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Abstract
The total positivity of collocation, Wronskian and Gram matrices corresponding to
bases of the form (eλt , teλt , . . . , tneλt ) is analyzed. A bidiagonal decomposition
providing the accurate numerical resolution of algebraic linear problems with these
matrices is derived. The numerical experimentation confirms the accuracy of the
proposed methods.
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1 Introduction

In this paper we shall focus on (n + 1)-dimensional spaces of functions formed by
solutions of differential equations. In particular, we are going to consider linearly
independent systems of the form

(eλt , teλt , . . . , tneλt ), λ ∈ R. (1)

In [13] some of the important properties of the more general class of bases {t ieλkt }
are illustrated. In fact, it is shown that their Wronskian and Gram matrices are
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very important in several applications of matrix theory, such as spectral theory,
controllability and the Lyapunov stability theory.

Many fundamental problems in interpolation and approximation require linear
algebra computations related to collocation matrices of the considered bases. On the
other hand, Wronskian matrices arise when solving Hermite interpolation problems,
in particular Taylor interpolation problems. Despite the nice properties of bases (1),
they are not orthogonal. To overcome this inconvenience, they can be transformed
into an orthogonal basis by means of a transformation matrix, which is a Gram
matrix. The inversion of this matrix is required when approximating, in the least-
squares sense, curves by linear combinations of control points and the basis functions.
Clearly, this procedure will become more efficient if the matrix inverse is explicitly
expressed.

Let us recall that the accurate resolution of linear algebraic problems with struc-
tured classes of matrices is receiving increasing attention in the recent years [1,
3–6, 14, 18–26, 29]. For totally positive matrices, it usually requires the explicit
computation of a bidiagonal decomposition of them. In fact, if we achieve the com-
putation of this factorization with high relative accuracy (HRA), we can apply the
algorithms presented in [15–17] to solve with HRA algebraic problems such that the
computation of the matrix inverse, the computation of the eigenvalues and singu-
lar values, or the resolution of some systems of linear equations associated with the
matrix.

In this paper collocation, Wronskian and Gram matrices of the bases (1) are con-
sidered. Unfortunately, they become ill-conditioned as their dimension increases.
This fact can produce substantial errors when numerically performing algebraic
computations and consequently, the resolution with HRA of numerical algebraic
problems when considering these matrices is an important issue in numerical linear
algebra.

The layout of this paper is as follows. Section 2 summarizes some notations and
auxiliary results. Section 3 focuses on the collocation matrices of bases (1). The
strict total positivity of these matrices is proved and their bidiagonal decomposition
is provided. In Section 4, the total positivity of Wronskian matrices of basis (1) is
discussed and their bidiagonal decomposition is deduced. It is also shown that, for
some cases, these Wronskian matrices are not TP. Nevertheless, they are shown to be
closely related to totally positive matrices whose bidiagonal decomposition provides
accurate results. Section 5 focuses on Gram matrices of bases (1). It is proved that
these matrices are strictly totally positive and, using a Neville elimination procedure
(see [10–12]), a bidiagonal factorization of them is deduced. By means of the pro-
posed factorization, the resolution of the above-mentioned algebraic problems can
be achieved with HRA and consequently, the accuracy of the obtained solutions does
not considerably decrease with the dimension of the matrix, as happens with the tra-
ditional methods. Finally, Section 6 presents numerical experiments confirming the
accuracy of the proposed methods for the computation of eigenvalues, singular val-
ues, inverses or the solution of some linear systems related to collocation, Wronskian
and Gram matrices of the considered bases.
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2 Notations and auxiliary results

Let us recall that a matrix is totally positive: TP (respectively, strictly totally positive:
STP) if all its minors are nonnegative (respectively, positive). Several applications of
these matrices can be found in [2, 8, 28].

The Neville elimination (NE) is an alternative procedure to Gaussian elimination
(see [10–12]). Given an (n + 1) × (n + 1), nonsingular matrix A = (ai,j )1≤i,j≤n+1,
the NE process calculates a sequence of matrices

A(1) := A → A(2) → · · · → A(n+1), (2)

so that the entries of A(k+1) below the main diagonal in the k first columns,
1 ≤ k ≤ n, are zeros and so, A(n+1) is upper triangular. In each step of the NE
procedure, the matrix A(k+1) = (a

(k+1)
i,j )1≤i,j≤n+1 is computed from the matrix

A(k) = (a
(k)
i,j )1≤i,j≤n+1 as follows:

a
(k+1)
i,j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a
(k)
i,j , if 1 ≤ i ≤ k,

a
(k)
i,j − a

(k)
i,k

a
(k)
i−1,k

a
(k)
i−1,j , if k + 1 ≤ i, j ≤ n + 1 and a

(k)
i−1,k �= 0,

a
(k)
i,j , if k + 1 ≤ i ≤ n + 1 and a

(k)
i−1,k = 0.

(3)

The (i, j) pivot of the NE process of the matrix A is

pi,j := a
(j)
i,j , 1 ≤ j ≤ i ≤ n + 1, (4)

and, in particular, we say that pi,i is the ith diagonal pivot. Let us observe that when-
ever all pivots are nonzero, no row exchanges are needed in the NE procedure. The
(i, j) multiplier of the NE process of the matrix A is

mi,j :=
{

a
(j)
i,j /a

(j)

i−1,j = pi,j /pi−1,j , if a
(j)

i−1,j �= 0,

0, if a
(j)

i−1,j = 0,
, 1 ≤ j < i ≤ n + 1. (5)

NE is a nice tool to deduce that a given matrix is STP, as shown in this characteri-
zation derived from Theorem 4.1, Corollary 5.5 of [10] and the arguments of p. 116
of [12].

Theorem 1 A given nonsingular matrix A is STP (resp., TP) if and only if the Neville
elimination of A and AT can be performed without row exchanges, all the multipliers
of the Neville elimination of A and AT are positive (resp., nonnegative), and the
diagonal pivots of the Neville elimination of A are all positive.

By Theorem 4.2 and the arguments of p.116 of [12], a nonsingular TP matrix
A = (ai,j )1≤i,j≤n+1 admits a factorization of the form

A = FnFn−1 · · · F1DG1 · · · Gn−1Gn, (6)
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where Fi and Gi , i = 1, . . . , n, are the TP, lower and upper triangular bidiagonal
matrices given by

Fi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0 1

. . .
. . .

0 1
mi+1,1 1

mi+2,2 1
. . .

. . .
mn+1,n+1−i 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

GT
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0 1

. . .
. . .

0 1
m̃i+1,1 1

m̃i+2,2 1
. . .

. . .
m̃n+1,n+1−i 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7)

and D = diag
(
p1,1, p2,2, . . . , pn+1,n+1

)
has positive diagonal entries. The diagonal

entries pi,i of D are the positive diagonal pivots of the Neville elimination of A and
the elements mi,j and m̃i,j are the multipliers of the Neville elimination of A and
AT , respectively. If, in addition, the entries mij , m̃ij satisfy

mij = 0 ⇒ mhj = 0, ∀ h > i and m̃ij = 0 ⇒ m̃ik = 0, ∀ k > j,

(8)
then the decomposition (6) is unique.

In [15], the bidiagonal factorization (6) of an (n+1)× (n+1) nonsingular and TP
matrix A is represented by defining a matrix BD(A) = (BD(A)i,j )1≤i,j≤n+1 such
that

BD(A)i,j :=

⎧
⎪⎨

⎪⎩

mi,j , if i > j,

pi,i , if i = j,

m̃j,i , if i < j .

(9)

Remark 1 Using the results in [10–12], given the bidiagonal factorization (6) of a
nonsingular TP matrix A, a bidiagonal decomposition of A−1 can be computed as

A−1 = G̃1 · · · G̃n−1G̃nD
−1F̃nF̃n−1 · · · F̃1, (10)

where F̃i and G̃i are the lower and upper bidiagonal matrices of the form (7),
obtained when replacing the off-diagonal entries {mi+1,1, . . . , mn+1,n+1−i} and
{m̃i+1,1, . . . , m̃n+1,n+1−i} by {−mi+1,i , . . . , −mn+1,i} and {−m̃i+1,i , . . . , −
m̃n+1,i}, respectively.
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Remark 2 Let us also observe that if a nonsingular TP matrix A is symmetric, then
Gi = FT

i , i = 1, . . . , n, and consequently, the bidiagonal decomposition (6) satisfies

A = FnFn−1 · · · F1DFT
1 · · · FT

n−1F
T
n ,

where the matrices Fi , i = 1, . . . , n, are the lower triangular bidiagonal matri-
ces described in (7), whose off-diagonal entries coincide with the multipliers of the
Neville elimination of A and D is the diagonal matrix with the pivots of the Neville
elimination of A.

Let us also recall that a real value t is computed with high relative accuracy (HRA)
whenever the computed value t̃ satisfies

‖t − t̃‖
‖t‖ < Ku,

where u is the unit round-off and K > 0 is a constant, which is independent of
the arithmetic precision. Clearly, HRA implies a great accuracy since the relative
errors in the computations have the same order as the machine precision. A sufficient
condition to assure that an algorithm can be computed with HRA is the non inaccurate
cancellation condition, sometimes denoted as NIC condition, which is satisfied if
the algorithm only evaluates products, quotients, sums of numbers of the same sign,
subtractions of numbers of opposite sign or subtraction of initial data (cf. [7, 15]).

If the bidiagonal factorization (6) of a nonsingular and TP matrix A can be
computed with HRA, the computation of its eigenvalues and singular values, the
computation of A−1 and even the resolution of systems of linear equations Ax = b,
for vectors b with alternating signs, can be also computed with HRA using the
algorithms provided in [16].

Let (u0, . . . , un) be a basis of a space U of functions defined on I ⊆ R. Given a
sequence of parameters t1 < · · · < tn+1 on I , the corresponding collocation matrix
is defined by

M(t1, . . . , tn+1) := (
uj−1(ti)

)

1≤i,j≤n+1. (11)

Many fundamental problems in interpolation and approximation require linear alge-
bra computations related to collocation matrices. In fact, they appear when imposing
interpolation conditions for a given basis.

If the space U is formed by n-times continuously differentiable functions and
t ∈ I , the Wronskian matrix at t is defined by:

W(u0, . . . , un)(t) := (u
(i−1)
j−1 (t))1≤i,j≤n+1, (12)

where u(i)(t), i ≤ n, denotes the ith derivative of u at t . As usual, we shall use u′(t)
to denote the first derivative of u at t .

Now, let us suppose that U is a Hilbert space of functions on the interval [0, T ],
T ≤ +∞, under a given inner product

〈u, v〉 :=
∫ T

0
u(t)v(t) dt,
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defined for any u, v ∈ U . Then, given linearly independent functions v0, . . . , vn in
U , the corresponding Gram matrix is the symmetric matrix described by:

G(v0, . . . , vn) := (〈vi−1, vj−1〉
)

1≤i,j≤n+1 .

In the following sections we shall focus on (n + 1)-dimensional spaces of functions
formed by solutions of differential equations. In particular, we are going to consider
bases of the form

(eλt , teλt , . . . , tneλt ), (13)

for a given λ ∈ R.
It is well known that the basis (13) forms a fundamental solution set of the differ-

ential equation ψ(D)y(t) = 0 where ψ(t) = (t − λ)n and D := d
dt

(·). In [13] the
applicability of its Wronskian and Gram matrices in spectral theory, controllability
and Lyapunov stability theory is illustrated.

In the following sections we shall analyze the total positivity and obtain the bidi-
agonal factorization (6) of collocation, Wronskian and Gram matrices of the bases
(13). For all considered cases, we are going to achieve algebraic computations with
an accuracy similar to HRA.

3 Total positivity and factorizations of collocationmatrices of bases
{tieλt}
First, let us observe that the basis (13) for λ = 0 is the monomial basis (p0, . . . , pn)

of the space U = Pn of polynomials of degree less than or equal to n, with

pi(t) := t i , i = 0, . . . , n. (14)

It is well known that (p0, . . . , pn) is STP on (0, +∞) and so, given 0 < t1 <

· · · < tn+1, the corresponding collocation matrix

V :=
(
t
j−1
i

)

1≤i,j≤n+1
,

is STP (see Section 3 of [15]). V is a Vandermonde matrix and has relevant appli-
cations in interpolation and numerical quadrature (see [9, 27]). As for BD(V ) we
have

pi,i =
i−1∏

k=1

(ti − tk), 1 ≤ i ≤ n + 1, mi,j =
j−1∏

k=1

ti − ti−k

ti−1 − ti−k−1
, m̃i,j = tj ,

1 ≤ j < i ≤ n + 1 (15)

(see [15] or Theorem 3 of [18]).
Now, let us suppose that (u0, . . . , un) is a system of functions defined on I =

[a, b] and a < t1 < · · · < tn+1 < b is a sequence of nodes such that the
corresponding collocation matrix

A := (
uj−1(ti)

)

1≤i,j≤n+1 (16)
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is STP. Let
A = FnFn−1 · · · F1DG1 · · · Gn−1Gn (17)

be the bidiagonal factorization (6) such that Fi and Gi , i = 1, . . . , n, are the lower
and upper triangular bidiagonal matrices of the form (7) and D is a diagonal matrix
with positive diagonal entries.

Given a positive real function ϕ : [a, b] → R and d0, . . . , dn positive real values,
Theorem 1 of [19] proves that the collocation matrix at a < t1 < · · · < tn+1 < b of
the system (̃u0, . . . , ũn) defined by

ũi (t) := diϕ(t)ui(t), t ∈ [a, b], i = 0, . . . , n, (18)

is also STP. Moreover, its bidiagonal factorization (6) can be obtained from (17). In
fact, the collocation matrix

Ã := (
dj−1ϕ(ti)uj−1(ti)

)

1≤i,j≤n+1

satisfies
Ã = F̃nF̃n−1 · · · F̃1D̃G̃1 · · · G̃n−1G̃n, (19)

where F̃i and G̃i , i = 1, . . . , n, are the lower and upper bidiagonal matrices of the
form

F̃i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
. . .

1
ri+1,1 1

. . .
. . .

rn+1,n+1−i 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G̃T
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
. . .

1
r̂i+1,1 1

. . .
. . .

r̂n+1,n+1−i 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(20)
and D̃ = diag

(
q1,1, . . . , qn+1,n+1

)
. The entries ri,j , r̂i,j and qi,i are given by

ri,j = ϕ(ti)

ϕ(ti−1)
mi,j , r̂i,j = di−1

di−2
m̂i,j , 1 ≤ j < i ≤ n + 1,

qi,i = di−1ϕ(ti)pi,i , 1 ≤ i ≤ n + 1, (21)

where mi,j , m̂i,j and pi,i are the entries of the matrices of the bidiagonal factorization
(17) of the collocation matrix A in (16).

Now, as a direct consequence of Theorem 1 of [19] and taking into account the
bidiagonal decomposition of the Vandermonde matrices described in (15), we can
state the following result providing the bidiagonal factorization (6) of collocation
matrices of bases (13) at positive values. The strict total positivity of the basis follows
from Theorem 1, taking into account the positivity of the pivots and multipliers of
the NE procedure.

Theorem 2 The basis (eλt , teλt , . . . , tneλt ), λ ∈ R, is STP on the interval (0, +∞).
Moreover, given positive values t1 < · · · < tn+1, the bidiagonal factorization (6) of
the collocation matrix

C := (
t
j−1
i eλti

)

1≤i,j≤n+1 (22)
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satisfies

C = F̃nF̃n−1 · · · F̃1D̃G̃1 · · · G̃n−1G̃n, (23)

where D̃ = diag
(
q1,1, . . . , qn+1,n+1

)
and F̃i , G̃i , i = 1, . . . , n, are the lower and

upper triangular bidiagonal matrices of the form (20) with

qi,i = eλti
i−1∏

k=1
(ti − tk), 1 ≤ i ≤ n + 1, (24)

ri,j = eλ(ti−ti−1)
j−1∏

k=1

ti−ti−k

ti−1−ti−k−1
, r̂i,j = tj , 1 ≤ j < i ≤ n + 1. (25)

Let us notice that, from Theorem 2, the bidiagonal factorization (6) of the collo-
cation matrix C in (22) can be represented by means of the (n + 1) × (n + 1) matrix
BD(C) = (BD(C)i,j )1≤i,j≤n+1 such that

BD(C)i,j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eλ(ti−ti−1)
∏j−1

k=1
ti−ti−k

ti−1−ti−k−1
, if i > j,

eλti
∏i−1

k=1(ti − tk), if i = j,

ti , if i < j .

(26)

Let us observe that the computation with HRA of the bidiagonal decomposition
(23) should require the evaluation with HRA of the exponential function involved in
(25). Although this cannot be guaranteed, Section 6 will show that accurate algebraic
computations with the collocation matrices associated with these non-polynomial
bases can be performed.

4 Total positivity and factorizations of Wronskianmatrices of bases
{tieλt}
For the case λ = 0, Corollary 1 of [20] provides the bidiagonal factorization (6) of
the Wronskian matrix of the monomial basis W := W(p0, . . . , pn)(t), which can be
computed with HRA in O(n2) time. Then, for BD(W), we have

BD(W)i,j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if i > j,

(i − 1)!, if i = j,

t, if i < j .

(27)

Using the mentioned result, the following auxiliary result can be easily deduced.

Lemma 1 For a given t ∈ R and n ∈ N, let Uk = (u
(k)
i,j )1≤j,i≤n+1, k = 1, . . . , n, be

the (n + 1) × (n + 1) upper triangular bidiagonal matrix with unit diagonal entries,
such that

u
(k)
i−1,i := 0, i = 2, . . . , k, u

(k)
i−1,i := t, i = k + 1, . . . , n + 1.
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Then, U := U1 · · · Un, is an upper triangular matrix and

U = (ui,j )1≤i,j≤n+1, ui,j =
(

j − 1

i − 1

)

tj−i , 1 ≤ i ≤ j ≤ n + 1. (28)

Proof U is an upper triangular matrix since it is the product of upper triangu-
lar bidiagonal matrices. Using formula (11) of [20], U = diag{0!, 1!, . . . , n!}−1

W(p0, . . . , pn)(x). Finally, since 1
i! (pj (t))

(i) = (
j
i

)
tj−i , 0 ≤ i ≤ j ≤ n, the result

readily follows.

Now we provide the bidiagonal factorization (6) of the Wronskian matrices of
bases (13). By means of the following result the total positivity of these matrices will
be easily analyzed.

Theorem 3 The Wronskian matrix W of the system (eλt , teλt , . . . , tneλt ), λ ∈ R, at
t ∈ R admits a factorization of the form

W = LnLn−1 · · · L1DU1 · · · Un−1Un, (29)

where Lk = (l
(k)
i,j )1≤j,i≤n+1, k = 1, . . . , n, are the lower triangular bidiagonal

matrices with unit diagonal entries, such that

l
(k)
i,i−1 = 0, i = 2, . . . , k, l

(k)
i,i−1 = λ, i = k + 1, . . . , n + 1,

Uk = (u
(k)
i,j )1≤j,i≤n+1, k = 1, . . . , n, are the upper triangular bidiagonal matrices

with unit diagonal entries, such that

u
(k)
i−1,i = 0, i = 2, . . . , k, u

(k)
i−1,i = t, i = k + 1, . . . , n + 1,

and D = diag (d1, . . . , dn+1) with di = (i − 1)!eλt , i = 1, . . . , n + 1.

Proof Using Lemma 1, we deduce that the product LT
1 · · · LT

n is an upper triangular
matrix whose entries are given by (28) and therefore L := Ln · · · L1 is a lower
triangular matrix such that

L = (li,j )1≤i,j≤n+1, li,j =
(

i − 1

j − 1

)

λi−j , 1 ≤ j ≤ i ≤ n + 1.

On the other hand, using again Lemma 1, we have that U := U1 · · · Un is an upper
triangular matrix satisfying

U = (ui,j )1≤i,j≤n+1, ui,j =
(

j − 1

i − 1

)

tj−i , 1 ≤ i ≤ j ≤ n + 1.

In order to prove the result, let us see that W = LDU , that is,

(tj−1eλt )(i−1) =
⎛

⎝
min{i,j}∑

k=1

λi−k(k−1)!
(

i−1

k−1

)(
j−1

k−1

)

tj−k

⎞

⎠ eλt , 1 ≤ i, j ≤ n+1.

(30)
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We shall prove (30) by induction on i. For i = 1,

(
1∑

k=1

λ1−k

(
0

k − 1

)(
j − 1

k − 1

)

(k − 1)!tj−k

)

eλt = tj−1eλt , j = 1, . . . , n + 1,

and (30) holds. Now, let us assume that (30) holds for i ≥ 1. Then, for any j such
that 1 ≤ j ≤ i, we can write

(tj−1eλt )(i) =
⎛

⎝
j∑

k=1

λi−k

(
i − 1

k − 1

)(
j − 1

k − 1

)

(k − 1)!tj−keλt

⎞

⎠

′

=
⎛

⎝
j∑

k=1

λi−k+1
(

i − 1

k − 1

)(
j − 1

k − 1

)

(k − 1)!tj−k

+
j−1∑

k=1

λi−k

(
i − 1

k − 1

)(
j − 1

k − 1

)

(k − 1)!(j − k)tj−k−1

⎞

⎠ eλt

=
⎛

⎝λitj−1 +
j∑

k=2

λi−k+1
((

i − 1

k − 1

)(
j − 1

k − 1

)

(k − 1)!

+
(

i − 1

k − 2

)(
j − 1

k − 2

)

(k − 2)!(j − k + 1)

)

tj−k

)

eλt .

Now, taking into account the following identity

(
i−1

k−1

)(
j−1

k−1

)

(k−1)!+
(

i−1

k−2

)(
j−1

k−2

)

(k−2)!(j−k+1)=
(

i

k−1

)(
j− 1

k−1

)

(k−1)!,
(31)

we deduce

(tj−1eλt )(i) =
⎛

⎝
j∑

k=1

λi−k+1
(

i

k − 1

)(
j − 1

k − 1

)

(k − 1)!tj−k

⎞

⎠ eλt , 1 ≤ j ≤ i. (32)

For any j such that i < j ≤ n + 1, following a similar reasoning and using (31) and
the following identity

(
j − 1

i − 1

)

(i − 1)!(j − i) =
(

j − 1

i

)

i!,
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we have

(tj−1eλt )(i) =
(

i∑

k=1

λi−k

(
i − 1

k − 1

)(
j − 1

k − 1

)

(k − 1)!tj−keλt

)′
=

=
(

λitj−1 +
i∑

k=2

λi−k+1
(

i

k − 1

)(
j − 1

k − 1

)

(k − 1)!tj−k

+
(

j − 1

i

)

i!tj−i−1
)

eλt

=
(

i+1∑

k=1

λi−k+1
(

i

k − 1

)(
j − 1

k − 1

)

(k − 1)!tj−k

)

eλt . (33)

Therefore, from (32) and (33), we can write

(tj−1eλt )(i) =
⎛

⎝
min{i+1,j}∑

k=1

λi−k+1
(

i

k−1

)(
j−1

k−1

)

(k−1)!tj−k

⎞

⎠ eλt , 1≤j ≤n + 1,

and conclude that (30) holds for i + 1.

Let us observe that, from (9) and Theorem 3, the bidiagonal factorization (6) of the
Wronskian matrix of bases (13) can be represented by means of the (n+1)× (n+1)

matrix BD(W) = (BD(W)i,j )1≤i,j≤n+1 such that

BD(W)i,j :=

⎧
⎪⎨

⎪⎩

λ, if i > j,

(i − 1)!eλt , if i = j,

t, if i < j .

(34)

Example 1 Let us illustrate the bidiagonal factorization (29) of the Wronskian matrix
of the bases (eλt , teλt , . . . , tneλt ).

For the particular case n = 2, the bidiagonal factorization of the Wronskian matrix
of the basis (e2t , te2t , t2e2t ) at t ∈ R is

W(e2t , te2t , t2e2t )=
⎛

⎝
1 0 0
0 1 0
0 2 1

⎞

⎠

⎛

⎝
1 0 0
2 1 0
0 2 1

⎞

⎠

⎛

⎝
e2t 0 0
0 e2t 0
0 0 2e2t

⎞

⎠

⎛

⎝
1 t 0
0 1 t

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 t

0 0 1

⎞

⎠ .

The bidiagonal factorization of the Wronskian matrix of (e−t , te−t , t2e−t ) at t ∈ R is

W(e−t , te−t , t2e−t ) =
⎛

⎝
1 0 0
0 1 0
0 −1 1

⎞

⎠

⎛

⎝
1 0 0

−1 1 0
0 −1 1

⎞

⎠

⎛

⎝
e−t 0 0
0 e−t 0
0 0 2e−t

⎞

⎠

⎛

⎝
1 t 0
0 1 t

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 t

0 0 1

⎞

⎠ .

Analyzing the sign of the entries of (34), we can deduce the following result on
the total positivity of the Wronskian matrix of the basis (eλt , teλt , . . . , tneλt ).
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Corollary 1 LetW be the Wronskian matrix of (eλt , teλt , . . . , tneλt ) at a given t ∈ R

and J := diag((−1)i−1)1≤i≤n+1.

i) If λ ≥ 0, then W is TP at t = 0 and STP at t > 0.
ii) If λ < 0, then

WJ := JWJ (35)

is TP at t = 0 and STP at t < 0.

Proof For λ ≥ 0, i) can be directly deduced taking into account that the multipliers
and diagonal pivots of the NE of W and WT are positive if t > 0 and nonnegative
for t = 0. Then i) follows from Theorem 1.

For λ < 0, using again (29) and taking into account that J 2 is the identity matrix,
we can write

WJ = (JLnJ ) · · · (JL1J )(JDJ)(JU1J ) · · · (JUnJ ), (36)

which gives the bidiagonal factorization (6) of WJ . Now, it can be easily checked that
the multipliers and diagonal pivots of the NE of WJ and WT

J are positive for t < 0
and nonnegative for t = 0 and ii) again follows from Theorem 1.

Remark 3 Let us suppose that we can compute eλt with HRA. Then, the bidiagonal
factorization (6) of the Wronskian matrix W := W(eλt , teλt , . . . , tneλt ), when λ ≥ 0
and t ≥ 0, or W := JW(eλt , teλt , . . . , tneλt )J , when λ < 0 and t ≤ 0, can be
computed with HRA and the computation of the eigenvalues and singular values of
W , the inverse matrix W−1 as well as the solution c = (c1, . . . , cn+1)

T of linear
systems Wc = b, where the entries of b = (b1, . . . , bn+1)

T have alternating sign,
can be performed with HRA.

Now, let us focus on the case λ < 0 and t ≤ 0. Since J is a unitary matrix,
the eigenvalues and singular values of W := W(eλt , teλt , . . . , tneλt ) coincide with
those of WJ := JW(eλt , teλt , . . . , tneλt )J and therefore, their computation can be
performed with HRA. Besides, for the accurate computation of W−1, we can take
into account that

W−1 = JW−1
J J . (37)

Since, W−1
J = (w̃i,j )1≤i,j≤+1 can be computed with HRA for λ < 0 and t ≤ 0 and,

by (37), W−1 = ((−1)i+j w̃i,j )1≤i,j≤+1, we can also guarantee the HRA computa-
tion of W−1 by means of a suitable change of sign of the HRA computed entries of
W−1

J . Finally, if we have a linear system of equations Wc = b, where the elements
of b = (b1, . . . , bn+1)

T have the same sign, we can compute with HRA the solution
d ∈ R

n+1 of WJ d = Jb and then c = Jd , the solution of the initial system.

Let us observe that the evaluation with HRA of the exponential value eλt for λ �= 0
and t �= 0 can not be guaranteed and consequently, we cannot assure the compu-
tation with HRA of the bidiagonal factorization (6) of the TP Wronskian matrix of
(eλt , teλt , . . . , tneλt ) for λ ≥ 0 and t ≥ 0, nor the computation with HRA of the bidi-
agonal factorization (6) of the TP matrix WJ in (35) for λ < 0 and t ≤ 0. However,
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Section 6 will show that the resolution of algebraic problems with these matrices can
be performed through the proposed bidiagonal factorizations with high accuracy.

5 Total positivity and factorizations of Grammatrices of bases {tieλt}
As in previous sections, let us first consider the case λ = 0. It is well known that the
polynomial space Pn is a Hilbert space under the inner product

〈p, q〉 :=
∫ 1

0
p(t)q(t) dt, p, q ∈ Pn. (38)

The Gram matrix corresponding to the monomial basis (p0, . . . , pn) is:

G(p0, . . . , pn) :=
(∫ 1

0
t i+j−2 dx

)

1≤i,j≤n+1

=
(

1

i + j − 1

)

1≤i,j≤n+1
. (39)

The matrix H := G(p0, . . . , pn) is a Hilbert matrix and so, a classical example
of notoriously ill-conditioned STP matrix (cf. [15, 16]). However, using formulae
(3.6) of Section 3 of [15], its bidiagonal factorization can be accurately computed in
O(n2) time. For the sake of completeness, the following result obtains the explicit
expression of the pivots and the multipliers of the NE of H , which provide BD(H).

Theorem 4 Let H be the Hilbert matrix H :=
(

1
i+j−1

)

1≤i,j≤n+1
. The multipliers

mi,j and the diagonal pivots pi,i of the Neville elimination of H are given by

mi,j = m̃i,j := (i−1)2

(i+j−1)(i+j−2)
, 1 ≤ j < i ≤ n + 1, (40)

p1,1 := 1, pi+1,i+1 := i2

4(2i−1)(2i+1)
pi,i , 1 ≤ i ≤ n. (41)

Proof Let H(k) := (h
(k)
ij )1≤i,j≤n+1, k = 2, . . . , n + 1, be the matrices obtained after

k − 1 steps of the NE procedure for H . Now, by induction on k, we shall see that

h
(k)
i,j =

(
j−1
k−1

)

k
(
i+k−2
k−1

)(
i+j−1

k

) , 1 ≤ j, i ≤ n + 1. (42)

It can be easily checked that hi,1/hi−1,1 = (i − 1)/i, So, we can write

h
(2)
i,j := hi,j − hi,1

hi−1,1
hi−1,j = 1

i + j−1
− i − 1

i

1

i + j−2
= j − 1

i(i + j−1)(i + j−2)
,

and (42) follows for k = 2. If (42) holds for some k ∈ {2, . . . , n}, we have

h
(k)
i,k

h
(k)
i−1,k

=
(
i+k−3
k−1

)(
i+k−2

k

)

(
i+k−2
k−1

)(
i+k−1

k

) = (i − 1)2

(i + k − 1)(i + k − 2)
, i = k + 1, . . . , n + 1.
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Taking into account that h
(k+1)
i,j = h

(k)
i,j − h

(k)
i,k

h
(k)
i−1,k

h
(k)
i−1,j and the identity

i + k − 2

i − 1

(
i + k − 3

k − 1

)

=
(

i + k − 2

k − 1

)

,

we can write

h
(k+1)
i,j =

(
j−1
k−1

)

k
(
i+k−2
k−1

)

(
1

(
i+j−1

k

) − i − 1

i + k − 1

1
(
i+j−2

k

)

)

, 1 ≤ j, i ≤ n + 1.

Now, since
(

i+j−1

k

)

= k + 1

i + j−k−1

(
i + j−1

k + 1

)

,

(
i + j−2

k

)

= k + 1

i + j−1

(
i + j−1

k + 1

)

,

and

i + j − k − 1 − i − 1

i + k − 1
(i + j − 1) = k(j − k)

i + k − 1
,

we have

h
(k+1)
i,j =

(
j−1
k−1

)

k(k + 1)
(
i+k−2
k−1

)(
i+j−1
k+1

)

(

i + j − k − 1 − i − 1

i + k − 1
(i + j − 1)

)

=
(
j−1
k−1

)
(j − k)

(k + 1)
(
i+k−2
k−1

)(
i+j−1
k+1

)
(i + k − 1)

, 1 ≤ j, i ≤ n + 1.

Finally, taking into account that
(

j − 1

k − 1

)

= k

j − k

(
j − 1

k

)

,

(
i + k − 2

k − 1

)

= k

i + k − 1

(
i + k − 1

k

)

,

we conclude that

h
(k+1)
i,j =

(
j−1
k

)

(k + 1)
(
i+k−1

k

)(
i+j−1
k+1

) , 1 ≤ j, i ≤ n + 1,

and (42) holds for k + 1.
Now, by (4) and (42), the pivots of the NE of H satisfy

pi,j = h
(j)
i,j = (i−1)!2(j−1)!2

(i+j−1)!(i+j−2)! , 1 ≤ j < i ≤ n + 1. (43)

For the particular case i = j , we have

pi,i := (i − 1)!4
(2i − 1)!(2i − 2)!

and the recurrence (41) readily follows. Let us observe that, since the pivots of the
NE of H are nonzero, this elimination can be performed without row exchanges.

Finally, using (5) and (42), the multipliers mi,j can be described as

mi,j = pi,j

pi−1,j
= (i−1)2

(i+j−1)(i+j−2)
, 1 ≤ j < i ≤ n + 1. (44)

Since H is symmetric, using Remark 2, we deduce that m̃i,j = mi,j .
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Taking into account Theorem 4, BD(H) = (BD(H)i,j )1≤i,j≤n+1 satisfies

BD(H)i,j :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i−1)2

(i+j−1)(i+j−2)
, if i > j,

(i−1)!4
(2i−1)!(2i−2)! , if i = j,

(j−1)2

(i+j−1)(i+j−2)
, if i < j .

(45)

Section 8 of [15] illustrates accurate numerical experiments for the computation of
the singular values of the Hilbert matrix H = (1/(i + j − 1))1≤i,j≤20 using its bidi-
agonal decomposition (6) and the Matlab function TNSingularValues provided
in [16].

For λ < 0, the basis functions t ieλt , i = 0, . . . , n, belong to the vector space
L2[0, +∞] of square integrable functions, which is a Hilbert space under the inner
product

〈f, g〉 :=
∫ +∞

0
f (t)g(t) dt . (46)

The Gram matrix of (eλt , teλt , . . . , tneλt ) is the symmetric matrix G=(
gi,j

)

1≤i,j≤n+1
with

gi,j :=
〈
t i−1eλt , tj−1eλt

〉
=

∫ +∞

0
t i+j−2e2λt dt = (i + j − 2)!

(−1

2λ

)i+j−1

,

1 ≤ i, j ≤ n + 1. (47)

The following result provides the multipliers and the diagonal pivots of the Neville
elimination of the Gram matrix G described in (47) and proves that for λ < 0 this
matrix is STP.

Theorem 5 Let G be the Gram matrix of the basis (eλt , teλt , . . . , tneλt ), defined
by (47) for λ < 0. Then the multipliers mi,j and diagonal pivots pi,i of the Neville
elimination of G are given by

mi,j = m̃i,j := (i − 1)
(−1

2λ

)
, 1 ≤ j < i ≤ n + 1, (48)

p1,1 := −1
2λ

, pi+1,i+1 := (
i

2λ

)2
pi,i , 1 ≤ i ≤ n. (49)

Moreover, G is STP and its bidiagonal factorization (6) can be computed with HRA.
Therefore, the computation of the eigenvalues, singular values of G, the matrix G−1,
as well as the solution c = (c1, . . . , cn+1)

T of linear systems Gc = b, where the
entries of b = (b1, . . . , bn+1)

T have alternating sign, can be performed with HRA.
Proof Let G(k) := (g

(k)
ij )1≤i,j≤n+1, k = 2, . . . , n + 1, be the matrices obtained after

k − 1 steps of the Neville elimination of G. First, let us see by induction on k that

g
(k)
i,j = (i + j − 1 − k)!

(
j − 1

k − 1

)

(k − 1)!
(−1

2λ

)i+j−1

, 1 ≤ j, i ≤ n + 1. (50)

For k = 2, taking into account that g
(2)
i,j = gi,j − gi,1

gi−1,1
gi−1,j and the fact that

gi,1

gi−1,1
= (i − 1)

(−1

2λ

)

, i = 2, . . . , n + 1,
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it can be easily checked the following equality

g
(2)
i,j = (i + j − 3)!(j − 1)

(−1

2λ

)i+j−1

, 1 ≤ j, i ≤ n + 1.

Therefore formula (50) holds for k = 2. Let us now suppose that (50) holds for some
k ∈ {2, . . . , n} and then we have

g
(k)
i,k

g
(k)
i−1,k

= (i − 1)

(−1

2λ

)

, i = k + 1, . . . , n + 1.

Since g
(k+1)
i,j = g

(k)
i,j − g

(k)
i,k

g
(k)
i−1,k

g
(k)
i−1,j , we have

g
(k+1)
i,j = g

(k)
i,j − (i − 1)

(−1

2λ

)

g
(k)
i−1,j = (i + j − 2 − k)!

(
j − 1

k

)

k!
(−1

2λ

)i+j−1

,

1 ≤ j, i ≤ n + 1,

and formula (50) also holds for k + 1.
Now, by (4) and (50), we can easily deduce that the pivots pi,j of the Neville

elimination of G satisfy

pi,j = g
(j)
i,j = (i − 1)!(j − 1)!

(−1
2λ

)i+j−1
, 1 ≤ j < i ≤ n + 1. (51)

For the particular case i = j ,

pi,i = (i − 1)!2
(−1

2λ

)2i−1

and (49) clearly holds.
Let us observe that, by formula (51), the pivots of the Neville elimination of G are

nonzero and so, this elimination can be performed without row exchanges.
Finally, using (5) and (51), the multipliers mi,j can be written as

mi,j = pi,j

pi−1,j

=
(i−1)!(j−1)!

(−1
2λ

)i+j−1

(i−2)!(j−1)!
(−1

2λ

)i+j−2
= (i−1)

(−1

2λ

)

, 1≤j <i ≤n + 1.

(52)

Taking into account that G is a symmetric matrix, by Remark 2, we conclude that
m̃i,j = mi,j , 1 ≤ j < i ≤ n+1. Since λ < 0, it can be checked that the pivots and the
multipliers of the NE are all positive and then, by Theorem 1, we conclude that G is
STP. Taking into account that the bidiagonal factorization (6) of G can be computed
with HRA because the positive multipliers and diagonal pivots only require products
and quotients, the algebraic computations with G mentioned in the statement of this
theorem can be performed with HRA with the algorithms provided in [16].
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Now, from Theorem 5, BD(G) = (BD(G)i,j )1≤i,j≤n+1 satisfies

BD(G)i,j :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i − 1)
(−1

2λ

)
, if i > j,

(i − 1)!2
(−1

2λ

)2i−1
, if i = j,

(j − 1)
(−1

2λ

)
, if i < j .

(53)

Section 6 will show the accurate results obtained when solving algebraic problems
with Gram matrices of bases (eλt , teλt , . . . , tneλt ) for λ < 0, using the bidiagonal
factorization (6) provided by Theorem 5 and the algorithms presented in [16, 17].

6 Numerical experiments

Let us suppose that A is an (n+1)×(n+1) nonsingular, TP matrix, whose bidiagonal
decomposition (6) is represented by means of the matrix BD(A) given in (9). If
BD(A) can be computed with HRA, then the Matlab functions TNEigenValues,
TNSingularValues, TNInverseExpand and TNSolve of the library TNTool in
[17] take as input argument BD(A) and compute with HRA the eigenvalues of A, the
singular values of A, its inverse matrix A−1 (using the algorithm presented in [25])
and the solution of systems of linear equations Ax = b, for vectors b whose entries
have alternating signs.

The computational cost of the function TNSolve is O(n2) elementary opera-
tions. On the other hand, as it can be checked on page 303 of reference [25],
TNInverseExpand has a computational cost of O(n2) and then improves the com-
putational cost of the computation of the inverse matrix by solving linear systems
with TNSolve, taking the columns of the identity matrix as data (O(n3)). The
computational cost of the other mentioned functions is O(n3).

We have implemented different Matlab functions for computing the bidiago-
nal decompositions (6) proposed in this paper for the matrices related to the basis
(eλt , teλt , . . . , tneλt ) in (13).

Firstly, using Theorem 2, we have implemented a Matlab function that computes
BD(C), the bidiagonal decomposition (6) of the collocation matrix C of the basis
(13) at positive values t1 < · · · < tn+1, for a given λ ∈ R.

Moreover, taking into account Theorem 3 and Corollary 1, we have also imple-
mented two Matlab functions. One of them computes BD(W), for the Wronskian
matrix W of the basis (13) at t > 0 and λ ≥ 0 and the other one computes BD(WJ ),
for the matrix WJ := JWJ obtained from its Wronskian matrix W at t < 0 for a
given λ < 0 (see (35)).

Finally, considering Theorem 5, we have implemented a Matlab function that com-
putes BD(G), for the Gram matrix G of the basis (13) described in (47) for a given
λ < 0.

Observe that, in all cases, the computational complexity in the computation of the
entries mi,j , m̃i,j , 1 ≤ j < i ≤ n + 1, is O(n2) and in the computation of pi,i ,
1 ≤ i ≤ n + 1, is O(n).
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Table 1 From left to right,
condition number of collocation
matrices at ti = i/(n + 1),
i = 1, . . . , n + 1, Wronskian
matrices at t = 2 and λ = 3,
Wronskian matrices at t = −5
and λ = −4, and finally, Gram
matrices at λ = −1

n+1 κ2(C) κ2(W) κ2(W) κ2(G)

10 2.1 × 109 8.6 × 1013 2.1 × 1020 1.1 × 1015

15 7.0 × 1012 1.6 × 1021 2.0 × 1030 2.4 × 1027

20 2.1 × 1017 4.4 × 1028 9.9 × 1039 1.0 × 1041

25 8.8 × 1021 2.8 × 1036 3.1 × 1049 1.3 × 1046

In the numerical experimentation, we have considered different (n + 1) ×
(n + 1) collocation, Wronskian and Gram matrices corresponding to bases
(eλt , teλt , . . . , tneλt ). Let us observe that the bidiagonal decomposition (6) of the
considered collocation and Wronskian matrices is not computed with HRA and
so, HRA is not preserved in the computation of the algebraic problems mentioned
before. In contrast, let us notice that HRA is preserved in the computations with
the considered Gram matrices. The numerical results illustrate the accuracy of the
computations even when the bidiagonal factorization (6) is not computed with HRA.
The authors will provide upon request the software with the implementation of the
above-mentioned routines.

The 2-norm condition number of the considered matrices has been obtained by
means of the Mathematica command Norm[A,2]· Norm[Inverse[A],2] and is
shown in Table 1. We can clearly observe that the condition numbers significantly
increase with the dimension of the matrices. This explains that traditional methods
do not obtain accurate solutions when solving the aforementioned algebraic prob-
lems. In contrast, the numerical results will illustrate the high accuracy obtained when
using the bidiagonal decompositions deduced in this paper with the Matlab functions
available in [17].

6.1 Eigenvalues and singular values

In our first numerical example we have computed the eigenvalues and singular values
of the considered collocation, Wronskian and Gram matrices. Let us notice that Gram
matrices of bases (eλt , teλt , . . . , tneλt ) are STP for λ < 0 and then, by Theorem
6.2 of [2], all their eigenvalues are positive and distinct. Furthermore, since Gram
matrices are symmetric, their eigenvalues and singular values coincide.

We have computed the eigenvalues and singular values of the considered matrices
with the following algorithms:

– The Matlab functions TNEigenValues and TNSingularValues taking as
argument the matrix representation (9) of the corresponding deduced bidiagonal
decomposition (6).

– The Matlab functions eig and svd.
– Mathematica’s routines Eigenvalues and Singularvalues with a 100-digit

arithmetic.

The values provided by Mathematica have been considered as the exact solution
of the algebraic problem and the relative error e of each approximation has been
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computed as e := |a − ã|/|a|, where a denotes the eigenvalue or singular value
computed with Mathematica and ã the eigenvalue or singular value computed with
Matlab.

In Tables 2 and 3, the relative errors of the approximation to the lowest eigenvalue
and the lowest singular value of the considered matrices are shown. We can observe
that our methods provide very accurate results in contrast to the non accurate results
provided by the Matlab commands eig and svd.

6.2 Inverse matrix

On the other hand, in our second experiment, we have computed the inverse matrix
of the considered collocation, Wronskian and Gram matrices with the following
algorithms:

– Matlab’s function TNInverseExpand with the corresponding matrix represen-
tation (9) of the bidiagonal decomposition (6) as argument.

– Matlab’s routine inv.
– Mathematica’s Inverse routine in 100-digit arithmetic.

To look over the errors we have compared both Matlab approximations with the
inverse matrix A−1 computed by Mathematica using 100-digit arithmetic, taking into
account the formula e = ‖A−1 − Ã−1‖2/‖A−1‖2 for the corresponding relative
error. The obtained relative errors are shown in Table 4. Observe that the relative
errors achieved through the bidiagonal decompositions obtained in this paper are
much smaller than those obtained with the Matlab command inv.

6.3 Linear systems

At last, in our third experiment, we have computed the solutions of the linear systems
Cc = d, Wc = d and Gc = d where d = ((−1)i+1di)1≤i≤n+1 and di , i = 1, . . . , n+
1 are random nonnegative integer values.

We have computed the resolution of these systems of linear equations associ-
ated with the considered collocation, Wronskian and Gram matrices with the next
algorithms:

– Matlab’s function TNSolve by using the matrix representation (9) of the
proposed bidiagonal decompositions (6).

– Matlab’s command \.
– Mathematica’s LinearSolve routine in 100-digit arithmetic.

The vector provided by Mathematica has been considered as the exact solu-
tion c. Then, we have computed in Mathematica the relative error of the computed
approximation with Matlab c̃, taking into account the formula e = ‖c − c̃‖2/‖c‖2.

In Table 5, the relative errors when solving the aforementioned linear systems
for different values of n are shown. Notice that the proposed methods preserve the
accuracy, which does not considerably increase with the dimension of the system in
contrast with the results obtained with the Matlab command \.
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