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The ongoing SARS-CoV-2 pandemic has caused large outbreaks around the world and
every heavily affected community has experienced a substantial strain on the health
care system and a high death toll. Communities therefore have to monitor the incidence
of COVID-19 carefully and attempt to project the demand for health care. To enable
such projections, we have developed an interactive web application that simulates an
age-structured SEIR model with separate compartments for severely and critically ill
patients. The tool allows the users to modify most parameters of the model, including
age specific assumptions on severity. Infection control and mitigation measures that
reduce transmission can be specified, as well as age-group specific isolation.
The simulation of the model runs entirely on the client side in the browser; all pa-
rameter settings and results of the simulation can be exported for further down-
stream analysis. The tool is available at covid19-scenarios.org and the source code
at github.com/neherlab/covid19 scenarios.

The novel coronavirus SARS-CoV-2 was first detected
in the city of Wuhan within the Hubei province of China
at the end of December 2019 (Li et al., 2020). In the
following months, SARS-CoV-2 has shown to be highly
transmissible - the basic reproductive number, R0, has
been estimated to be within 2-3 (Riou and Althaus, 2020;
Zhang et al., 2020) with an estimated serial interval of 5-7
days (Ganyani et al., 2020; Nishiura et al., 2020). The ba-
sic reproduction number likely varies between communi-
ties and is affected by intervention measures. The illness
caused by SARS-CoV-2 infection, COVID-19, clinically
presents with a large variance of symptoms that range
from mild and asymptomatic infection to acute severe
respiratory illness. The clinical presentation of the infec-
tion strongly depends upon patient age (Surveillances,
2020) and certain comorbidities (Fang et al., 2020). The
WHO declared the COVID-19 outbreak a pandemic on
March 11th, 2020 (The WHO COVID-19 group, 2020).
As of April 20th, 2020, there have been over 2.4 million
confirmed COVID-19 cases from 210 countries.

A critical component of the global response to the
COVID-19 pandemic is the possibility to explore different
scenarios for local outbreaks within communities across
the world using mathematical modelling. Modelling is
important not only to guide governmental public health
policy but also to inform hospital readiness and educate
the general public on the importance of social distanc-
ing efforts. The spectrum of models used to analyze
COVID-19 outbreaks ranges from computationally in-
tensive agent-based simulation (Neil M Ferguson, 2020),
variants of SIR/SEIR models (Kermack et al., 1927),

to phenomenological curve fitting approaches (“IMHE
COVID-19 forecasting team” and Murray, 2020). How-
ever, traditional epidemiological modelling protocols do
not scale for a global pandemic - modelling has to be
done on a region-by-region basis. Thus, to make such
modeling widely available, we have developed an inter-
active, online tool that allows users to efficiently explore
COVID-19 scenarios based upon different epidemiologi-
cal assumptions and potential mitigation strategies. The
dynamics are modelled by an age-stratified SEIR model,
with additional novel compartments that correspond to
hospital and ICU utilization with finite capacity.

Our deterministic approach strikes a compromise be-
tween the accuracy of the approximation of the outbreak
dynamics and the speed of the simulation. On a typ-
ical modern computer and browser, the simulation will
complete in under one second such that many different
parameter values can be explored interactively. The out-
put of the model is a time series of simulated COVID-19
infections, hospitalizations, and ICU usage. Surveillance
data such as case counts, COVID-19-related fatalities,
and hospitalizations can be compared to the model out-
put when such data are available. Additionally, we utilize
these data to estimate a few basic parameters for each
provided scenario to provide reasonable starting points
for further parameter explorations. However, we stress
that the focus of this tool is on the exploration of scenar-
ios and not on parameter inference.

We have designed our tool with the following princi-
ples: (i) users should be able to interact dynamically
with the simulation such that changing underlying as-
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sumptions manifests instantly in the results, (ii) empir-
ical surveillance data should be plotted with the sim-
ulation results to allow for easy assessment of parame-
ter assumptions, (iii) results should be easily shareable
via URLs, exported raw data, and parameter files. Our
tool, COVID-19 Scenarios, was first released on March 9,
2020 and was one of the first publicly available interac-
tive models. It has been utilized consistently throughout
the COVID-19 pandemic, averaging roughly 8 thousand
page loads per day. Since we first released, we have been
dedicated to improving the tool, in both its underlying
scientific accuracy as new data emerged, as well as the
overall user experience. All source code and the aggre-
gated surveillance data are made freely available through
GitHub.

BASIC MODEL

We approximate the dynamics of a COVID-19 out-
break using a generalized SEIR model in which the pop-
ulation is partitioned into age-stratified compartments
of: susceptible (S), exposed (E), infected (I), hospital-
ized (H), critical (C), ICU overflow (O), dead (D) and
recovered (R) individuals (Kermack et al., 1927). The
progression of illness is approximated by the following
compartment transitions: susceptible individuals are ex-
posed to the virus by contact with an infected individual;
exposed individuals progress towards a infectious state;
infectious individuals either recover without hospitaliza-
tion or progress towards a severe illness that requires
hospitalization; hospitalized individuals either recover or
worsen towards a critical state; individuals with a criti-
cal illness either transition to the ICU or, if the hospital
is at capacity, to an “overflow” compartment and either
return to the hospital state or die; recovered individuals
can not be infected again. See Fig. 1 for an illustration
of the model. We note that direct comparisons between
the model predictions and available surveillance data are
difficult since only a fraction of cases are confirmed by
a positive test and this fraction various between regions.
The number of COVID-19 deaths is often a more robust
measure.

Let a, b ∈ [1, 2, ..., Na] denote the different age classes
of each compartment. The parameters of the model fall
into three broad categories: a time-dependent infection
rate βa(t); the rate of transition out of the exposed, infec-
tious, hospitalized, and critical/overflow compartments
γe, γi, γh, and γc respectively; and the age-specific frac-
tions ma, ca and fa of mild, critical, and fatal infections
respectively. Below, we expound upon each class of pa-
rameter.

The rate of transmission, βa(t), is nominally deter-
mined by both the basic reproductive number R0 and the
time period of patient infectivity γ−1i . Additionally, the
rate of transmission can be effectively slowed by mitiga-

tion efforts (e.g. social distancing), which we account for
phenomenologically by a multiplicative factor M(t) (see
below). Lastly, empirical data shows a strong, consis-
tent seasonal variation of the four endemic coronaviruses
suggesting similar seasonality in the transmissibility of
SARS-CoV-2 (Neher et al., 2020) Taken together, the
rate of transmission is modelled by

βa(t) = γiR0χaM(t)(1 + ε cos(2π(t− Tmax))) (1)

where χa models specific demographic isolation, and ε
and Tmax denote the (currently unknown) amplitude of
seasonal variation in transmissibility and the time of the
year of peak transmission respectively.

After an individual is infected (i.e. was exposed) it
takes some time before the individual itself is infectious.
In our model, the average value of this latency is given
by γ−1e . The incubation time of COVID-19 has been esti-
mated to be well approximated by an Erlang distribution
(Lauer et al., 2020). As such, we approximate the dis-
tribution of incubation times within our framework by
chaining three exposed states in which the mean time to
pass through all three states is γ−1e . The mean infectious
time of a COVID-19 case is γ−1i , which together with the
incubation period γ−1e defines the serial interval. The
residence times in the remaining compartments are as-
sumed to be exponentially distributed and thus taken to
be a singular state.

As noted above, the fraction of COVID-19 infections
that are asymptomatic/mild, severe cases which progress
to a critical state, and critical cases that are fatal are de-
noted as ma, ca, and fa, respectively (see below for more
detail). However, it is important to consider the effects
of hospital capacity and overutilization in forecasting po-
tential scenarios. Finite hospital resources and staffing
acutely impact the outcome for critical COVID-19 pa-
tients and thus the overall COVID-19-related fatalities.
We phenomenologically capture this effect by introduc-
ing non-linear constraint of a finite number of ICU beds C
that can accommodate critical patients. Once the num-
ber of critical cases exceeds this parameters, additional
critical cases are redirected to an “overflow” compart-
ment. We take the mortality rate of an overflow patient
relative to a patient with an ICU bed to be ξ.

With all parameters explicitly defined, our full model
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Figure 1 Diagram of model. A schematic illustration of the underlying model and allowed transitions. S, Ei, I, R, H, C, O
and D represent the susceptible, exposed, infectious, recovered, hospitalized, critical, overflow, and fatal compartments of the
model. Each compartment is further stratified by age demographics.
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where Θ(x) denotes the Heaviside step function and im-
poses the finite constraint of hospital resources.

The model currently does not allow for reinfection. Ev-
idence from other coronaviruses suggests that infection
elicits immunity that lasts for at least a year (Callow
et al., 1990). Whether this also holds for SARS-CoV-2 is
not yet clear, but reinfection and herd immunity are of
minor relevance in the early phase of a pandemic (Neher
et al., 2020). Reinfection might be added to the model in
the future if evidence accumulates that it is important.

USER INTERFACE AND ADJUSTABLE PARAMETERS

Epidemiological models, including the one defined by
Eqn 2, have dozens of parameters, many of which are not
accurately known and difficult to measure. Additionally,
each model dramatically simplifies reality; our parame-
ters are phenomenological summaries of the “true” het-
erogeneous dynamics. Therefore, we give the user control
over all model parameters in order to facilitate the explo-
ration of the dependence of the predicted results on the
input parameter values, see Fig. 2A for a screenshot of
the UI. We note that users specify timescales instead of
rates in the UI, e.g. γ−1i corresponds to the “Infectious
period” input box of Fig. 2A, as we felt timescales are
easier to directly interpret. For ease of use, the web ap-
plication has presets for many countries and states that
can be used as a starting point for exploration.

Interventions

In order to model both the historical transmission
of COVID-19 and project its further spread, one must
model the enacted social distancing measures, case isola-
tion, and quarantine policies. As such, our model gives
the user the ability to specify individual interventions,
indexed by α, with a well-defined start and end date and
an “effectiveness” εα ∈ [0, 1] parameter that quantifies
the mitigation’s multiplicative effect on rate of transmis-
sion. See Fig. 2B for an depiction of the UI for the input
of different mitigation measures. At each point in time,
the cumulative efficacy of all interventions is calculated
as

M(t) =
∏

α∈M(t)

(1− εα) (3)

where the product runs over all measures M(t) in effect
at time t. In the absence of mitigation strategy, M =
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Figure 2 User interface for model parameters and mitigations A) An example screenshot of the UI of the web
application used to vary model parameters. On the left, we have grouped parameters of the population under study, e.g. the
initial number of cases and the size of population. Conversely, on the right, we grouped phenomenological parameters related
to COVID-19 epidemiology. All numbers can be entered manually with a keyboard or stepped with the scrollbox. B) Individual
mitigation measures can be added or removed from the model via the the shown interface. Each intervention has a unique
name, a range of times it is applied for, and a range of possible efficacies. The net mitigation on COVID-19 transmission is
calculated via Eq. 3

1. The overall mitigation efficacy modulates COVID-19
transmissibility as seen in Eqn. 1.

Additionally, our model allows for the input of simple,
time-independent age-specific isolation measures. As can
be seen in Fig. 3, we provide a column for “age-specific”
isolation. These numbers result in a reduction in expo-
sure of individuals from specific age-groups to the general
population. For example, this feature could explore the
effect of measures specific for the elderly.

Severity parameters and demographics

The clinical outcome of a COVID-19 infection strongly
depends on the age of the patient (Zhou et al., 2020).
Hence, the overall burden of a COVID-19 epidemic
within a given region strongly depends on the age demo-

graphics of the population. In order to facilitate the in-
tegration of such effects within the model, we aggregated
age distributions for most countries, obtained from the
UNSD database API (United Nations Statistics Division,
2020) with a custom python script, to provide as presets.
Additionally, we allow for custom age distributions to be
specified within the UI, see Fig. 3. The provided age dis-
tributions determine the fraction of people in each age
group in the simulation.

The Chinese CDC provided extensive statistics of
severity of COVID-19 in different age groups (The Novel
Coronavirus Pneumonia Emergency Response Epidemi-
ology Team, 2020), broadly compatible with estimates
by (Verity et al., 2020). We used these data to parame-
terize the expected burden on health care systems. Our
severity assumptions are summarized in a editable table
in the tool, shown in Fig. 3. Each column can be edited
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and changed if users want and the implied infection fa-
tality for each group is calculated. Elements of the table
directly correspond to model parameters: (i) ma is the
product of the percentage confirmed and the complement
of the severe fraction, (ii) ca is set by the critical column,
and (iii) fa is set by the fatal fraction.

Parameter uncertainty

The dynamics of an exponentially growing process such
as the COVID-19 pandemic is naturally most sensitive to
the growth rate. In the context of the model, the growth
rate of infections is primarily a function of the basic re-
productive number R0 and the societal interventions en-
acted to slow the spread of COVID-19. Additionally, it is
a priori difficult to know the efficacy of mitigation mea-
sures. COVID-19 scenarios therefore allows the user to
specify ranges for R0 as well as for the efficacy εα of mit-
igation measures, see Fig. 2AB for an example of each.
The tool will randomly sample a user-specified number of
parameter combinations uniformly from these ranges (by
default set to 10 combinations). The outputted results
display the median as well as a shaded area denoting the
20th and 80th percentile, see Fig. 4 for an example of
the displayed results.

Model results

The primary result of the tool are trajectories of the
number of cases, people in need of hospitalization, and
fatalities, see Fig. 4 for an example of the predictions for
New York City. Additionally, all predicted trajectories
can be exported as a single age-stratified table for fur-
ther downstream analysis. A short executive summary
of the results can additionally be printed to PDF. Where
available, the app graphs the recent cases counts, deaths,
and hospitalizations for the community under study on
the plot with the model results. The surveillance data
enables the user to adapt parameters to tune the simu-
lation to the data, see Fig. 4. Once the model fits past
data, the user can explore future scenarios by adjusting
interventions and seasonality.

ESTIMATION OF PARAMETERS FROM DATA

While COVID-19 Scenarios is not intended as an in-
ference tool, we nevertheless provide parameter presets
that are estimated from empirical data. The primary in-
tent behind fitting to data is not to provide values with
high confidence, but rather to facilitate the immediate
utility of our tool for different scenarios from across the
globe with reasonable presets. We note that care must
be taken to not overfit the data; there are many more pa-
rameters of the model than features within the available

data. Furthermore, the testing and reporting patterns
are heterogeneous across regions, as well as change over
time which ultimately distort the raw numbers.

We therefore elect to only estimate three model pa-
rameters for each region: (i) R0, not solely a property of
the virus but also the social structure of the population,
(ii) the initial date of the epidemic tmin, and (iii) the size
of the initial cluster I0. In addition, we preset mitigation
measures that set in when case-counts rise above certain
levels. Again, these are not meant as fit parameters but
as templates to be adjusted by the user. We assume the
remaining parameters don’t vary across regions. These
have to be adjusted by the user if the data or other in-
formation suggests values different from the defaults.

We try to fit data solely from the onset of the epidemic
prior to mitigation efforts from individual regions. Due
to the heterogeneity of both the timing and efficacy of
policies implemented across the regions provided for in-
teractive exploration, we opted for a simple solution. As
more data from more regions become available, we might
fit more parameters to observations.

EMPIRICAL DATA

Both the initial estimates for scenario values, as well
as the interactive calibration of the model require em-
pirical observations of COVID-19 infections and hospi-
talizations. Due to the scope of scenarios provided, we
utilize a number of online resources to aggregate infor-
mation on new COVID-19 cases, deaths, and hospital-
izations. These resources include the daily updated case
counts by ECDC (European Centre for Disease Control,
2020), the US COVID tracking project (The COVID
tracking project, 2020), other official governmental agen-
cies from around the world, and data aggregated by vol-
unteers. A full list of all sources we use can by found
in the file data/sources.json in https://github.com/

neherlab/covid19_scenarios. The case empirical data
in the app is updated every 2-3 days.

IMPLEMENTATION AND AVAILABILITY

COVID-19 Scenarios is implemented as a single-page
web application using React web framework, Typescript
and numerous packages from Node.js ecosystem. The
simulation itself runs on the client side in a WebWorker,
to ensure interactivity during the computation. The
application can be hosted on any static web-server, or
run locally. We host the latest release version pub-
licly on AWS infrastructure, accessible at https://

covid19-scenarios.org.

Data fetching, processing, parameter estimation and
scenario generation is implemented using Python and
common data science packages, as an additional build
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Figure 3 Age-dependent parameters. Parameters that depend on patient age are summarized in a table that contains the
distribution of age groups, severity parameters, and age-specific isolation. The severity parameters are approximately based
on data by Surveillances (2020). The first column “confirmed” is our assumption on what fraction of total infections in the
different age groups enter as cases in the data analyzed in Surveillances (2020). Young individuals are often asymptomatic
and hence less likely to be tested. The following columns specify what fraction of confirmed cases fall severely ill and require
medical attention, what fraction of the former fall critically ill and requires intensive care, and lastly hat fraction of critically
ill patients die. The implied infection fatality rate is given in the second to last column.

step. The full source code is available under MIT li-
cense on GitHub at https://github.com/neherlab/

covid19_scenarios. Instructions on how to run the
application are documented there. COVID-19 Scenarios
was first released on March 9 2020 and has been updated
consistently since.

DISCUSSION

Countries, states, and communities across the world
have to plan and prepare for the outbreaks and potential
reemergence of COVID-19. Many countries have expert
research groups that develop tailored models and sophis-
ticated inferences (Kucharski et al., 2020; Neil M Fergu-
son, 2020) to predict individualized outcomes. However,
governments and other public organizations without such
availability need a flexible tool that models local out-
breaks, explore the effect of interventions, and can com-
pare results to past dynamics in an interactive workflow.
This is the gap that COVID-19 Scenarios has and con-
tinues to fill. To date, we average roughly 8 thousand
page loads per day (we don’t track users, but estimated
these numbers of from CloudFront usage statistics and
the number of requests per page load). These requests
come from more than 50 countries, with most visitors
coming from the USA, Germany, Switzerland, Russia,
Austria, and the UK.

In order to estimate the potential future burden on the
health care system, users need flexible ways to adjust de-
mographic parameters in addition to local public health
care policies (who gets admitted to the ICU, how long
are patients hospitalized). At the same time, sensible
defaults are required to provide a useful starting point
for exploration. COVID-19 Scenarios was written with
the explicit purpose to aid in this regard.

The past few months have shown that social distanc-
ing measures can effectively slow the spread of COVID-

19(Wang et al., 2020). The future trajectory of COVID-
19 will therefore primarily depend upon the level of so-
cial distancing and infection control that is maintained.
COVID-19 Scenarios therefore cannot confidently predict
outcomes, but rather help to explore potential future sce-
narios under specific assumptions made by the user. This
difficulty is further compounded by the fact that the pre-
diction of absolute numbers are exceedingly sensitive to
small variations in input parameters. Due to nature of
exponential growth experienced within an epidemic, a
small uncertainty in either the growth rate or initial date
will naturally result in large uncertainty in case numbers.
Therefore, it is critical that these uncertainties are com-
municated effectively to policy makers. We therefore al-
low the user to specify plausible ranges for the parameter
R0 and the efficacy of the interventions. In case of sev-
eral interventions, this results in a high dimensional space
of possibilities that we sample uniformly. Percentiles of
the sampled results are displayed to capture the range of
potential outcomes.

We stress that in addition to parameter uncertainty,
a simple SEIR model is a drastic abstraction and sim-
plification that does not capture the full complexity and
heterogeneity of the outbreak. Nevertheless we hope that
the tool is helpful for understanding the dynamic of the
outbreak and exploring the effect of past and future in-
terventions.
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Figure 4 Example simulation results for New York City. (top) A plot of the time-dependent effective reproductive
number. This is controlled via mitigation interventions and seasonality. The colored line corresponds to the median and the
shaded area is bounded by the 20% and 80% percentiles. (middle) Plot that shows both the interval (length) and ranges of
possible efficacies (width) for the applied mitigation interventions. (bottom) Plot that shows the resulting trajectories of all
compartments. The colored line for each compartment shows the median trajectory while the shaded area is bounded by the
20% and 80% percentiles. Additionally, the aggregated case count data is plotted (where available) as individual points. The
display of individual compartments can be toggled by clicking on the legend.

cess to their tool-stack.
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