which may justify their study. Moreover, we
aim to look for generalisations of our ideas to collective systems related to (8.13), which could
give rise to a generalisation of some results in [9].

A natural generalisation of our techniques leads to analysing systems of ODEs given by a
t-dependent vector field X on a manifold N so that X is tangent a submanifold S ⊂ N, where
X becomes a Lie system. This could lead to the analysis of more general classes of systems of
differential equations.

Several foliated Lie systems studied in the applications of this work are concerned with
Hamiltonian systems admitting a maximal number of functionally independent autonomous
constants of motion in involution relative to the Poisson bracket induced by the associated
symplectic structure. Such systems can be understood as a t-dependent analogue of com-
pletely integrable Hamiltonian systems (see [29, 64, 65] for related notions). We aim to apply
our methods as well as their possible generalisations to the analysis of t-dependent integrable
non-commutative systems, which could be a generalisation of the previous ones admitting a
maximal number of autonomous functionally independent constants of motion that need not
be in involution (see [26, 27, 29, 39, 45, 66]). Finally, it is interesting to study how the theory
of r-matrices can be applied to study the properties of certain Hamiltonian systems induced by
them.
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