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The propagation of chirality across scales is a common but poorly understood phenomenon in soft
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matter. Here, using computer simulations, we study twisted monolayer assemblies formed by both

chiral and achiral rod-like particles in the presence of non-adsorbing polymer and characterise the
thermodynamic driving forces responsible for the twisting. We observe assemblies with both like and
inverted chirality relative to the rods and show that the preferred twist is already determined during
the initial stage of the self-assembly. Depending on the geometry of the constituent rods, the chiral
twist is regulated by either the entropy gain of the polymer, or of the rods, or both. This can include

important contributions from changes in both the surface area and volume of the monolayer and
from rod fluctuations perpendicular to the monolayer. These findings can deepen our understanding
of why chirality propagates and of how to control it.

1 Introduction

Colloidal suspensions composed of anisotropic particles can un-
dergo self-assembly that involves the propagation of chirality
from the single-particle level to the macroscopic level, and so
have emerged as a versatile platform for understanding this com-
mon phenomenon in soft matter™™, Cholesteric liquid crystals
are a well-known example, but there are many others. This in-
cludes the behaviour of colloidal suspensions of DNA, viruses,
peptides, polysaccharides and various synthetic nanoparticles
612] ‘While discussion continues about the physical levers that
can be used to control the phenomenon, its potential appli-
cation in areas including optics, catalysis, and sensing is already
being explored2%°22 and will likely accelerate in light of advances
in the synthesis of anisotropic and chiral nanoparticles1223-23 1¢
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is therefore important to have a better understanding of the forces
which control the propagation of chirality in these systems, and
which can even drive changes in surface topology@.

One typical such colloidal suspension is a mixture consisting of
rod-like particles and non-adsorbing polymers in a good solvent.
In these rod-polymer mixtures, the polymers, which behave as
random coils with a radius of gyration ry, can provide an effec-
tive attraction between the rods via depletion forces?Z, and thus
drive the rods to assemble into diverse ordered structures28/29,
For example, two-dimensional colloidal membranes can form in a
suspension of filamentous viruses and dextran®%. These colloidal
membranes are liquid-like monolayer assemblies, and often have
a round-shaped edge in which the constituent viruses are twisted
and exhibit a chiral distribution of their orientations>132,

This chiral twist is characteristic of these nearly two-
dimensional systems and is very different from the more com-
mon cholesteric twist observed in bulk (i.e., three dimensional)
chiral assembly33. The former one is commonly known as “dou-
ble twist” to distinguish from the cholesteric (single) twist. The
double twist cannot be spatially uniform in the bulk and always
occurs with other deformations, with typical examples such as
the twist-bend and the splay-twist textures®®. While the driving
mechanism of the cholesteric twist is relatively well understood,
it remains elusive for the double twist in colloidal membranes and
it has so far defied a complete explanation, notwithstanding re-
cent attempts. For instance, an entropically-motivated continuum
theory has been developed to explain the experimental behaviour
of these colloidal membranes®S. Briefly, the entropy, manifested
through the viruses as Frank elastic energy for the twist distortion
and through the polymers as an effective surface tension for the
excluded volume, drives the chiral twist of the membranes. This
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description further assumes that the membranes are incompress-
ible in the continuum limit.

To test the generality of this theory, and to serve as an im-
portant complementary tool to interpret experimental results, it
would be useful to study such membranes using a particle-based
simulation approach. This would be especially useful for analyz-
ing small clusters formed at the onset of the self-assembly process
where continuum descriptions often break down. To our knowl-
edge, however, existing simulation studies of twisted membranes
have been limited to the case of achiral rods which lack intrinsic
chirality®L. In this work, we therefore study membranes formed
by both achiral rods and chiral rod-like helices=® using Langevin
dynamics (LD) simulations and characterise the thermodynamic
driving forces responsible for the propagation of chirality in these
systems.

2  Model and Method

2.1 Models for rod-polymer suspensions

The rod-polymer suspensions were described using a continu-
ous potential model that approximates the well-known Asakura-
Oosawa-Vrij (AO) model?Z3Z; (achiral) straight rods, described
as hard spherocylinders, were represented by a rigid linear chain
of length L consisting of overlapping hard spheres of diameter
D (Fig. ) ; chiral rods, described as hard helices, were mod-
eled as a set of hard spheres having diameter D evenly ar-
ranged along a helical line of contour length L, pitch p and ra-
dius r (Fig. [Ip); and the non-adsorbing polymers were mod-
elled as spheres with diameter d = 2r, that are freely interpen-
etrable to each other but experience a hard repulsion from the
rod spheres. For simplicity, we set the diameter of polymer
spheres d = D. In our simulations, the hard-core potential be-
tween rod-rod (rr) and between rod-polymer (rp) sphere pairs
was replaced by a continuous pseudo-hard-core potential, i.e.,
U%B(r) = 50(50/49)¥¢[(c/r)>® — (6/r)*] (aB € {11, rp}) trun-
cated and shifted at rfffz = (50/49)c, where r is the centre-to-
centre distance between the spheres, ¢ is the energy parameter,
and o is the distance parameter with ¢ = D. Besides, for all rods
used in this work, the distance between consecutive spheres is
0.5D, which is sufficient to remove side effects associated with
surface roughness (Supplementary S1).

Note that an implicit polymer model for (achiral) straight rods
such as that in Ref.*8740 can allow us to easily simulate large sys-
tem. However, the corresponding model for helical rods is lack-
ing and developing an accurate implicit polymer model for hard
helices, especially in the case of large polymers, could be quite
challengingL.

2.2 Langevin dynamics simulation details

All LD simulations were carried out using LAMMPS#2 at a dimen-
sionless temperature kg7 /e = 1 (where kg is the Boltzmann con-
stant and T is the temperature). In the simulations, rod and poly-
mer spheres are subjected to three forces: the conservative force
f€ computed via the pairwise interactions (i.e., the pseudo-hard-
core potential); the friction force f¥ = —(m/y)v with m the mass,
y the damping factor, and v the velocity of the sphere; and the ran-
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dom force fR o \/kgTm/(Aty) with Ar the time step. All simula-
tions were performed in a box with periodic boundary conditions.
The velocity-Verlet algorithm was used to integrate the equations
of motion with a time step A+ = 0.0017 where © = D+/m/(kgT),
and the damping factor was set to be y= 17. In all simulations, we
set the masses of one polymer and one rod m, =m, =m = 1. Sim-
ulations of large monolayers were performed in an isothermal-
isobaric (NPT) ensemble. A Berendsen barostat with a time con-
stant of 17 was applied. Most simulations were initialised with
N, =480 rods in a single hexagonally packed layer surrounded
by N, = 40000 polymer spheres in a box with initial dimensions
44 x 44 x 21D, Initial configurations with different chiral twists
were also used to confirm that only one handedness was stable.
At least 10 independent simulations with different initial config-
urations were performed for each rod shape, and all simulations
were run for at least 5 x 10° steps to collect enough configurations
at the equilibrium state.

2.3 Free energy calculations

Simulations used for measuring changes in the free energy
(AQ, 1) as a function of the twist ({(y;), see its definition in
next section) were performed in a semi-grand canonical (u,VT)
ensemble with N, =2 — 61 rods. During the simulations, 1000
GCMC insertion and deletion moves were performed every 1000
LD steps to maintain the chemical potential of the polymers (u,,).
Simulations were initialised with N, rods in a single hexago-
nally packed layer surrounded by ~ 2000 polymer spheres in a
box with dimensions 15 x 15 x 15D3. The values of AQ,,, as a
function of (y;) were evaluated by means of the umbrella sam-
pling (US) method43. We imposed a harmonic spring biasing
potential given by U = 0.5k[(y;) — (y;)0]? on the system using
the Colvars package®. Here, k is the spring constant, (y;)q is
the desired twist, and (y;) is the actual twist in the monolayer.
Under the biasing potential, the monolayer is forced to stay in
a pseudo-equilibrium state with (y;) fluctuating around (y;)o.
Different twisted states can be described by a series of values
with (W) € ((Wi)min> (Wi)max). In our simulations, k = 1kpT /deg?,
(Wi)min = —24°, (W;)max = 24°, and the increment of (y;)y was 1°
or 2°. For each given (y;)o, the system was equilibrated for 2 x 10°
steps followed by another 2 x 10° steps production run in which
data was accumulated every 1000 LD steps. Finally, the WHAM
algorithm*2 was used to calculate the free energy change AQ,
as a function of (y;) . For each monolayer, 10 independent sim-
ulations were carried out to obtain good statistics. Meanwhile,
to prevent the disassembly of small monolayers, additional spring
forces were imposed on the rod to move it back when the distance
from the centre of the rod to the centre of the monolayer is larger
than a critical value r., where r. = 0.75D for N, =2, r. = 1.5D for
N, =17, r. = 3.0D for N, = 19, r. = 4.5D for N, = 37 and r, = 6.0D
for N, = 61. These critical values are larger than the equilibrium
radii of the respective stable monolayers.

2.4 Excluded volume calculations

During the production stage of US simulations, we sampled con-
figurations every 5000 steps and computed the excluded volume
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d(y) = 26°

b C(y;) = —26°

Fig. 1 Spontaneous twist in monolayers of rods. (a) An achiral straight
rod of length L and diameter D. (b) A chiral rod (left-handed helix) with
contour length L, diameter D, pitch p and radius r. 6 quantifies the
inclination angle of the rod#Z. (c-d) Side-view and top-view of (c) left-
handed (.£) and (d) right-handed (%) monolayers composed of straight
rods with the color indicating the normalised tilted angle (y;/|y/"*|)
between the rod axis 0i; and the nematic director A.

(i.e., AV,y) for polymer spheres due to rods and the correspond-
ing contributions from the volume and the surface area of the
monolayer (i.e., AV2* and AVS“”). For a given configuration, all
rod spheres that had at least one polymer neighbour within 1.5D
from their centre were classified as surface rod-spheres, and the
rest were classified as bulk rod-spheres. To compute the excluded
volumes, the whole system was divided into many small cubic
bins with an edge length of / = 0.5D. We confirmed that using a
smaller value of I (e.g., / = 0.25D, Supplementary S2) gave sim-
ilar results. A bin was considered occupied by rods if there was
at least one rod-sphere whose centre was less than 1.0D (corre-
sponding to the polymer diameter) from the bin’s centre, and the
volume of the bin contributed to AV if all rod-spheres occu-
pying this bin were surface rod-spheres, otherwise it contributed
to AV24k The final value of the excluded volume at a given (;)
was averaged over all configurations collected at the correspond-
ing (;)o. For these calculations, the Freud Python package® was
used to analyse the simulation data.

2.5 Suppressing perpendicular fluctuations

In the simulations for monolayers without rod fluctuations per-
pendicular to the monolayer, the centres of mass of all rods were
constrained on a common plane via harmonic spring forces using
a spring constant of 1000k /D>

3 Results and discussion

3.1 Spontaneous twist in monolayers

We first considered monolayers composed of (achiral) straight
rods with length of L = 10D (Fig. [Th). Figure [k, d show equi-
librium configurations obtained from simulations with N, = 480
rods surrounded by N, = 40000 polymer spheres at the pressure
P=1.2kgT /D3. The rods are parallel to the normal axis (i.e., the
nematic director fi) at the centre, but tilt with increasing mag-
nitude around the radial axis away from the centre. In multiple
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independent simulations started with an untwisted configuration,
the monolayer shows nearly equal probability to end up showing
left-handed (%) or right-handed (%) twist. Such monolayers,
with roughly square edge profiles, are also predicted by the con-
tinuum theory and have been observed in experiments for small

colloidal membranes®=2.

To evaluate the degree of twist in the monolayers, we used the
average tilt angle of rods with respect to the nematic director,
defined as

i = (e cos™ () ). W

where #; is unit vector connecting the center-of-mass of the mono-
layer and the center-of-mass of rod i, 1, is the a unit vector along
the long axis of the rod and (...) indicates an average over all rods
in the monolayer and all configurations collected at the equilib-
rium state. (y;) is negative for the . twist and positive for the #Z

twist (Fig. [Tk, d).

3.2 Phase diagram of chirality in monolayers

We then studied monolayers of left-handed hard helices with
L =10 and varying r and p (Fig.[Ib). A summary of the results
obtained from simulations with N, = 480 at P = 1.2kgT /D is re-
ported in Fig.[2] In the phase diagram (Fig. [2h), we can identify
the values of r and p that give rise to a chiral twist, whose hand-
edness with respect to that of the constituent rods is (i) the same
(e.g., r=0.1, p=2), (ii) the opposite (e.g., r =0.1, p=12), or
(iii) mixed with either Z or .Z (e.g., r =0.1, p =22) (Fig. ).

In Fig. [2h, Line (v) is the phase boundary between same and
opposite regimes for the corresponding cholesteric phases at high
volume fractions obtained using density functional theory#%, We
can see that, in comparison, the corresponding phase boundary
for monolayers [i.e., Line (i)] is shifted toward larger values of p
at r > 0.1. Such shifting is also observed in cholesteric phases
when the packing density of helices increases [compare Lines
(iii)/(iv) to Line (v) in Fig. ]. Thus the difference between Line
(i) and Line (v) is likely due to the higher rod packing fraction
in the monolayers (0.6-0.7) compared to in the bulk cholesteric
phases (0.35-0.5)48.

For most helices, however, their monolayer assemblies and
cholesteric phases have the same handedness, supporting the ex-
perimental observation of consistent chirality between the two
for rod-shaped viruses®%. For weakly curled helices in the
mixed regime, the monolayers can be either # or .¢, while the
cholesteric phases may only exhibit weak opposite handedness48,
As will be elaborated later, the driving mechanism of this chiral
monolayer assembly is very different from the bulk cholesteric
chiral assembly that was originally predicted by Straley= and re-
cently confirmed by density functional theory#248l and numerical

simulations®?.

From the phase diagram, we also can see that the degree of
twist (i.e., (y;)) is a non-monotonic function of the intrinsic pitch
of the rods (i.e., p), which is consistent with the behaviour of
bulk cholesteric phases formed by hard helicesZ49, Starting at
p = o (i.e., straight rods), the magnitude of (y;) increases as p
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Fig. 2 Phase diagram of chirality in monolayers. (a) The phase diagram
shows the chirality of monolayer assemblies of hard rods with L = 10
and varying r and p at P =1.2. All symbols are colored according to
(vi) (Eq. of the corresponding monolayer. The handedness of the
monolayer with respect to that of the constituent hard rods can be the
same (blue square), opposite (red square), or mixed with either Z or .
(bi-colored square). Note that all symbols with r =0 or p = oo represent
the case of straight rods. Lines (i) and (ii) indicate the approximate
phase boundaries for monolayers. Lines (iii-v), provided for comparison,
indicate the phase boundaries between the same and opposite regions for
bulk cholesteric phases. Line (iii) is given by the critical inclination angle
6 = 45°2839 while Lines (iv-v) were obtained using density functional
theory at (iv) low and (v) high volume fractions, respectively4&. (b)
Typical snapshots of stable monolayers obtained from simulations using
different left-handed helices.

decreases, and reaches a maximum for moderately curled helices
(e.g., r=0.1, p=12 and r = 0.3, p = 16) in the opposite regime,
before decreasing to O for helices at the phase boundary between
same and opposite regimes (e.g., r = 0.1, p = 4) (Fig. ). In the
same regime, |(y;)| is small, but our results at » = 0.1 show that
here again |(y;)| first increases and then deceases as p decreases

(Fig. [2h).

3.3 Thermodynamic origins of chiral twist

To study the thermodynamic origins of chiral twist in these
monolayer assemblies, we considered a monolayer of N, rods
in a sea of polymer spheres at fixed volume V and tempera-
ture T. This system was kept in osmotic equilibrium with a
large reservoir containing the pure polymer solution at fixed
fugacity z, = exp(t,/kgT) where u, is the polymer chemical
potential. The grand potential of the system can be writ-
ten as Qo1 (Nr, V. T, Up) = Fr — 2,(V — Voo )kpT, where F, is the
Helmholtz energy of the rods and V,, is the volume excluded to
the polymers by the hard rods 280, The second term on the right
is the free energy of the polymers Q,,. V. can be further divided
into a bulk term and a surface term associated to the volume and
surface area of the monolayer, respectively. Thus, we obtain the
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change in free energy expressed as

AQlotal =AF, + AQp
=AF, + ZpkBTAVexc 2

— AFy 4 2,kpT (AV2K 4 AV,

exc

Both AF, and AV, depend on the twisting state of rods in the
monolayer. We measured AQ,,,,; as a function of (y;) in a semi-
grand canonical (u,VT) ensemble with fixed N, at z, = 1.2 (cor-
responding to P = 1.2kgT /D> in the previous simulations). The
twist was constrained using the US approach, while AV2“* and
AV were numerically calculated.

We performed a series of US simulations to calculate the
changes in free energy as a function of the twist for monolay-
ers formed by N, = 2 — 61 rods with varying p (Supplementary
S3). The average twist of stable monolayers monotonically in-
creases as the monolayer size increases, which is qualitatively
in consistent with the theoretical description for small colloidal
membranes in which the tile angles of rods at the edge have yet
to reach the limiting value of 90°22. More importantly, we found
that simulating tens of rods is sufficient to capture the chiral be-
haviour exhibited by the large monolayers shown in Fig. [2} in-
dicating that the chirality of these monolayers is determined al-
ready during the onset of the self-assembly process.

Figure [3p shows AQ,. vs. (y;) for three typical monolayers
made up of 37 straight rods or left-handed helices. For the mono-
layer of straight rods (i.e., r = 0), the two identical minima at
(y;) > 0 and (y;) < 0 in the curve of AQ,,, indicate the stable
twist is equally likely to be #Z or .Z. For the monolayer of helices,
only one local minimum appears in the curve of AQ,,,; and is
located at (y;) > 0 for the left-handed moderately curled helices
(i.e., r=0.1, p=12) and at (y;) < 0 for the left-handed highly
curled helices (i.e., r =0.1, p = 2), consistent with the behaviour
of the larger monolayers summarised in Fig. 2.

The decomposition of AQ,,,,; in Eq. [2| reveals that chiral twist
in these monolayers is stabilised by different driving forces de-
pending on the rod shape. As shown in Fig. (), the twist in
monolayers of straight rods is driven by the entropy gain of the
polymers with respect to the untwisted state (i.e., the decease in
AQ,), but further twisting beyond the equilibrium state is also
prevented by the rapidly increasing entropy loss of the polymers
at larger |(y;)|. The rod entropy in this case shows an almost op-
posite dependence on (y;), but the polymer entropy dominates
and stabilises the twist in the monolayer. For the monolayer of
moderately curled helices [Fig.[3a (ii)], the polymer entropy also
dominates and leads to a single stable twist, but now entropy
gain from the rods also contributes. In sharp contrast, for the
monolayer of highly curled helices [Fig.|3p (iii)], the single stable
twist is entirely driven by the rod entropy, competing against the
entropy loss of the polymers.

The polymer entropy is related to changes in the volume ex-
cluded to polymers (AV,,.), which is determined by both the vol-
ume and the surface area of the monolayer. Figure [3b shows the
change in AV,,. and its volume/surface components when twist-
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ing the three monolayers discussed in the previous paragraph.
This reveals that not only the surface area but also the volume of
the monolayers changes significantly during the twisting process.
Especially for monolayers of straight rods [Fig. D1, the de-
crease in the volume acts as the major driving force for twisting.
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Fig. 3 The thermodynamic origins of chiral twist in monolayers of dif-
ferent rods. (a) The changes in free energy (AQ;yq, AF, and AQ)) as a
function of the twist ({y;)) for monolayers formed by N, =37 (i) straight
rods (r=0.0, p =o0), (ii) left-handed moderately curled helices (r =0.1,
p =12), and (iii) left-handed highly curled helices (r =0.1, p = 22).
(b) The corresponding changes of excluded volume (AV,y., AV24k and
AV,

3.4 Comparison with continuum theory

Having shown that different entropy components can drive rod
monolayers to twist, we now compare our results with the contin-
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uum theory developed to describe such colloidal membranes=2.
The continuum theory is based on a relatively simple physical pic-
ture (Supplementary S4): that the twist is driven mainly by the
entropy gained by the polymers when the membrane surface area
is minimised at constant membrane volume. In this model, the
polymer entropy is invariant under chirality inversion and does
not contribute to the preference of the handedness, regardless
of the chirality of the rods. The preferred handedness is instead
attributed to an entropy term in the Frank elastic energy of the
rods, whose magnitude depends on the preferred twist wavenum-
ber that implicitly contains the chiral features of the rods.

In contrast, our simulation results reveal the existence of more
complex thermodynamic behaviour. First, while the polymer en-
tropy often drives twisting, it can also oppose twisting, with the
rod entropy instead driving twisting in those cases [e.g., Fig
(iii)]. Second, the polymer entropy is asymmetric under chiral-
ity inversion for monolayers of helical particles and contributes
to the preference of the handedness in these cases [e.g., Fig
(ii)]. This indicates that, at best, the Frank elastic energy in the
continuum theory can depend on polymer concentration. Third,
the constant-volume assumption in the continuum theory clearly
breaks down, at least for the small assemblies considered here,
indicating that the variation of the polymer entropy involves con-
tributions from not only the surface area but also the volume of
the monolayer (Fig.[3p).

More recent theoretical and experimental work®1%3 also
showed that the volume change upon twist plays a crucial role
to determine the geometry and stability of colloidal membranes
of rod-like particles. The geometric frustration between double-
twist and splay causes that the twisted monolayer has a hyper-
bolic edge (i.e., "splay-twist" texture™l), and the splay of rods
arisen away from the monolayer midplane leads to a local vol-
ume expansion, which is most significant at the top and the bot-
tom of the monolayer edge. Based on this geometric argument,
using a combination of experiments and theory in which the vari-
ation of rod density is considered, Miller et al.>3/ demonstrated
that for the colloidal rafts in the membranes composed of rigid
rods of different lengths, the splay deformation causes expansion
and compression of the inner and outer raft edges, and their com-
petition results in spontaneous twist even for achiral systems and
non-monotonic dependence of stable twist as a function of the raft
size. As for our simulated monolayers which are assembled from
monodisperse rods in nonadsorbing polymers, we did not see ob-
vious hyperboloid-like shape from their contour lines, but the dif-
fuse interfacial region exhibits a clear decline of the rod density
arising away from the midplane, especially at the edges [Fig. S5
(a)]. When the perpendicular fluctuations of rods are suppressed
and their centers are confined at the 2D midplane (which is the
same as the theoretical model in Refs.?3, the monolayer does ex-
hibit a hyperboloid-like shape [Fig. S5 (b)]. However, in our
systems, the total volumes of small monolayers (which are made
up of 37 rods in our US simulations) are always decreasing in
the initial twisting process (Fig. S6), suggesting that the volume
expansion due to the splay deformation does not dominate, at
least in these small monolayers. All these results suggest that the
volume change due to twist is important to the stable texture in
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various colloidal membranes of rod-like particles and thus cannot
be simply ignored in theoretical models.

a AQtore) ==+ AQ, AF,
N (i) a
0 "§‘ """"""""""""" ; e s'g """"""""" 7!"
'_|_20 1 1 1 1 1
'Tn 20
X (if)
~
%_20 1 1 1 1 \-..__4/
20 A /I
N i) -~
0 \\5,4)1’
2018 —12 <6 o0 6 12 18
(g [°]
AN K\\\
AN
(W;) =27°

(W) = —31°

Fig. 4 The role of perpendicular fluctuations. (a) The changes in free
energy (AQpq, AF; and AQ,) as a function of the twist ((y;)) for mono-
layers formed by N, =37 (i) straight rods (r=0.0, p =), (ii) left-handed
moderately curled helices (r =0.1, p =12), and (iii) left-handed highly
curled helices (r=0.1, p=22) when the fluctuations perpendicular to the
plane of the monolayer are artificially suppressed. (b) Typical snapshots
of large equilibrated monolayers formed by N, =480 rods (corresponding
to those in a), obtained from simulations without rod fluctuations per-
pendicular to the monolayer.

3.5 The role of perpendicular fluctuations

Finally, we considered a special entropy contribution from rods
related to their fluctuations perpendicular to the monolayer. Fig-
ure [4c shows AQ,.q vs. (y;) for the three example monolayers
when the centres-of-mass of all rods are constrained to the mid-
plane of the monolayer. The rod fluctuations out of the plane are
expected to produce surface roughness and so increase the vol-
ume excluded to the polymers. We found that suppressing the
fluctuations resulted in more entropy gain for the polymers upon

6| Journal Name, [year], [vol.], 1

View Article Online
DOI: 10.1039/D2NR05230J

twisting for monolayers of straight rods and moderately curled
helices [see larger changes of AQ,, in Fig. (i) and (ii) compared
to that in Fig.[3 (i) and (ii)]. This stabilises the twisted states for
these monolayers, and even adds a new metastable twisted state
for the monolayer of moderately curled helices [Fig. Eth (iD)]. In
contrast, for the monolayer of highly curled helices, the polymer
entropy increases dramatically upon twisting when the fluctua-
tions are suppressed, causing the original weakly-stable twisted
state to disappear [Fig. (iii)]. These results are consistent
with unconstrained simulations of large monolayers (Fig. [4b),
and clearly show that rod fluctuations perpendicular to the mono-
layer have important effects on the stability of the chiral twists
that depend on the shape of the individual rods.

We note that such contributions from rod fluctuations perpen-
dicular to the monolayer are either ignored in continuum models
of colloidal membranes or only taken into account in a simplis-
tic manner (which is not curliness-dependent)> (Supplementary
S4). Our simulation results, however, indicate that these fluctua-
tions can play a crucial role in the stability of the chiral twist, and
thus may need to be accurately described in order to predict the
stable chiral twist.

4  Conclusions

In summary, we have used a simple model to characterise spon-
taneous chiral twist in monolayers assembled from either achiral
or chiral rods in non-adsorbing polymer solution, and to reveal
the rule of the chirality propagation from single particles to their
assemblies and the corresponding thermodynamic driving forces.
Note that the chiral twist discussed in this work is the double
twist, which is essentially distinct from the cholesteric (single)
twist24,

Depending on the geometry of the constituent rods, their
monolayer assemblies exhibit a broad range of chiral behaviour,
including variations in handedness and twist magnitude. Com-
pared to the constituent rods, the (achiral) straight rods and
weakly curled helices form monolayers with either % or .Z twist
(i.e., the mixed regime), moderately curled helices form mono-
layers with opposite handedness (i.e., the opposite regime), and
highly curled helices form monolayers with the same handed-
ness (i.e., the same regime). Moreover, the degree of twist in
the monolayers is a non-monotonic function of the intrinsic pitch
of the helices, with the most twisted monolayers occurs for some
moderately curled helices [Fig. 2 (a)].

The thermodynamic forces responsible for spontaneous chiral
twist also vary dramatically between different particle shapes. In
the mixed and the opposite regimes, the twist in monolayers is
mainly driven by the polymer entropy [Fig. 3a (i)]. As the rods
becomes more curled, the rod entropy also contributes to the
twist, and, gradually, only the twisted state with the opposite
handedness remains stable [Fig. 3a (ii)]. For the monolayer of
highly curled helices in the same regime, only one weakly twisted
state with the same handedness is stable, and is entirely driven
by the rod entropy [Fig. 3a (iii)].

Besides, our simulation results also indicate important contri-
butions from the volume change upon twist and the rod fluctu-
ations perpendicular to the monolayer that have so far been ig-
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nored in continuum theories. Our preliminary results, obtained
from Monte Carlo (MC) simulations, for rods held together by
explicit attraction rather than polymer depletion indicate a simi-
lar complexity (Supplementary S6). Overall, we find increasing
deviations from current continuum theory as the attractive forces
holding the rods together become weaker, regardless of whether
they are due to direct energetic or indirect entropic effects (Sup-
plementary S6). All these results contribute to our understanding
of chirality transmission across scales when chiral objects assem-
ble into larger aggregates.

At last, we point out that our simulations were based on a sim-
plified model for rod-like colloids (i.e., hard spherocylinders and
helices). These models clearly support that the twisted colloidal
membranes could also be formed by the helical rods, which could
be an interesting behaviour to be investigated in future experi-
ments by using similar natural and synthetic particles154726, Qur
current work also offers a helpful reference for understanding the
behaviour in more complex systems. It would be very useful to
consider models which are closer to the chiral rods (e.g. fd-virus
and DNA origami rods) used in experiments of colloidal mem-
branes. For example, using a “straight and helically-decorated”
2157 would allow us to compare the computational and ex-
perimental results more directly. Meanwhile, recent experiment
showed that the shape fluctuation of chiral rods also dramatically
affects their assembled structures™8, thus it would be interesting
to consider the flexibility of rod-like particles in future work.
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