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Abstract: In this paper, we treat some fractional differential equations on the sequence Lebesgue
spaces `p(N0) with p ≥ 1. The Caputo fractional calculus extends the usual derivation. The operator,
associated to the Cauchy problem, is defined by a convolution with a sequence of compact support
and belongs to the Banach algebra `1(Z). We treat in detail some of these compact support sequences.
We use techniques from Banach algebras and a Functional Analysis to explicity check the solution of
the problem.
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1. Introduction

The main objective of this paper is to study the following semidiscrete Cauchy differ-
ential equation {

∂tu(n, t) = Bu(n, t) + g(n, t), n ∈ N0, t > 0,
u(n, 0) = ϕ(n), n ∈ N0,

(1)

where B is a convolution operator in the discrete variable, i.e.,

Bu(n, t) = ∑
j≥0

b(n− j)u(j, t), (2)

and the sequence b belongs to the Banach algebra `1(Z). A first example is the one-
dimensional discrete Laplacian, ∆d, which is defined by b = δ−1 − 2δ0 + δ1, where δi
denotes the discrete Dirac measure given by the Kronecker delta, i.e., δi(n) = 1 if i = n
and 0 in other case. Equation (1) is usually called the lattice diffusion equation or the
semidiscrete heat equation.

These classes of equations have received a wide interest in the mathematical literature
in the last years. They appear in diverse areas of knowledge. For example, in probability
theory, the function u(n, t) of (1) with B = ∆d, expresses the probability that a continuous-
time symmetric random walk arrives at point n at time t; ([1], [Section 4]). In chemical
physics, (1) describes the flow of a liquid in an infinite row of tanks where two neighbors
are always connected [2], [Section 3]. Another amazing application takes place in transport
theory. Equation (1) expresses the dynamics of an infinite chain of cars, each of them being
coupled to its two neighbors. The function u(n; t) is the displacement of car n at time t from
its equilibrium point ([3], [Example 1]). Quite recently, Slavik [4] studied the asymptotic
behavior of solutions of (1) when B = ∆d, showing that a bounded solution approaches
the average of the initial values if the average exists. In the case that b = δ−1 − δ0 in (2),
we obtain the forward difference operator B = ∆ and then the Equation (2) describes the
semidiscrete transport system, treated recently by Abadias et al. in [5].
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Other interesting references, such as [6,7], present fundamental solutions for (1) and
the second-order semidiscrete equation{

∂ttu(n, t) = Bu(n, t) + g(n, t), n ∈ N0, t > 0,
u(n, 0) = ϕ(n), ut(n, 0) = φ(n), n ∈ N0,

(3)

when B = −(−∆d)
α is the fractional power of discrete fractional Laplacian. In the particular

case of [7], the authors apply operator theory techniques and some of the properties of the
Bessel functions to obtain a theory of uni-parametric operators (C0-semigroups and cosine
operators) generated by ∆d and −(−∆d)

α on the Lebesgue space `p(Z). Moreover, note
that the fractional forward difference operator B = −(−∆)α has been treated in [5] where
the maximum and comparison principles in the context of Fourier Analysis are shown.

However, there is no attempt (to the best of our knowledge) to present explicitly
fundamental solutions of the general Equation (1) on the sequence space `p(N0) for p ≥ 1
instead of on the sequence space `p(Z) for p ≥ 1 ([8]).

The main technique in this paper is that we apply our knowledge from Banach algebras
and Functional Analysis to fractional differential systems. This useful approach that we
follow in this paper, allows us to obtain a completely new point of view. We prove results by
introducing this new method and describing both the qualitative and quantitative behavior
of the fundamental solutions of (1) in a unified way.

More generally, and to present simultaneously our studies of the subdiffusive and
superdiffusive cases connected to Equations (1) and (3), in this article, we deal with the
representation of the fundamental solutions for the following semidiscrete system:{

Dβ
t u(n, t) = Bu(n, t) + g(n, t), n ∈ N0, t > 0,

u(n, 0) = ϕ(n), n ∈ N0,
(4)

in case 0 < β ≤ 1 and{
Dβ

t u(n, t) = Bu(n, t) + g(n, t), n ∈ N0, t > 0,
u(n, 0) = ϕ(n), ut(n, 0) = φ(n), n ∈ N0,

(5)

in case 1 < β ≤ 2. In both cases, B is the convolution operator B f (n) := (b ∗ f )(n) defined
for f ∈ `p(N0), p ∈ [1, ∞], b ∈ `1(Z) and β ∈ (0, 2] is a real number. The symbol Dβ

t denotes
the Caputo fractional derivative of order β > 0.

The paper is organized as follows. In the first section, we introduce the main results
about the Banach algebras and, in particular, about the spaces `p(N0) and `1(Z). In the
second section, we consider some particular finite difference operators in `p(N0), mainly

D f (n) = f (n + 1)− f (n− 1) = ((δ−1 − δ1) ∗ f )(n),
∆2 f (n) = f (n)− 2 f (n + 1) + f (n + 2) = ((δ0 − 2δ−1 + δ−2) ∗ f )(n),
∇2 f (n) = f (n)− 2 f (n− 1) + f (n− 2) = ((δ0 − 2δ1 + δ2) ∗ f )(n),

for f ∈ `p(N0). Finally, we present Theorem 6 where we include the representation of the
fundamental solutions for semidiscrete Caputo fractional differential equations.

This paper contains part of the results included in the Master Thesis of the first author,
entitled “Semigrupos y operadores coseno generados por operadores de diferencias finitas
en espacios de sucesiones de Lebesgue”, Universidad de La Rioja, (2021).

Notation The usual set numbers N, N0 = N ∪ {0}, Z, R and C are used. We write as
T = {eiθ : θ ∈ [−π, π)} the unit circumference (or also called torus) and D = {z ∈ C :
|z| ≤ 1}. The Dirac measures δ0 and δn are δn(j) = 0 if n 6= j and δn(n) = 1 for n, j ∈ Z. We
denote by χI the indicator function on set I (i.e., χI(n) = 1 if n ∈ I and χI(n) = 0 if n /∈ I).

Furthermore, In and Jn are the Bessel functions and Hn the usual Hermite polynomials;
Γ is the Gamma function, Φβ the Wright function and Eα,β the Mittag-Leffler function.
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Given X Banach space, X′ is the dual of Banach space and B(X) the set of linear
bounded operators on X; given A ∈ B(X), we write A′ ∈ B(X′) is the adjoint of the
operator A.

2. A Banach Algebra Framework

Given 1 ≤ p ≤ ∞, we recall that the Banach spaces (`p(N0), ‖ ‖p) are formed by
infinite sequences f = ( f (n))n∈N0 ⊂ C such that

|| f ||p : =

(
∞

∑
n=0
| f (n)|p

) 1
p

< ∞, 1 ≤ p < ∞;

|| f ||∞ : = sup
n≥0
| f (n)| < ∞.

We remind that the natural embeddings `1(N0) ↪→ `p(N0) ↪→ `∞(N0), for 1 ≤ p ≤ ∞,
and that the dual of `p(N0) is identified with `p′(N0) where 1

p + 1
p′ = 1 for 1 < p < ∞ and

p = 1 if p′ = ∞.
In the case that f ∈ `1(N0) and g ∈ `p(N0), we define

( f ∗ g)(n) :=
n

∑
j=0

f (n− j)g(j), n ∈ Z.

From Young’s Inequality, it follows that f ∗ g ∈ `p(N0), and ‖ f ∗ g‖p ≤ ‖ f ‖1‖g‖p. We
denote by Tg ∈ B(`p(N0)) defined by Tg( f ) = f ∗ g for g ∈ `p(N0). The element g is called
the symbol of the convolution operator Tg.

Note that (`1(N0), ∗) is a commutative Banach algebra with identity that we denote
by δ0 := χ{0}. We observe that δ1 ∗ δ1 = δ2 and, in general, δn ∗ δm = δn+m for n, m ∈ N0.
As usual, we write f 2 = f ∗ f and f n = f n−1 ∗ f for n ≥ 2.

The Gelfand transform associated to (`1(N0), ∗), is the Z-transform, Z : `1(N0) →
C(D), (or Taylor series), where

Z( f )(z) := ∑
n≥0

f (n)zn, z ∈ D.

We recall that the resolvent set of f , denoted as

ρ`1(N0)
( f ) := {λ ∈ C : (λδ0 − f )−1 ∈ `1(N0)}

and the spectrum of f , σ`1(N0)
( f ) = C\ρ`1(N0)

( f ).
In what follows, we apply the general theory of Functional Analysis and commutative

Banach Algebra as framework. In the following theorem, we collect some results that will
be of our interest, see [9].

Theorem 1. The following properties hold:

(i) The spectrum Spec(`1(N0)) is compact and, consequently, homeomorphic to the unit complex
circle, D := {z ∈ C : |z| ≤ 1}.

(ii) σ`1(N0)
( f ) ⊂ {z ∈ C ; |z| < ‖ f ‖1} and

(λδ0 − f )−1 = ∑
n≥0

λ−n−1 f n, ‖ f ‖1 < |λ|. (6)

(iii) The algebra `1(N0) is a semi-simple regular Banach algebra and the Z-transform is injective.
(iv) Z( f ∗ g) = Z( f )Z(g) and

σ`1(N0)
( f ) = Z( f )(D), f ∈ `1(N0). (7)

(v) Given b ∈ `1(N0) and the linear convolution operator Tb( f ) := b ∗ f for f ∈ `p(N0) for
p ≥ 1. Then,
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σB(`p(N0))
(Tb) ⊂ σ`1(N0)

( f ) = Z( f )(D).

We recall that the Banach algebra (`1(Z), ‖ ‖1) is formed by bi-infinite sequences
f = ( f (n))n∈Z ⊂ C such that

‖ f ‖1 :=
∞

∑
n=−∞

| f (n)| < ∞.

Given f , g ∈ `1(Z), the product in the algebra `1(Z) is the usual convolution product
given by

( f ∗ g)(n) :=
∞

∑
j=−∞

f (n− j)g(j), n ∈ Z.

Note that (`1(Z), ∗) is also a commutative Banach algebra with identity and δn ∗ δm =
δn+m for n, m ∈ Z. The Gelfand transform associated to (`1(Z), ∗), is the Fourier series (or
discrete Fourier transform), F : `1(Z)→ C(T), where

f̂ (θ) := F ( f )(eiθ) := ∑
n∈Z

f (n)einθ , θ ∈ T.

The spectrum Spec(`1(Z)) is homeomorphic to the unit torus, T := {z ∈ C : |z| = 1}
and σ`1(Z)(b) = F (b)(T) ([8], (Theorem 2.1)).

Definition 1. Given α, β > 0, we define the vector-valued Mittag-Leffler function, Eα,β : `1(Z)→
`1(Z), by

Eα,β(a) :=
∞

∑
j=0

aj

Γ(αj + β)
, a ∈ `1(Z).

Note that

E1,1(a) =
∞

∑
j=0

aj

j!
= ea; E2,1(a) =

∞

∑
j=0

aj

(2j)!
.

The set exp(`1(Z)) := {ea ; a ∈ `1(Z)} is the connected component of δ0 in the set of
regular elements in `1(Z) ([9], Theorem 6.4.1).

Now, we remind the usual terminology in semigroup theory: an element a ∈ `1(Z)
is called the generator of the entire group given by the exponential function (eza)z∈C. The
cosine function is expressed by its generator in terms of Mittag-Leffer function Cos(z, a) :=
E2,1(z2a), see [10], (Sections 3.1 and 3.14). Moreover, the Laplace transform of an entire
group or a cosine function is connected with the resolvent of its generator as follows:

(λ− a)−1 =
∫ ∞

0
e−λseasds, λ > ‖a‖1,

λ(λ2 − a)−1 =
∫ ∞

0
e−λsCos(s, a)ds, λ >

√
‖a‖1, (8)

see, for example, ([10], p. 213).

Example 1. For α, β > 0, we have that

Eα,β(zδ0) = Eα,β(z)δ0; Eα,β(zδ1) =
∞

∑
j=0

zjδj

Γ(αj + β)
.
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In particular, ezδ1 =
∞

∑
j=0

zjδj

j!
and Cos(z, δ1) =

∞

∑
j=0

z2jδj

(2j)!
are generated by δ1.

In the next proposition, we present some technical properties of these Mittag-Leffler
functions in the Banach algebra `1(Z). As usual, we consider vector-valued integration (in
the sense of Bochner) in the Banach space `1(Z), see, for example, ([11], Section 1.2).

Proposition 1. For α, β > 0 and a ∈ `1(Z), we have that

(i) ‖Eα,β(a)‖1 ≤ Eα,β(‖a‖1).
(ii) F (Eα,β(a)) = Eα,β(F (a)); in particular,F (eaz) = ezF (a) andF (Cos(z, a)) = Cos(F (z), a)

for z ∈ C.
(iii) σ`1(Z)(Eα,β(a)) = Eα,β(σ`1(Z)(a)).
(iv) The following Laplace transform formula holds

∫ ∞

0
e−λttαk+β−1E(k)

α,β(t
αa)dt = k!λα−β

(
(λα − a)−1

)(k+1)
, <(λ) > ‖a‖1/α

1 , (9)

for k ∈ N∪ {0}.

Theorem 2. Given b ∈ `1(Z) and p ≥ 1, we define the operator Tb : `p(N0)→ `p(N0) by

Tb( f )(n) := b ∗ f (n) = ∑
j≥0

b(n− j) f (j), n ∈ N0.

(i) Tb ∈ B(`p(N0)) and ‖b‖p ≤ ‖Tb‖B(`p(N0))
≤ ‖b‖1.

(ii) σB(`p(N0))
(Tb) ⊂ σ`1(Z)(b) = F (b)(T).

Proof. (i) It is clear that Tb ∈ B(`p(N0)) and ‖Tb‖ ≤ ‖b‖1. Now, take f = δn, and
Tb(δn)(j) = b(j− n) for n, j ≥ 0. Then,

‖Tb(δn)‖p
p =

∞

∑
j=0
|b(j− n)|p =

∞

∑
l=−n

|b(l)|p

for n ≥ 0. We conclude that ‖b‖p ≤ ‖Tb‖B(`p(N0))
.

(ii) Now, take λ ∈ ρ`1(Z)(b). Then, (λ− b)−1 ∈ `1(Z) ⊂ B(`p(N0)) and λ ∈ ρB(`p(N0))
(Tb).

We conclude that σB(`p(N0))
(Tb) ⊂ σ`1(Z)(b). �

3. Some Finite Difference Operators in `1(Z)
Sequences of compact support, i.e., elements in the set

cc(Z) := {a ∈ `1(Z) : ∃ m ∈ Z+ : a(n) = 0, ∀ |n| > m)}

are an important case of finite difference operators. In such a case, the discrete Fourier
Transform of a ∈ cc(Z) is a trigonometric polynomial

F (a)(eiθ) =
m

∑
j=−m

a(j)eijθ . (10)

It is interesting to observe that if ∑m
j=−m a(j) = 0 , then 0 ∈ σ`1(Z)(a). This follows

immediately from σ`1(Z)(b) = F (b)(T).

Definition 2. For f ∈ `p(N0), with 1 ≤ p ≤ ∞, we define the following operators

1. −∆ f (n) = f (n)− f (n + 1) = ((δ0 − δ−1) ∗ f )(n).
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2. ∇ f (n) = f (n)− f (n− 1) = ((δ0 − δ1) ∗ f )(n).
3. D f (n) = f (n + 1)− f (n− 1) = ((δ−1 − δ1) ∗ f )(n).
4. ∆d f (n) = f (n + 1)− 2 f (n) + f (n− 1) = ((δ−1 − 2δ0 + δ1) ∗ f )(n).
5. ∆2 f (n) = f (n)− 2 f (n + 1) + f (n + 2) = ((δ0 − 2δ−1 + δ−2) ∗ f )(n).
6. ∇2 f (n) = f (n)− 2 f (n− 1) + f (n− 2) = ((δ0 − 2δ1 + δ2) ∗ f )(n).
7. ∆dd f (n) = f (n + 2)− 2 f (n) + f (n− 2) = ((δ−2 − 2δ0 + δ2) ∗ f )(n).

for n ∈ N0 and f (n) = 0 for n < 0.

The above operators are often used in the context of a numerical analysis. The op-
erators −∆ and ∇ are connected with the Euler scheme of approximation. The discrete
Laplacian ∆d is the second-order central difference approximation for the second-order
derivative. The double Laplacian, the operator ∆dd, is introduced in Bateman’s seminar
paper ([12], Page 506), to treat the equations of Born and Karman on crystal lattices in
vibration. Other operators ∆2, D and ∇2 are also considered in [12].

To consider the action of these operators in B(`p(N0)), we study these operators as
elements in the Banach algebra `1(Z) as Theorem 2 shows. Operators −∆, ∇, ∆d and
∆dd have been studied in detail in ([8], Theorem 3.2, 3.3, 3.4 and 3.5). In the following
subsections, we treat D, ∆2 and ∇2.

In Table 1, we collect some basic results of the finite difference operators given in Defi-
nition 2. In Figure 1, we also plot the spectrum σ`1(Z)(a) for these finite difference operators.

Table 1. Finite difference operators in `1(Z).

A A( f ) = a ∗ f a ‖a‖1 F (a)(z)

−∆ f (n)− f (n + 1) δ0 − δ−1 2 1− z

∇ f (n)− f (n− 1) δ0 − δ1 2 1− 1
z

D f (n + 1)− f (n− 1) δ−1 − δ1 2 z− 1
z

∆d f (n + 1)− 2 f (n) + f (n− 1) δ−1 − 2δ0 + δ1 4 z + 1
z − 2

∆2 f (n + 2)− 2 f (n + 1) + f (n) δ0 − 2δ−1 + δ−2 4 (z− 1)2

∇2 f (n)− 2 f (n− 1) + f (n− 2) δ0 − 2δ1 + δ2 4 ( 1
z − 1)2

∆dd f (n + 2)− 2 f (n) + f (n− 2) δ−2 − 2δ0 + δ2 4 (z− 1
z )

2

-4 -2 2 4

-2

-1

1

2

Δ,∇



Δd,Δdd

Δ2,∇2

Figure 1. Spectrum of finite difference operators in `1(Z).
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3.1. The Operator D
This operator is a finite difference operator of order 1 defined by D f (n) = f (n + 1)−

f (n− 1). We present some of these properties in the next theorem.

Theorem 3. The operator D f = a ∗ f with a = δ−1 − δ1, has the following properties.

(i) The norm of a is equal to 2, ‖a‖1 = 2.
(ii) The discrete Fourier transform of a is given by F (a)(z) = z− 1

z with z ∈ T.
(iii) The spectrum of a is σ`1(Z)(D) = [−2i, 2i].
(iv) The group generated by −a is e−za(n) = Jn(2z), z ∈ C, n ∈ Z and ‖e−ta‖1 ≤ e2t, with

t ∈ R and t > 0.
(v) For λ ∈ C \ [−2i, 2i],

(λδ0 + a)−1 = 2−n (
√

λ2 + 4− λ)n
√

λ2 + 4
, n ∈ Z.

Proof. Items (i) and (ii) are straightforward. To show (iii), we have that

σ`1(Z)(D) = F (a)(T) = {z ∈ C : z = w− 1
w

, |w| = 1} = {z ∈ C : z = 2i=(w), |w| = 1} = [−2i, 2i].

We define for a while ez ∈ `1(Z) with z ∈ C by ez(n) = Jn(2z). Note that

‖ez‖1 = ∑
n∈Z
|Jn(2z)| ≤ ∑

n∈Z
In(2|z|) = e2|z|.

where we have applied the generating function of modified Bessel function of the first kind
In with n ∈ Z, see, for example, [13], [Appendix].

We apply the discrete Fourier transform to obtain

F (ez)(w) = ∑
n∈Z

Jn(2z)w−n = ez( 1
w−w) = e−zF (a)(w) = F (e−za)(w),

with w ∈ T. As the discrete Fourier transform is injective, we conclude that ez(n) = e−za(n)
and the item (iv) is proved.

Finally, to show item (v), we have that

(λδ0 + a)−1(n) =
∫ ∞

0
e−λte−ta(n) dt =

∫ ∞

0
e−λt Jn(2t) dt = 2−n (

√
λ2 + 4− λ)n
√

λ2 + 4
,

where we have applied ([14], Formula 6.623) for <(λ) > 0 and n ∈ Z. By analytic
prolongation, we extend the equality for λ ∈ C \ [−2i, 2i]. �

3.2. The Operator ∆2

The operator ∆2 f (n) = f (n)− 2 f (n + 1) + f (n + 2) is a finite difference operator of
order 2. Note that ∆2 = (−∆)2. In the next theorem, we present some properties of ∆2.

Theorem 4. The operator ∆2 f = a ∗ f with a = δ0 − 2δ−1 + δ−2 verifies the following properties.

(i) The norm of a is equal to 4, ‖a‖1 = 4.
(ii) The discrete Fourier transform F (a)(z) = (z− 1)2 with z ∈ T.
(iii) The spectrum of a in `1(Z) is equal to σ`1(Z)(∆2) = {z ∈ C : z = (w− 1)2, w ∈ T}.
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(iv) The group generated by a is

eza(n) =
(i
√

z)−n H−n(i
√

z)
(−n)!

ezχ−N0(n), z ∈ C,

n ∈ Z and ‖eta‖1 ≤ e4t for t > 0.
(v) The cosine function Cos(z, a) = z−n

(−n)!
e−z+(−1)nez

2 χ−N0(n).

Proof. Items (i), (ii) and (iii) are similar to items (i), (ii) and (iii) in Theorem 3. Now, we
define ez ∈ `1(Z) con z ∈ C by ez(n)

(i
√

z)−n H−n(i
√

z)
(−n)! ezχ−N0(n) where Hn is the Hermite

polynomial. First, we check that ez ∈ `1(Z),

||ez||1 = e<(z)
∞

∑
j=0
|
(i
√

z)j Hj(i
√

z)
j!

| ≤ e|z|
∞

∑
j=0

|
√

z|j
j!
|Hj(i

√
z)| = e|z|

∞

∑
j=0

|
√

z|j
j!
| 2j
√

π|
∫ ∞
−∞ in(

√
z + t)ne−t2 dt

≤ e|z|
∞

∑
j=0

|
√

z|j
j!

2j
√

π

∫ ∞

−∞
(|
√

z|+ |t|)je−t2
dt =

2e|z|√
π

∞

∑
j=0

(2|
√

z|)j

j!

∫ ∞

0
(|
√

z|+ t)je−t2
dt

=
2e|z|√

π

∫ ∞

0
e−t2

∞

∑
j=0

(2|
√

z|(|
√

z|+ t))j

j!
dt =

2e|z|√
π

∫ ∞

0
e−t2

e2|
√

z|(|
√

z|+t) dt =
2e4|z|
√

π

∫ ∞

0
e−(t−|

√
z|)2

dt

=
2e4|z|
√

π

∫ ∞

−|
√

z|
e−u2

du <
2e4|z|
√

π

∫ ∞

−∞
e−u2

du = 2e4|z| < ∞.

We calculate the discrete Fourier transform of ez

F (ez)(w) = ∑
n∈Z

(i
√

z)−n H−n(i
√

z)
(−n)!

ezχ−N0(n)w
−n = ez

∞

∑
j=0

Hj(i
√

z)
j!

(wi
√

z)j

= eze−(wi
√

z)2+2(wi
√

z)(i
√

z) = ez(w−1)2
= ezF (a)(w) = F (eza)(w),

where we have applied ([14], Formula 8.951), for w ∈ T. As the discrete Fourier transform
is injective, we conclude that ez(n) = eza(n) for n ∈ Z.

To calculate the cosine function generated by a, we apply ([10], Example 3.14.15)

Cos(z, a) =
1
2
(e−z(δ0−δ−1) + ez(δ0−δ−1)) =

1
2

(
e−z z−n

(−n)!
χ−N0(n) + ez (−z)−n

(−n)!
χ−N0(n)

)
=

z−n

(−n)!

(
e−z + (−1)nez

2

)
χ−N0(n),

and we conclude the proof. �

3.3. The Operator ∇2

In this subsection, we treat the finite difference operator of order 2, defined by
∇2 f (n) = f (n) − 2 f (n − 1) + f (n − 2). Note that e ∇2 = ∇2. We present some basic
properties of operator ∇2.

Theorem 5. The operator ∇2 f = a ∗ f with a = δ0 − 2δ1 + δ2 has the following properties.

(i) The norm of a in `1(Z) is equal to 4, ‖a‖1 = 4.
(ii) The discrete Fourier transform F (a)(z) = ( 1

z − 1)2 for z ∈ T.
(iii) The spectrum of a in `1(Z) is equal to σ`1(Z)(∇2) = {z ∈ C : z = ( 1

w − 1)2, w ∈ T}.
(iv) The group generated by a is given by

eza(n) =
(i
√

z)n Hn(i
√

z)
(n)!

ezχN0(n), z ∈ C,
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n ∈ Z and ‖eta‖1 ≤ e4t, for t > 0.
(v) The cosine function Cos(z, a)(n) = zn

n!
e−z+(−1)nez

2 χN0(n).

Proof. We skip the proof of items (i), (ii) and (iii). To show (iv), we define
ez(n) =

(i
√

z)n Hn(i
√

z)
n! ezχN0(n) for z ∈ C. As in Theorem 4, ez ∈ `1(Z) and

F (ez)(w) = ∑
n∈Z

(i
√

z)n Hn(i
√

z)
n!

ezχN0(n)w
−n = ez

∞

∑
n=0

Hn(i
√

z)
n!

(
i
√

z
w

)n

= eze−(
i
√

z
w )2+2( i

√
z

w )(i
√

z) = ez( 1
w−1)2

= ezF (a)(w) = F (eza)(w),

for w ∈ T. We conclude that ez(n) = eza(n) for z ∈ C. As ∇2 = (∇)2, we apply again ([10],
Example 3.14.15), to obtain the cosine function generated by a. �

Remark 1. The connection between semigroups and cosine functions is given by the so-
called Weierstrass formula,

eat =
1√
πt

∫ ∞

0
e−

s2
4t Cos(s)ds, t > 0, (11)

for a ∈ `1(Z), see, for example, ([10], Theorem 3.14.17). In the case that we apply the
Weierstrass formula in the conditions of Theorems 4 and 5 to obtain the well-known formula

(2i)−n√πHn(iω) =
∫ ∞

−∞
xne−(x−ω)2

dx, ω ∈ C,

see, for example, ([14], Formula 3.462(4)).

4. Fundamental Solution for Semidiscrete Evolution Equations

In this section, we consider the operator B f (n) := (b ∗ f )(n), with b ∈ `1(Z),
f ∈ `p(N0), p ∈ [1, ∞] and n ∈ N0. We obtain an explicit representation of solutions
for the following time/space fractional evolution equation:{

Dβ
t u(n, t) = Bu(n, t) + g(n, t), n ∈ N0, t > 0.

u(n, 0) = ϕ(n), ut(n, 0) = φ(n) n ∈ N0,

Here, β ∈ (0, 2] is real number. We recall that Dβ
t denotes the Caputo fractional

derivative given by

Dβ
t v(t) =

1
Γ(1− β)

∫ t

0
(t− s)−βv′(s)ds = (g1−β ∗ v′)(t), t > 0,

for 0 < β < 1 and

Dβ
t v(t) =

1
Γ(2− β)

∫ t

0
(t− s)1−βv′′(s)ds = (g2−β ∗ v′′)(t), t > 0,

for 1 < β < 2. For β = 1 and β = 2, we consider the usual first- and second-order
derivation. Note that

lim
β→1−

Dβ
t v(t) = v′(t), lim

β→2−
Dβ

t v(t) = v′′(t), t > 0,

however,

lim
β→0+

Dβ
t v(t) = v(t)− v(0) lim

β→1+
Dβ

t v(t) = v′(t)− v′(0), t > 0, (12)
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see, for example, [15,16].
The main result in this section is the following Theorem. The function Eα,β(b) (with

b ∈ `1(Z)) is the vector-valued Mittag-Leffler function given in Definition 1. A similar
result was stated in the Banach space `p(Z) in ([8], Theorem 5.1).

Theorem 6. Let ϕ, φ ∈ `p(N0), and g : N0 ×R+ → C be such that, for each t ∈ R+, g(·, t) ∈
`p(N0) and sup

s∈[0,t]
||g(·, s)||p < ∞ with 1 ≤ p ≤ ∞.

(i) For 0 < β < 1, the function

u(n, t) =(Eβ,1(tβb) ∗ ϕ)(n) +
∫ t

0
(t− s)β−1

(
Eβ,β((t− s)βb) ∗ g(·, s)

)
(n)ds,

is the unique solution of the initial value problem (4) with u(·, t) belonging to `p(N0) for
t > 0 and n ∈ N0.

(ii) For 1 < β < 2, the function

u(n, t) =(Eβ,1(tβb) ∗ ϕ)(n) + t(Eβ,2(tβb) ∗ φ)(n)

+
∫ t

0
(t− s)β−1

(
Eβ,β((t− s)βb) ∗ g(·, s)

)
(n)ds,

is the unique solution of the initial value problem (5) with u(·, t) belonging to `p(N0) for
t > 0 and n ∈ N0.

Proof. We show part (ii) in the case p = ∞. Part (i) or 1 ≤ p < ∞ are proved in a similar
way. We prove the result in several steps.

Step 1. First, we show the explicit solution for (5). Taking the Z-transform of (5), we
obtain that {

Dβ
t u(z, t) = Bu(z, t) + g(z, t)

u(z, 0) = ϕ(z); ut(z, 0) = φ(z).
(13)

Now, taking Laplace’s transformation to (13), we have:

û(z, λ) =
λβ−1

λβ −F (b)(θ)
ϕ(z) +

λβ−2

λβ −F (b)(θ)
φ(z) +

1
λβ −F (b)(θ)

ĝ(z, λ). (14)

By inverse Laplace transform, see identity (9), we obtain

u(z, t) = Eβ,1(F (b)(θ)tβ)ϕ(z) + tEβ,2(F (b)(θ)tβ)φ(z)

+
∫ t

0
(t− s)β−1Eβ,β((t− s)βF (b)(θ))(z)g(z, s)ds.

We apply Proposition 1 (ii) to obtain

u(n, t) =(Eβ,1(tβb) ∗ ϕ)(n) + t(Eβ,2(tβb) ∗ φ)(n)

+
∫ t

0
(t− s)β−1

(
Eβ,β((t− s)βb) ∗ g(·, s)

)
(n)ds,

for n ∈ N0 and t > 0.
Step 2. Now, we prove uniqueness. Suppose that the system (5) has two solutions u1

and u2 with the same initial values ϕ, φ, and write v := u1 − u2. Then, v is a solution of the
following ODE

Dβ
t v(z, t) = Bv(z, t), v(z, 0) = 0, vt(z, 0) = 0.



Foundations 2022, 2 882

Due to the above ordinary differential equation having its unique solution and that the
function zero is a solution, we conclude that v(z, t) = 0 . As the Z-transform is injective,
we conclude that v(n, t) = 0 for every n ∈ N0 and t ≥ 0. Hence, u1 = u2.

Step 3. By Proposition 1 (i), we obtain that

‖Eβ,1(tβb)‖1 ≤ Eβ,1(tβ‖b‖1)

‖Eβ,2(tβb)‖1 ≤ Eβ,2(tβ‖b‖1)

‖Eβ,β(t− s)βb)‖1 ≤ Eβ,2((t− s)β‖b‖1)

for 0 < s < t and b ∈ `1(Z). Because sup
s∈[0,t]

||g(·, s)||∞ < ∞, we conclude that

∫ t

0
(t− s)β−1

(
Eβ,β((t− s)βb) ∗ g(·, s)

)
(n)ds ∈ `∞(N0),

and the solution u(·, t) ∈ `∞(N0) for t > 0. �

Remark 2. Now, we may shortly treat the behavior of the solution when β tends to natural
parameter, i.e., β = 1, 2. For simplicity, we only present the homogeneous case, g = 0. In
the case that β → 1−, the solution of Equation (4) tends to semigroup family operators
E1,1(tb), and when β→ 2−, the solution of Equation (5),

u(·, t) = Eβ,1(tβb) ∗ ϕ + tEβ,2(tβb) ∗ φ, t > 0

tends to the well-known solution of second-order Cauchy problem, expressed in terms of
cosine function and sine function generated by b, see ([10], Corollary 3.14.8).

However, in the case that β→ 1+, the solution of Equation (5) converges to

u(·, t) = E1,1(bt) + tE1,2(tb), t > 0,

as in the scalar case. We remark that this function is the solution of the following first-order
modified Cauchy problem{

v′(n, t) = Bv(n, t) + φ(n), n ∈ N0, t > 0,
v(n, 0) = ϕ(n), n ∈ N0,

for φ, ϕ ∈ `p(N0). This natural fact is connected with the interpolation property of the
Caputo fractional differentiation, see (12).

The fundamental solution uβ,1 for Equations (4) and (5) is given by taking as initial
values ψ = δ0 and φ = 0. In the case 1 < β ≤ 2 (β = 2, is the wave equation), a second
fundamental solution uβ,2 is given by ψ = 0 and φ = δ0, see ([17], Remark 3.2).

As a corollary of Theorems 2 and 6 is the following subordination theorem for funda-
mental solutions. This result extends ([17], Corollary 3.5) in the space `p(N0).

We denote by Φα the entire Wright function defined by

Φα(z) :=
∞

∑
n=0

(−z)n

n!Γ(−αn + 1− α)
=

1
2πi

∫
γ

µα−1eµ−zµα
dµ, 0 < α < 1, (15)

where γ is a complex path which starts and ends at −∞ and rounds the origin once
counterclockwise. The Wright function is a known special function which has appeared in a
wide variety of different contexts, for example, it is used for models in stochastic processes,
see [18]. The proof of the next corollary is similar to ([8], Corollary 5.3), and we leave for
the reader.

Corollary 1. Let uβ,1 and uβ,2 be the fundamental solutions of problems (4) and (5) and Ψα the
Wright function defined by (15).
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(i) Let 0 < β < 1. Then,

uβ,1(n, t) =
∫ ∞

0
Φβ(τ)u1,1(n, τtβ)dτ, n ∈ N0, t > 0.

(ii) Let 1 < β < 2. Then,

uβ,1(n, t) =
∫ ∞

0
Φ β

2
(τ)u2,1(n, τt

β
2 )dτ,

uβ,2(n, t) =
∫ t

0

(t− u)
−β
2

Γ(1− β
2 )

∫ ∞

0
Φ β

2
(τ)u2,2(n, τu

β
2 )dτ du,

for n ∈ N0 and t > 0.

5. Conclusions and Future Work

In this paper, we have considered Caputo fractional differential equations in the
sequence Lebesgue spaces `p(N0) with p ≥ 1. The associate operator is given by a convo-
lution with a sequence in the Banach Algebra which belongs to `1(Z). We use techniques
from the Functional Analysis, such as the Guelfand theory in Banach algebra, to obtain
more information about the problem. We calculate the explicit solution in terms of Mittag-
Leffer functions. Some particular cases (sequences of compact support) of finite difference
operators are treated in detail.

An interesting problem to address in the future is to consider these techniques in the
continuous case. We may study these Caputo fractional differential equations in Lp(R+)
and Lp(R).
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