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Abstract: An iterated function system that defines a fractal interpolation function, where ordinate
scaling is replaced by a nonlinear contraction, is investigated here. In such a manner, fractal interpo-
lation functions associated with Matkowski contractions for finite as well as infinite (countable) sets
of data are obtained. Furthermore, we construct an extension of the concept of α-fractal interpolation
functions, herein called R-fractal interpolation functions, related to a finite as well as to a countable
iterated function system and provide approximation properties of the R-fractal functions. Moreover,
we obtain smooth R-fractal interpolation functions and provide results that ensure the existence of
differentiable R-fractal interpolation functions both for the finite and the infinite (countable) cases.

Keywords: fractal interpolation function; α-fractal function; Rakotch contraction; Matkowski contrac-
tion; smooth fractal functions

1. Introduction

The concept of a fractal interpolation function, or FIF for short, introduced by Barnsley
in [1] gained a lot of attention from researchers and has been intensively studied in recent
years; see, for instance, [2–9]. The interest in this type of interpolation is motivated by the
significant applicability of fractal interpolation to model real-life data. FIFs have various
applications, among which we mention curve fitting (see [10]), image data reconstruc-
tion (see [11]), image compression (see [12]), reconstruction of epidemic curves (see [13])
and others.

Nowadays, the development of technology, digital transformation and data science
make artificial intelligence a basic tool in engineering and in the treatment and processing
of complicated systems that involve a huge quantity of inputs and outputs. The relation
between artificial intelligence and fractal geometry has two aspects: how to deal with data
owning a self-similar structure, and how to add fractal characteristics to the models in order
to capture hidden structures not well fitted by Euclidean objects (see [14,15], for instance).
There are interesting contributions linking fractal geometry and artificial intelligence to
modern scientific and technological fields, such as image encoding ([16]), wind speed
fluctuation ([17]), concrete crack ([18]), fractal antennas ([19]), surface roughness ([20]), etc.
One of the main fields of application of artificial intelligence is health diagnoses, where
bioelectric signals play an essential role. This kind of data shows an unequivocal fractal
character, reported by a huge quantity of bibliographical references. For the processing of
these computerized data, fractal functions are a key tool. This fact makes the development
of the theory of fractal maps a must in order to understand the rich self-similar structure
of the recorded data. Our work follows this need, enlarging the field of the now classic
fractal interpolation. The article we present constructs a more general model for the iterated
function system involved in the definition of a fractal interpolant. Thus, the schematic
scaling term in the y-ordinate, is replaced by a more general contraction. The model we
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present here provides a wider framework for dealing with fractal interpolation of data,
enlarging the possibilities of this methodology.

In [21], Navascués proved that for any continuous function f defined on a compact
interval, there can be a family of fractal interpolation functions f α associated that interpolate
and approximate f , thus obtaining α-fractal functions, which pioneered a novel direction
for research. Various properties of the α-fractal function have been studied (see [22–24]
et al.) and several extensions of the α-fractal functions were introduced, among which we
mention variable scaling factors α-FIFs, hidden-variable, etc. (see, for instance, [25–29]).

A recent direction of research to obtain more general FIF is to replace the classical
Banach contraction principle with more relaxed fixed point results, thus obtaining a wider
spectrum of FIFs. In this respect, the reader is encouraged to refer to [30–32], for instance.
The concept of FIF has been extended by Secelean (see [33]) to countable systems of data by
using countable iterated function systems, or CIFS, for short. For more detailed information
on CIFS, see [34]. More recently, Pacurar combined the idea of using different types
of contractions with countable FIFs (see [35]) and Miculescu et al. introduced a fractal
interpolation scheme for a possible sizable set of data (see [36]).

The first part of the article is devoted to the study of an iterated function system, or
IFS for short, defined on I ×R, where I ⊆ R is compact, which defines a FIF, where the
ordinate scaling is replaced by a nonlinear contraction. In this way, we obtain Matkowski-
FIFs for finite real data and extend our results to the case where we have an infinite
(countable) amount of data. Our scheme can be used for any contraction that allows a
fixed point theorem on a metric space, which emphasizes the significance to the field of
the generalizations brought by the results in the current paper. The second part of the
paper provides an extension of the concept of α-FIF by defining a class of interpolation
functions f R associated with a continuous function f , called R-FIF. We define the R-FIF
for both finite and infinite (countable) collections of data. Moreover, for the infinite case,
we provide different conditions than in [35] for the existence of FIF. In the final part of the
paper, we construct R-smooth fractal interpolation functions and extend the results (see,
for instance, [37]) that prove the existence of differentiable and smooth FIF with any order
of regularity.

2. Preliminaries

Let (X, d) be a metric space.

Definition 1. For the function ϕ : [0, ∞)→ [0, ∞) (called comparison function), a map f : X →
X is:

(i) ϕ-contraction if
d( f (x), f (y)) ≤ ϕ(d(x, y))

for every x, y ∈ X.
(ii) Rakotch contraction if it is a ϕ-contraction where the function ϕ satisfies: t → ϕ(t)

t is

non-increasing and ϕ(t)
t < 1, for every t > 0.

(iii) Matkowski contraction if it is a ϕ-contraction where the function ϕ is non-decreasing and the
following limit holds lim

n→∞
ϕn(t) = 0, for every t > 0.

Remark 1. Each Banach contraction is a Rakotch contraction with the function ϕ(t) = Ct, for
every t > 0, where C ∈ [0, 1).

Remark 2. Each Rakotch contraction is a Matkowski contraction.

Theorem 1. (see [38]) For the complete metric space (X, d), if the function F : X → X is a
Matkowski contraction, then F has a unique fixed point x0 ∈ X and lim

n→∞
Fn(x) = x0 for every

x ∈ X.
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Definition 2. (see [39]) The system of functions { fn }n∈J is called an iterated function system, or
IFS, for short, if:

(i) J is finite;
(ii) fn : X → X are continuous functions;
(iii) (X, d) is a complete metric space.

Remark 3. (see [40]) If the set J in Definition 2 is countable, then the IFS is called a countable
iterated function system, or CIFS, for short.

Definition 3. For x1, x2, . . . , xn−k+1 ∈ R, we consider the partial or incomplete Bell polyno-
mial ([41]) given by

Bn,k(x1; . . . ; xn−k+1) = ∑
j1+j2+···+jn−k+1=k

j1+2j2+···+(n−k+1)jn−k+1=n

n!
j1! . . . jn−k+1!

( x1

1!

)j1
. . .
(

xn−k+1
(n− k + 1)!

)jn−k+1

.

3. Fractal Interpolation Associated with Matkowski Contractions

We consider a general IFS, defined on the set I ×R, where I is a compact real interval,
related to a partition of it. This system will define a FIF of a set of real data. Firstly, we
study the case where the partition has a finite number of points.

3.1. Finite Number of Data

Let ∆ be a partition of I, ∆ : x0 < x1 < · · · < xN , where N > 1, and a finite set of
data {(xi, yi)}N

i=0. We define an IFS through a collection of contractive homeomorphisms
ln : I → In, where In = [xn−1, xn], satisfying the conditions

ln(x0) = xn−1; ln(xN) = xn, (1)

for n = 1, 2, . . . , N and the family of continuous functions Wn : I ×R → R satisfying the
“join-up” conditions:

Wn(x0, y0) = yn−1; Wn(xN , yN) = yn, (2)

for n = 1, 2, . . . , N. Let us consider the space

C0(I) = {g ∈ C(I) : g(x0) = y0, g(xN) = yN}.

C0(I) is a closed set of the complete subspace of continuous functions C(I) and thus, a
complete space with respect to the supremum norm. Let T be the usual operator for fractal
interpolation T : C0(I)→ C0(I) defined as

Tg(x) = Wn(l−1
n (x), (g ◦ l−1

n )(x)), (3)

if x ∈ In. Using the conditions (1) and (2), it is easy to check that Tg is well-defined
and further,

Tg(xi) = yi,

for all i = 0, 1, 2, . . . , N.

Lemma 1. Let us define ϕ(t) = supn ϕn(t), for t ∈ D ⊆ R and n ∈ J. If ϕn is non-decreasing
for any n ∈ J, then ϕ is also non-decreasing.

Proof. It is based on the fact that an ≤ bn for any n ∈ J implies that supn an ≤ supn bn.

The next result ensures the existence of a fractal interpolant of the given data under
some conditions on the maps Wn. From here on, we consider functions ϕn : [0, ∞)→ [0, ∞)
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non-decreasing, such that limm→∞ ϕm
n (t) = 0 for every t > 0, where ϕm

n denotes the
composition of ϕn with itself m times.

Theorem 2. Let Wn be a Matkowski contraction in the second variable, i.e., there exist functions
ϕn : [0, ∞)→ [0, ∞) satisfying the conditions of item iii) of Definition 1 such that

|Wn(x, y)−Wn(x, y′)| ≤ ϕn(|y− y′|),

for all n = 1, 2, . . . , N and y, y′ ∈ R. We assume further that the map defined as ϕ(t) = supn ϕn(t)
is such that limm→∞ ϕm(t) = 0. Then the operator T defined in (3) is a Matkowski contraction,
and consequently, it has a fixed point f∗ ∈ C0(I). The map f∗ is an interpolant of the data (xi, yi),
i = 0, 1, . . . , N.

Proof. The operator T satisfies the following equality, for x ∈ In, g, h ∈ C0(I) :

|Tg(x)− Th(x)| = |Wn(l−1
n (x), g ◦ l−1

n (x))−Wn(l−1
n (x), h ◦ l−1

n (x))|

and by hypothesis,

|Tg(x)− Th(x)| ≤ ϕn(|g(x̃)− h(x̃)|) ≤ ϕ(||g− h||∞),

where x̃ = l−1
n (x). Consequently

||Tg− Th||∞ ≤ ϕ(||g− h||∞),

and T is a Matkowski contraction. According to Theorem 1, it has a unique fixed point f∗.
As said previously, all the images of T are interpolant of the data and, in particular, f∗.

Definition 4. The map f∗ = T f∗ defined in Theorem 2 is a Matkowski fractal interpolation
function of the considered data.

The usual approach to construct a FIF is to obtain a curve that is the attractor of
the IFS {(ln, Wn)}n∈J with Wn(x, y) = αny + qn(x), where αn is lower than 1 in modulus.
However, in this paper, we consider nonlinear contractions instead of the scaling term in
the y-coordinate.

Corollary 1. If the maps Wn : I × R → R are defined as Wn(x, y) = Un(x) + Rn(y), where
Un : I → R is continuous on I, Rn : R→ R is a Matkowski contraction whose comparison function
ϕn satisfies the conditions described in Theorem 2 and the maps Un(x), Rn(y) satisfy the join-up
conditions prescribed in (2), then the IFS {(ln, Wn)} defines a Matkowski FIF.

Proof. It is a straightforward consequence of Theorem 2 .

Remark 4. The maps Wn can be made more general taking Wn(x, y) = Un(x) + Rn(x, y) such
that Rn : I ×R→ R is a Matkowski contraction in the second variable. In this case, we also obtain
a Matkowski FIF. For instance, Rn(y) = αn(x)y satisfies the condition, for ϕn(t) = ‖αn‖∞t, if
‖αn‖∞ < 1.

Example 1. Let us consider the set of data D = {(0, 0), (1/3, 3), (2/3, 6), (1, 5)} in the interval
I = [0, 1] and the maps:

l1(x) = x/3; l2(x) = (x + 1)/3; l3(x) = (x + 2)/3

for the first coordinate, and

W1(x, y) = 13x/6 + xy/(1 + y); W2(x) = 17/6x + 3 + x/(1 + y); W3(x) = −x + 6 + x sin(πy)
3π .
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It is an easy exercise to prove that ln, Wn satisfy the prescribed join-up conditions (1) and (2). Since

|W1(x, y)−W1(x, y′)| ≤ | y
1 + y

− y′

1 + y′
| ≤ |y− y′|

1 + |y− y′| ,

|W2(x, y)−W2(x, y′)| ≤ | 1
1 + y

− 1
1 + y′

| ≤ |y− y′|
1 + |y− y′| ,

for y, y′ ≥ 0, W1, W2 are Matkowski contractions in the second variable, with comparison functions
ϕ1(t) = ϕ2(t) = t/(1 + t). Moreover

|W3(x, y)−W3(x, y′)| ≤ 1
3
|y− y′|,

and W3 is a Matkowski contraction with comparison function ϕ3(t) = t/3. Thus, the operator T
defined by the expression (3) satisfies the inequality

||Tg− Th||∞ ≤ ϕ(||g− h||∞),

where ϕ(t) = max{ϕ1(t), ϕ3(t)}. Consequently, T owns a fixed point defining a fractal function
f∗ that interpolates the set of data D.

3.2. Infinite Number of Data

Consider the countable system of data

∆ = {(xn, yn) ∈ I ×R, n ≥ 0},

where (xn)n≥0 is a strictly increasing and bounded sequence with x0 = a, lim
n→∞

xn = b and

(yn)n≥0 is a convergent sequence with lim
n→∞

yn = M, and I = [a, b]. Let us denote m = y0.

We define a family of contractive homeomorphisms (ln)n≥1, ln : I → In, for every
n ≥ 1, such that

ln(a) = xn−1, ln(b) = xn.

We consider a countable family of continuous functions (Wn)n≥1, Wn : I×R→ R, such that

Wn(a, m) = yn−1, Wn(b, M) = yn.

Let us define the subspace of continuous functions

Cm,M(I) = {g ∈ C(I) : g(a) = m, g(b) = M} (4)

and the operator T : Cm,M(I)→ Cm,M(I) defined as

Tg(x) = Wn(l−1
n (x), g ◦ l−1

n (x)), (5)

if x ∈ In, and Tg(b) = M. Using the “join-up” conditions on ln and Wn, it is easy to
prove that Tg(xn) = yn for any n ≥ 0. The only different issue with respect to the
finite case is that one has to prove that Tg is (left) continuous at b. This is proved in the
reference [35] assuming the hypothesis that diam(Im(Wn)) tends to zero when n goes to
infinity (diam(Im(Wn)) means the diameter of the image of Wn). Thus, we propose the
next theorem as a generalization of Theorem 3 of the same reference.

Theorem 3. Let Wn be Matkowski contractions in the second variable, that is to say, there exist
functions ϕn : [0, ∞)→ [0, ∞) satisfying the conditions of item iii) of Definition 1 such that

|Wn(x, y)−Wn(x, y′)| ≤ ϕn(|y− y′|),
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for all n = 1, . . . , N and y, y′ ∈ R. We assume further that the map defined as ϕ(t) = supn ϕn(t) is
such that ϕ(t) < ∞ for any t > 0 and limm→∞ ϕm(t) = 0, for any t > 0. Then if diam(Im(Wn))
tends to zero when n goes to infinity, the operator T defined in (5) is a Matkowski contraction and,
consequently, has a fixed point f∗ ∈ C0(I). The map f∗ is an interpolant of the data (xn, yn), for
any n ≥ 0.

Proof. Take ϕ(t) = supn ϕn(t) in the proof of the quoted theorem.

Definition 5. The map f∗ = T f∗ defined in Theorem 3 is a Matkowski FIF of the countable
collection of data {(xn, yn)}n≥0.

Corollary 2. If the maps Wn : I × R → R are defined as Wn(x, y) = Un(x) + Rn(y), where
Un : I → R is continuous on I and Rn : R → R is a Matkowski contraction whose function ϕn
satisfies the conditions described in Theorem 3, the IFS {(ln, Wn)}n≥0 defines a Matkowski FIF for
a countable collection of data.

Proof. It is a straightforward consequence of Theorem 3.

Remark 5. Rn (respectively Wn) can be Banach and Rakotch contractions, as particular cases of
Matkowski contractions.

Remark 6. Rn can be defined as Rn(x, y) where Rn is Matkowski in the second variable, and it
also defines a FIF of a countable set of data. For instance, Rn(y) = αn(x)y satisfies the condition,
for ϕn(t) = ‖αn‖∞t, if supn ‖αn‖∞ < 1.

Remark 7. The arguments in this section may serve for any contraction admitting a fixed point
theorem on a complete metric space.

4. R-Fractal Interpolation Functions

Let us consider again the finite case associated with the set {(xi, yi)}N
i=0. Let for

n = 1, 2, . . . , N, ln be defined as in Section 3.1, and define Wn as

Wn(x, y) = f ◦ ln(x)− Sn(x) + Rn(y),

for x ∈ In, where f : I → R is a continuous function such that

f (xi) = yi

for i = 0, 1, . . . , N, Sn : I → R is also continuous, Rn is a Matkowski contraction and

Sn(x0) = Rn(y0), Sn(xN) = Rn(yN).

With these conditions we have

Wn(x0, y0) = yn−1, Wn(xN , yN) = yn

and the IFS {(ln, Wn)} satisfies the conditions of Theorem 2. Consequently, there is a fractal
interpolant to the data.

Definition 6. We call the fractal interpolant f R defined by the IFS described above the R-fractal
interpolation function associated with f .

Remark 8. This definition generalizes the concept of α-fractal function ([21]), taking Rn(y) = αny
and Sn(x) = αnb(t), where b(x0) = f (x0) and b(xN) = f (xN).
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Remark 9. One can consider different types of contractions Rn to define the R-fractal function, so
the results are more general than they appear.

Remark 10. We can generalize the model to Wn(x, y) = f ◦ ln(x)− Sn(x) + Rn(x, y), where
Rn is a Matkowski contraction in the second variable. This is the case for α-fractal functions
with α depending on x : Rn(x, y) = αn(x)y. The function would be ϕn(t) = ||αn||∞t, and
ϕ(t) = supn ||αn||∞t, which satisfies the condition required in Theorem 2.

Let us consider now an infinite collection of data

∆ = {(xn, yn) ∈ I ×R, n ≥ 0},

where (xn)n≥0 is a strictly increasing and bounded sequence with x0 = a, lim
n→∞

xn = b,

(yn)n≥0 is a convergent sequence with lim
n→∞

yn = M and I = [a, b]. Let us denote m = y0.

Let (ln)n≥1, ln : I → In, be contractive homeomorphisms for every n ≥ 1, such that

ln(a) = xn−1, ln(b) = xn.

Let f ∈ C(I) such that f (xn) = yn for all n ≥ 0. For continuity f (b) = M. We also define in
this case for every n ∈ N:

Wn(x, y) = ( f ◦ ln)(x)− Sn(x) + Rn(y), (6)

satisfying, for any natural n, the matching conditions

Wn(x0, y0) = yn−1, Wn(b, M) = yn.

The operator T is defined as the infinite case of the previous section on the space Cm,M(I)
(4). In the next theorem, we prove that T is well-defined. Now we consider different
hypotheses to provide a fractal interpolant of the sequence since the (sufficient) condition
diam(Im(Wn)) → 0 as n tends to infinity is sometimes difficult to check. Therefore, we
propose the following result.

Theorem 4. For the IFS whose map Wn is defined by (6), let Rn be a Matkowski contraction,
that is to say, there exists a function ϕn : [0, ∞)→ [0, ∞) satisfying the conditions of item iii) of
Definition 1 such that

|Rn(y)− Rn(y′)| ≤ ϕn(|y− y′|),

for all n = 1, . . . , N and y, y′ ∈ R. We assume further that the map defined as ϕ(t) = supn ϕn(t)
is such that ϕ(t) < ∞ for any t > 0 and limm→∞ ϕm(t) = 0. Let us choose Rn, Sn such that
limn→∞ Rn(y) = limn→∞ Sn(x) = 0 uniformly. Then the operator T is a Matkowski contraction
and, consequently, has a fixed point f∗ ∈ C0(I). The map f∗ is an interpolant of the data (xn, yn),
for any n ≥ 0.

Proof. Let us prove that Tg is continuous at b. For x ∈ In,

Tg(x)− Tg(b) = f (x) + Rn ◦ g ◦ l−1
n (x)− Sn ◦ l−1

n (x)− f (b).

Given ε > 0, the left continuity of f at b implies that there exists δ > 0 such that b− x <
δ implies

| f (x)− f (b)| < ε

3
.

Now, the convergence to zero of Rn, Sn implies that there are n1, n2 ∈ N such that

|Rn ◦ g(x̃)| < ε

3
,
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|Sn(x̃)| < ε

3
,

where x̃ = l−1
n (x), n ≥ max{n1, n2}. Taking x close enough to b, we obtain

|Tg(x)− Tg(b)| < ε.

The rest is similar to the finite case.

Remark 11. For the case of α-fractal functions, the conditions on the function imply αn → 0 when
n tends to infinity. In the case of variable scaling, the condition is ||αn||∞ → 0.

4.1. Properties of R-Fractal Interpolation Functions

The operator T in the n-th interval is defined as,

Tg(x) = f (x) + Rn ◦ g(l−1
n (x))− Sn(l−1

n (x))

and consequently

||Tg− f ||∞ ≤ sup
n
||Rn ◦ g− Sn||∞ ≤ sup

n
(||Rn||∞ + ||Sn||∞),

assuming that the suprema are finite.
In particular, for g = f R, we have

|| f R − f ||∞ ≤ sup
n
||Rn ◦ f R − Sn||∞. (7)

Moreover, defining x̃ = l−1
n (x), for x ∈ In,

|Tg(x)− Th(x)| = |Rn ◦ g(x̃)− Rn ◦ h(x̃)| ≤ ϕn(|g(x̃)− h(x̃)|) ≤ ϕn(||g− h||∞),

since ϕn is non-decreasing.
If Rn is a Rakotch contraction:

|Tg(x)− Th(x)| < |g(x̃)− h(x̃)|

if g(x̃) 6= h(x̃). If g(x̃) = h(x̃) then Tg(x) = Th(x) and consequently

||Tg− Th||∞ ≤ ||g− h||∞.

In general:
||Tg− Th||∞ ≤ sup

n
ϕn(||g− h||∞).

The fixed point equation for f R in the interval In is:

f R(x) = f (x) + (Rn ◦ f R − Sn) ◦ l−1
n (x). (8)

An emerging question is if f R may agree with f . The answer is given in the next result.

Proposition 1. f R 6= f if and only if there exist n and x ∈ I such that Rn ◦ f (x) 6= Sn(x).

Proof. It is a consequence of the Equation (8), taking f R = f .

4.2. Case Sn = Rn ◦ B

Let us consider the particular case where Sn = Rn ◦ B, and B(a) = m, B(b) = M. Then
for x ∈ In

| f R(x)− f (x)| = |Rn ◦ f R(x̃)− Rn ◦ B(x̃)| ≤ ϕn(| f R(x̃)− B(x̃)|) ≤ ϕn(|| f R − B||∞).
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Thus, if Rn is a Rakotch contraction, we have

|| f R − f ||∞ ≤ sup
n

ϕn(|| f R − B||∞) ≤ || f R − B||∞.

In this case, we can define a binary internal operation in the space Cm,M(I) as:

f ∗ B = f R

that generalizes the fractal convolution defined in ([42]). If we take B = f in the operator T,
for x ∈ In, then

T f (x) = f (x) + Rn ◦ f (l−1
n (x))− Rn ◦ f (l−1

n (x)).

Thus, we obtain that T f (x) = f (x). Consequently, f is the fixed point of T and f R = f .
The conclusion is that

f ∗ f = f ,

and the operation is idempotent.
If Sn = Rn ◦ B and Rn are Banach contractions with contractivity ratio kn, the inequality

(7) becomes:
|| f R − f ||∞ ≤ k|| f R − B||∞,

where k = supn kn, assuming that k < ∞. Inserting in the last norm the map f , we obtain:

|| f R − f ||∞ ≤
k

1− k
|| f − B||∞.

For α-fractal functions ([21]) Rn(y) = αny and Sn(x) = αnb(x) = Rn ◦ b(x). The last
inequality provides the classical bounding error formula for α-fractal functions (k = |α|∞
assuming that |α|∞ = supn |αn| < 1), and the inequality holds for an infinite set of data
as well.

4.3. Linear Case

Let us consider a different case, where Rn and Sn are linearly dependent of f , that is to
say: there exist two sequences of linear operators such that Rn = Ln f and Sn = L′n f . Then
arguing as in ([21]) the operator L : C(I)→ C(I) defined as

L( f ) = f R

is linear. Moreover, if Ln, L′n are bounded,

||L( f )− f ||∞ ≤ sup
n
||Ln( f ) ◦ f R − L′n( f )||∞ ≤ (s + s′)|| f ||∞,

assuming that s = supn ||Ln|| and s′ = supn ||L′n|| are finite. The operator L is also
bounded and

||L|| ≤ (1 + s + s′).

Figure 1 represents an R-fractal function corresponding to a uniform partition of the
interval I = [0, 2π] with five data, function f = sin(x) and maps Rn(y) = sin(ny)/6 for
n = 1, . . . , 4 with comparison functions ϕn(t) = nt/6, ϕ(t) = 2t/3, and Sn(x) = 0 for all n.
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Figure 1. R-fractal sinus.

5. Smooth R-Fractal Interpolation Functions

Let I = [a, b], and a partition of it ∆ : a = x0 < x1 < · · · < xN = b, (N > 1). Let
Ii = [xi−1, xi] and JN = {0, 1, . . . , N}. We consider the finite system of data

∆′ = {(xi, yi,p) ∈ I ×R, i ∈ JN , 0 ≤ p ≤ k}.

Let a finite family of contractive homeomorphisms li : I → Ii be such that

li(a) = xi−1 and li(b) = xi

for every i ∈ JN \ {0} and li(x) = aix + bi.
Let us consider the maps Wi : I ×Y → Y, where Y is a compact subset of R, defined as

Wi(x, y) = f (li(x)) + Ri(y)− Si(x),

where f ∈ Ck(I), and f (p)(xi) = yi,p for all i, p in their ranges. Let us assume that Si ∈ Ck(I)
and Ri ∈ Ck(Y).

Let us define

Ak(I) = {g ∈ Ck(I) : g(p)(a) = y0,p and g(p)(b) = yN,p, for 0 ≤ p ≤ k},

and the norm ‖g‖k = max
p∈Jk
{‖g(p)‖∞}. Then (Ak(I), ‖ · ‖k) is a complete metric space.

Let the operator T : Ak(I)→ Ak(I) be defined as usual

Tg(x) = Wi(l−1
i (x), g(l−1

i (x))),

for every x ∈ Ii.
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Theorem 5. For the data ∆′, the functions li and Wi defined as above let us assume that for every
i ∈ JN and 1 ≤ p ≤ k the following join-up conditions are satisfied:

S(p)
i (a) =

p

∑
j=1

R(j)
i (y0)Bp,j(y0,1; y0,2 . . . ;y0,p−j+1), (9)

S(p)
i (b) =

p

∑
j=1

R(j)
i (yN)Bp,j(yN,1; yN,2 . . . ;yN,p−j+1) (10)

and Si(a) = Ri(y0), Si(b) = Ri(yN). Let us define the operator Vi,p : Ck(I)→ C(I), for p ∈ Jk as
Vi,p(g) = (Ri ◦ g)(p), and assume that Vi,p is a Matkowski contraction for any i, p with comparison
function ϕi,p such that ϕ(t) = sup{a−p

i ϕi,p(t) : 1 ≤ i ≤ N, p ∈ Jk} satisfies the condition ϕm(t)
and tends to zero as m tends to infinity.

Then there exists a smooth R-FIF f R ∈ Ck(I) satisfying the following functional equations,
for every p ∈ Jk:

( f R)(p)(li(x)) = f (p)(li(x))+

+ a−p
i

p

∑
j=1

R(j)
i ( f R(x))Bp,j(( f R)′(x); ( f R)(2)(x); . . . ; ( f R)(p−j+1)(x))− a−p

i S(p)
i (x) =

f (p)(li(x)) + a−p
i (Ri ◦ f R)(p)(x)− a−p

i S(p)
i (x),

(11)

for 1 ≤ p ≤ k, x ∈ I, and

f R(x) = f (x) + (Ri ◦ f R − Si) ◦ l−1
i (x), (12)

for x ∈ Ii. The function f R interpolates the data up to the order p: ( f R)(p)(xi,p) = yi,p for any i, p
in their ranges.

Proof. Let T : Ak(I)→ Ak(I) defined for x ∈ Ii as

(Tg)(x) = f (x) + Ri(g(l−1
i )(x))− Si(l−1

i (x))

The Faà di Bruno formula for the derivative of a composition of functions provides

ap
i (Tg)(p)(li(x)) = ap

i f (p)(li(x)) +
p

∑
j=1

R(j)
i (g(x))Bp,j(g′(x); g(2)(x); . . . ; g(p−j+1)(x))− S(p)

i (x)

and since li satisfy li(a) = li−1(b), we have

ap
i (Tg)(p)(x+i ) = ap

i f p(x+i ) +
p

∑
j=1

R(j)
i (y0)Bp,j(g′(a); g(2)(a); . . . ; g(p−j+1)(a))− S(p)

i (a),

ap
i−1(Tg)(p)(x−i ) = ap

i−1 f (p)(x−i ) +
p

∑
j=1

R(j)
i−1(yN)Bp,j(g′(b); g(2)(b); . . . ; g(p−j+1)(b))− S(p)

i−1(b).

Using the fact that
f (p)(x−i ) = f (p)(x+i ), for every p ∈ Jk

and from (9) and (10), we obtain

(Tg)(p)(x+i ) = (Tg)(p)(x−i ), p ∈ Jk.

Moreover,
(Tg)(p)(a) = f (p)(a) = y0,p, p ∈ Jk,
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(Tg)(p)(b) = f (p)(b) = yN,p, p ∈ Jk,

which proves that T is well defined. Further, for any g ∈ Ak(I)

(Tg)(p)(xi) = yi,p, p ∈ Jk.

On the other hand, for g, h ∈ Ak(I), x ∈ Ii and p ∈ Jk, we have

|(Tg)(p)(x)− (Th)(p)(x)| = a−p
i |(Ri ◦ g)(p)(x)− (Ri ◦ h)(p)(x)|

≤ a−p
i |Vi,pg(x)−Vi,ph(x)|

≤ a−p
i ||Vi,pg−Vi,ph||∞

≤ a−p
i ϕi,p(||g− h||k) ≤ ϕ(||g− h||k)

This proves that T is a Rakotch contraction on Ak(I). Thus, by Theorem 1, we obtain that
T has a unique fixed point f R ∈ Ak(I) and (T f R)(p)(x) = ( f R)(p)(x), which proves the
functional Equations (11) and (12). The function f R interpolates f at the nodes up to the
order k.

Remark 12. In the case of α-fractal functions, Ri(y) = αiy and (Ri ◦ g)(p)(x) = αig(p)(x).
Consequently

||(Ri ◦ g)(p) − (Ri ◦ h)(p)||∞ ≤ |αi|||g(p) − h(p)||∞ ≤ |αi|||g− h||k.

The comparison function of the operator Vi,p defined as Vi,p(g) = (Ri ◦ g)(p), is ϕi,p(t) = |αi|t.
The function defined in the Theorem is ϕ(t) = maxi,p a−p

i |αi|t. The hypothesis required on ϕ holds
if a−k

i |αi| < 1 for any i ∈ JN .

Let us consider now the smooth case with an infinite number of data {(xi, yi)}∞
i=0 such

that a = x0, (xn) is strictly increasing and b = limi→∞ xi. Let Ii = [xi−1, xi]. We consider the
system of data, for p ≥ 0 :

∆′ = {(xi, yi,p) ∈ I ×R, i ≥ 0, 0 ≤ p ≤ k},

such that limi→∞ yi,p = Mp ∈ R for every p.

Let an infinite family of contractive homeomorphisms li : I → Ii be such that

li(a) = xi−1 and li(b) = xi

for every i ≥ 1 and li(x) = aix + bi, I = [a, b].
Let us consider the maps Wi : I × Y → Y, where Y is a compact subset of R, be

defined as
Wi(x, y) = f (li(x)) + Ri(y)− Si(x),

where f ∈ Ck(I), and f (p)(xi) = yi,p for all i, p. The k-continuity of f implies that f (p)(b) =
Mp for 0 ≤ p ≤ k. Let us assume that Si ∈ Ck(I), Ri ∈ Ck(Y).

Let

Ak(I) = {g ∈ Ck(I) : g(p)(a) = y0,p and g(p)(b) = Mp, for 0 ≤ p ≤ k},

and the norm ‖g‖k = max
p∈Jk
{‖g(p)‖∞}, then (Ak(I), ‖ · ‖k) is a complete metric space.

Let the operator T : Ak(I)→ Ak(I) be defined as usual

T f (x) = Wi(l−1
i (x), f (l−1

i (x))),
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for every x ∈ Ii.

Theorem 6. For the data ∆′, let the functions li and Wi be defined as above for every i ≥ 0. Let us
assume that the following join-up conditions are satisfied:

S(p)
i (a) =

p

∑
j=1

R(j)
i (y0)Bp,j(y0,1; y0,2 . . . ;y0,p−j+1),

S(p)
i (b) =

p

∑
j=1

R(j)
i (M0)Bp,j(M1; M2 . . . ;Mp−j+1),

for 1 ≤ p ≤ k, and Si(a) = Ri(y0), Si(b) = Ri(M0). Let us define the operator Vi,p : Ck(I) →
C(I), for p ∈ Jk defined as Vi,p(g) = (Ri ◦ g)(p), and assume that Vi,p is a Matkowski contraction
for any i, p with comparison function ϕi,p such that ϕ(t) = sup{a−p

i ϕi,p(t) : i ∈ N, p ∈ Jk}
satisfies the conditions ϕ(t) < ∞ for all t and ϕi(t) tends to zero as i tends to infinity. Additionally,
let us assume that ||Ri||k → 0 and ||Si||k → 0 when i→ ∞.

Then there exists a smooth R-FIF f R ∈ Ck(I), such that for every p ≥ 1, it satisfies the
following functional equations:

( f R)(p)(li(x)) = f (p)(li(x))+

+ a−p
i

p

∑
k=1

R(k)
i ( f R(x))Bp,k(( f R)′(x); ( f R)(2)(x); . . . ; ( f R)(p−k+1)(x))− a−p

i S(p)
i (x) =

f (p)(li(x)) + a−p
i (Ri ◦ f R)(p)(x)− a−p

i S(p)
i (x),

for x ∈ I and
f R(x) = f (x) + (Ri ◦ f R − Si) ◦ l−1

i (x),

for x ∈ Ii. The function f R interpolates the data up to the order p: ( f R)(p)(xi,p) = yi,p for any i, p.

Proof. The arguments are analogous to those of Theorems 4 and 5.

Remark 13. For α-fractal functions, the operators Vi,p are defined as in the finite case (Remark 12).
However, the conditions to be held here are: If ci = a−k

i |αi| then c = supi ci < 1 and ci → 0 as i
tends to infinity.

6. Conclusions

The main result of this paper concerns IFSs that define FIFs associated with a set of
interpolation data, typically defined as

Fn(x, y) = (ln(x), Wn(x, y)),

where the maps ln are homeomorphisms, Wn are continuous and both satisfy the join-up
conditions (1), (2). We have proved that for maps Wn of type Wn(x, y) = Un(x) + Rn(y), or
Wn(x, y) = Un(x)+ Rn(x, y), where Un is continuous and Rn is a Matkowski contraction, or
a Matkowski contraction in the second variable, respectively, the IFS defines a continuous
FIF interpolating the data. More precisely, we have proved that the classical vertical
scaling term αny (or αn(x)y) may be substituted by a general Matkowski contraction in the
y-variable. This result is true for a finite set and for a countable family of nodal data.

In particular, we have generalized the concept of α-fractal function to R-fractal function
when the described change in the y-coordinate of Wn is performed. Thus, we have defined
more general fractal perturbations of continuous functions. In the last part of the paper, we
construct smooth R-fractal functions in the framework of the IFS described above.
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