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PGC-13 modulates catabolism and fiber atrophy
in the fasting-response of specific skeletal
muscle beds
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ABSTRACT

Objective: Skeletal muscle is a pivotal organ for the coordination of systemic metabolism, constituting one of the largest storage site for glucose,
lipids and amino acids. Tight temporal orchestration of protein breakdown in times of fasting has to be balanced with preservation of muscle mass
and function. However, the molecular mechanisms that control the fasting response in muscle are poorly understood.

Methods: We now have identified a role for the peroxisome proliferator-activated receptor y coactivator 13 (PGC-1p) in the regulation of
catabolic pathways in this context in muscle-specific loss-of-function mouse models.

Results: Muscle-specific knockouts for PGC-1[3 experience mitigated muscle atrophy in fasting, linked to reduced expression of myostatin,
atrogenes, activation of AMP-dependent protein kinase (AMPK) and other energy deprivation signaling pathways. At least in part, the muscle
fasting response is modulated by a negative effect of PGC-13 on the nuclear factor of activated T-cells 1 (NFATC1).

Conclusions: Collectively, these data highlight the complex regulation of muscle metabolism and reveal a new role for muscle PGC-1f3 in the

control of proteostasis in fasting.

© 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Adequate partitioning of energy substrates in fasting and feeding is a
fundamental process that involves a highly orchestrated and complex
crosstalk of various organs [1—3]. Interplay between the brain, the
liver, white and brown adipose tissue, the pancreas and the gastro-
intestinal tract determine appetite, satiety, the uptake, provisioning and
distribution of substrates, as well as the balance between anabolism
and catabolism. Skeletal muscle is centrally involved in this process,
and, importantly, is the only organ that can be controlled in a conscious
and voluntary manner to modulate energy metabolism [4,5]. The initial
fasting response is dominated by a drop in blood glucose and the
ensuing switch of pancreatic secretion from insulin to glucagon, trig-
gering glycogenolysis and gluconeogenesis in the liver, and disrupting
lipid deposition in adipose tissue as well as insulin-mediated glucose
uptake into fat and muscle [6,7]. These early metabolic changes
contribute to a stabilization of blood glucose levels, and thereby ensure
subsistence to cells that are unable to use fatty acids as energy
substrates such as red blood cells and the brain. Prolonged fasting,
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and the corresponding depletion of liver glycogen, leads to a more
complete shift to hepatic, and to a lesser extent renal gluconeogenesis,
fueled by glycerol from adipose tissue lipolysis and a subset of amino
acids from skeletal muscle [1—3]. In addition, increased lipolysis in fat,
and the production of ketone bodies help to support the energetic
demands of various tissues, e.g. liver, cardiac and skeletal muscle.
The production of glucogenic amino acids by proteolytic activity in
muscle leads to a reduction of mass and function of this tissue.
Therefore, a fine-tuning of skeletal muscle proteostasis is a central
process in modulating systemic metabolism, tightly balanced between
maintenance of muscular function and provisioning of amino acids for
gluconeogenesis and other critical bodily functions [8]. After prolonged
fasting and in starvation, muscle protective effects are superseded by
the rising need for energy substrates, and to reduce energetically
costly muscle tissue.

Many signaling pathways and transcriptional regulators have been
proposed to be involved in the muscle fasting response, including the
AMP-dependent protein kinase (AMPK), myostatin/activin receptors,
nuclear factor kB (NFkB) and corticosteroid signaling [9]. Moreover,
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Abbreviations

AMPK AMP-dependent protein kinase

ATP5A ATP synthase 5 alpha

BSA bovine serum albumin

f3-OHB [B-hydroxybutyrate

BW body weight

CaMK Ca2-+/calmodulin-dependent protein kinases
cAMP cyclic AMP

CEE chicken embryo extract

COX cytochrome oxidase

Cox4i1 cytochrome C oxidase subunit 4 isoform 1
Cox5B cytochrome C oxidase subunit 5B

CPT-cAMP 8-(4-chlorophenylthio)adenosine 3’,5’-cyclic monophosphate

Creb cAMP response binding protein
CSA cross sectional area

CytC cytochrome C

DEG differentially expressed gene
DMS0 dimethyl sulfoxide

EDL Extensor digitorum longus muscle
FC fold change

FDR false discovery rate

Fox0 forkhead box O

GO gene ontology
HAS human skeletal actin

IBMX 3-isobutyl-1-methylxanthine

ISMARA integrated motif activity response analysis

MAFbx muscle atrophy F-box

minFeret minimal fiber feret

MKO PGC-1B-specific muscle knockout

Mstn myostatin

MuRF-1  muscle RING finger 1

NDUFB8 NADH dehydrogenase 1 beta subcomplex subunit 8
NEFA non-esterified fatty acid

Nfatc1 nuclear factor of activated T-cells, cytoplasmic 1
PGC-1 peroxisome proliferator-activated receptor y coactivator-1
PKA cyclic AMP-dependent protein kinase

RER respiratory exchange ratio

SDH succinate dehydrogenase
SDHB mitochondrial succinate dehydrogenase iron-sulfur subunit
SEM standard error of the means

TA Tibialis anterior muscle

TBP TATA-binding protein

TGF transforming growth factor

UQCRC2  mitochondrial cytochrome b-c1 complex subunit 2
WT wild type control

ubiquitin-proteasome activity and autophagy are central processes that
promote protein degradation and amino acid liberation as energy or
gluconeogenic substrates [10,11]. It however is unclear how these and
potentially other signaling pathways are coordinated and integrated,
and how the reported massive transcriptional change in the muscle
fasting response is brought about [9]. In many tissues, the peroxisome
proliferator-activated receptor y coactivator 1 (PGC-1) proteins control
cellular metabolic adaptation to various internal and external cues. For
example, PGC-1a promotes thermogenesis in brown adipose tissue,
gluconeogenesis in the liver, and adaptation of cardiac and skeletal
muscle to changes in contractile activity [12]. Accordingly, PGC-1a.
transcription and posttranslational modifications of PGC-1a. protein are
activated by cold exposure, fasting and endurance exercise in these
tissues, respectively. Hepatic PGC-13 mRNA levels are induced by
fasting [13] and liver-specific PGC-1p knockout mice show a blunted
fasting-refeeding response [14]. In skeletal muscle, gain-of-function of
PGC-1P promotes a switch towards type IIx muscle fibers [15] and
promotes a high-endurance phenotype [16], while loss of function
studies provided evidence for a role in mitochondrial biogenesis and
oxidative metabolism as well as antioxidant defense [17,18]. A po-
tential regulatory and functional specification between PGC-1o and
-1PB could also be implied by the absence of cross-regulation in most
contexts. Transgenic modulation of PGC-1¢. in skeletal muscle, either
gain- or loss-of-function, did not affect gene expression of PGC-1f3
[19,20]. Similarly, muscle-specific ablation of the PGC-1B gene
(PPARGC1B) did not alter PGC-1a transcription [18]. In contrast,
muscle overexpression of PGC-1p, even though potentially at super-
physiological levels, strongly reduced the transcript levels of PGC-1a.
[15]. Thus, in summary, in contrast to the robust regulation of PGC-10
gene expression by contractile activity and the ensuing effect on the
exercise program, the regulation and function of PGC-1 in muscle are
much less clear. Since feeding/fasting paradigms were shown to
involve PGC-1{ in the liver [13], the aim of our study was to elucidate
the role of PGC-1B in the regulation of fasting-induced muscle
remodeling.

2. MATERIAL AND METHODS

2.1. Animal housing and PGC-1[3 muscle-specific knockout mouse
generation

Mice had free access to food and water and were housed in a con-
ventional facility with a 12 h light/12 h dark cycle. Experiments were
performed with the approval of the Swiss authorities on adult male
mice (10 weeks or older). PGC-1B muscle-specific knockout (MKO)
animals were generated by crossing PGC-1p>"'® animals (Jackson
Laboratory B6.129X1-Ppargc1b™10PK/  strain number 012378) [21]
with human skeletal actin (HSA)-Cre transgenic mice. PGC-1p/o®/o®
animals without Cre expression were used as wild-type control (WT)
mice. Genotyping was performed from tail biopsies by PCR using
specific primer pairs to detect the presence of the loxP sites, which
resulted in amplicons of ~ 500 bp (WT allele, 318 bp). Specific primer
pairs to detect Cre recombinase resulted in amplicons of 100 bp in
MKO mice. To confirm the knockout, 3—4 weeks old male and female
mice were used. Male mice were examined in all other studies due to
the higher muscle mass. Mice were randomized to fed and fasted
groups.

2.2. In vivo analysis

To determine PGC-1 gene expression after maximal endurance per-
formance, mice were acclimatized to treadmill running (Columbus
Instruments) as described in Supp. Table 1 of the Supplemental
Experimental Procedures. Two days after acclimatization, the test
started at 5 m/min for 5 min and 8 m/min for 5 min with a 5° incline
and the speed was increased 2 m/min every 15 min until exhaustion. 4
h after the exercise test, mice were killed by CO» and Quadriceps
muscles removed.

All mice were fed a normal chow diet. For fasting experiments, mice
were placed in new, clean cages, and food was withdrawn from the
mice in the morning. 24 h later, mice were killed by CO, and organs
removed.

Body composition of the mice was determined by gNMR using an
EchoMRI-100™ analyzer (EchoMRI Medical Systems).
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For indirect calorimetry, mice were placed in a CLAMS system (Co-
lumbus Instruments) for four days (2 days acclimatization, 2 days
measurement) to assess their VO, consumption, drinking behavior,
food intake, locomotion and respiratory exchange ratio (RER). For body
temperature measurements, anipills (Phymep S.a.r.l.; REF: 01101,
LOT: 15-03,1 (DL 01-2017)) were implanted into the intraperitoneal
cavity two weeks before CLAMS measurements.

2.3. Blood analysis

Blood analysis was carried out in the morning of ad-libitum fed or 24 h
fasted animals. Blood glucose and ketone bodies were measured from
tail blood with a glucose meter (Accu-Chek, Roche) or a ketone body
meter (Precision Xtra, Abbott Laboratories), respectively. Plasma was
obtained from whole blood, which was collected in microvette tubes
(Sarstedt) and centrifuged at 2000 g for 10 min. Non-esterified fatty
acids (NEFA) were measured in plasma using a NEFA-Kit (HR Series
NEFA-HR (2), Wako Diagnostics) according to the manufacturer’s
instructions.

2.4. Primary cell culture

For the establishment of primary cell cultures, single fibers of 3 weeks
old male WT mice were isolated as described in the Supplemental
Experimental Procedures. Primary myoblasts were differentiated at
around 60—70% confluency using differentiation medium (DMEM
Glutamax, 4% HS, 1% P/S, 1% CEE) for 3 days. The next day, cells
were serum starved with low glucose medium (LG, D6046, Sigma) for
16 h before treatment of the different compounds for 6 h. Compounds
used were forskolin (100 puM, F3917, Sigma), 8-(4-chlorophenylthio)
adenosine 3’,5'-cyclic monophosphate (CPT-cAMP, 100 uM, C3912,
Sigma), 3-isobutyl-1-methylxanthine (IBMX, 1 mM, 15879, Sigma). All
compounds were diluted in dimethyl sulfoxid (DMSO, 1%, D2650,
Sigma).

2.5. Skeletal muscle stainings

Freshly isolated Gastrocnemius muscles were placed in 8% tragacanth
(G1128, Sigma) and frozen in liquid nitrogen-cooled isopentane before
cutting 10 pum cryo-cross-sections.

Succinate dehydrogenase (SDH) staining: sections were exposed to
50 mM sodium succinate (52378, Sigma) in 0.1 M phosphate buffer in
the presence of 0.5 mg/ml nitroblue tetrazolium (N5514, Sigma) for
30 min at 37 °C. Then sections were washed with ddH»0, dehydrated
with ethanol and mounted with histomount (008030, Thermo
Scientific).

Cytochrome oxidase (COX) staining: slides were exposed to 0.5 mg/ml
3,3’-Diaminobenzidine tetrahydrochloride hydrate (DAB, Sigma
D5637), 0.2 mg/ml cytochrome ¢ (C2506, Sigma) and 0.125 mg/ml
catalase (C40, Sigma) in PBS for 1 h at 37 °C. Then slides were
washed with ddH,0, dehydrated with ethanol and mounted with his-
tomount (008030, Thermo Scientific).

Fiber typing was carried out as described in the Supplemental
Experimental Procedures. Whole sections were pictured using a
slide scanner (Axio Scan.Z1, Zeiss). For minFeret measurements and
fiber typing counting, square pictures from total sections were cropped
out (mean of two pictures in the oxidative part of the muscle, one in the
glycolytic part of the muscle). For minFeret determination, a Fiji script
was used as described in the Supplemental Experimental Procedures.

2.6. mRNA sequencing and analysis

mRNA sequencing library preparation was carried out as described in
the Supplemental Experimental Procedures. Fastq files (GEO
GSE210904) were mapped to the mouse genome (mm10) and RNAseq
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and statistical analysis performed with the CLC Genomics Workbench
Software (Qiagen).

Differentially expressed genes were pictured in a Venn diagram with
the use of the eulerAPE drawing tool [22]. Gene ontology (GO) analysis
was executed by the usage of GeneCodis [23]. Only GO terms with at
least 5 mapped genes were considered to be enriched and GO list was
sorted according to corrected hypergeometric p-value. The top ten of
enriched GO terms (Tables 3—7 in the Supplemental Experimental
Procedures) were furthermore sorted by enrichment (calculated by:
(Support/List Size)/(Reference Support/Reference size)). Annotation
clusters were derived from DAVID [24] and heatmaps created with
Morpheus (https://software.broadinstitute.org/morpheus). Integrated
motif activity response analysis (ISMARA) was used to predict enriched
transcription factor binding motifs [25].

2.7. RNA isolation and real-time gPCR

Total RNA was isolated from powdered Quadriceps and Gastrocne-
mius muscles or two pieces of liver with FastPrep tubes (MP Bio-
medicals) and TRI reagent (T9424, Sigma) according to the
manufacturer’s instructions. Total RNA from primary myotubes was
isolated using the RNeasy Micro Kit (74004, Qiagen) according to the
manufacturer’s instructions (without DNase treatment). RNA con-
centration was measured with a NanoDrop OneC spectrophotometer
(Thermo Scientific). RNA was treated with DNase | (18068015,
Thermo Scientific) and then reverse transcribed using hexanucleotide
mix (11277081001, Sigma) and SuperScript Il reverse transcriptase
(18064022, Thermo Scientific). The level of relative mRNA was
quantified by real-time PCR on a StepOnePlus system (Applied
Biosystems) using Fast SYBR green PCR master mix (4385612,
Thermo Scientific) or on a Light Cycler 480 Il system (Roche) using
Fast Start Essential DNA Green Master mix (06924204001, Roche),
respectively. The analysis of the mRNA was performed by the
comparative AACT method using TATA binding protein (TBP) or 18S
as endogenous controls as indicated in the figure legends. Primer
sequences are listed in Supp. Table 2 of the Supplemental
Experimental Procedures.

2.8. Protein isolation and Western blotting

Powdered tissue samples were homogenized with a polytron device in
300 pl of ice-cold lysis buffer (50 mM Tris—HCI, pH 7.5, 1 mM EDTA,
0.5 mM EGTA, 1% NP-40 substitute, 150 mM NaCl, 0.2% Na-
deoxycholate, 1 mM DTT, fresh protease and phosphatase inhibitor
cocktail, 10 mM nicotinamide). Samples were then shaken at
1300 rpm for 30 min at 4 °C, subsequently centrifuged at 13000 g for
10 min at 4 °C, and the protein concentration of the supernatant was
determined by the Bradford assay (5000006, Bio-Rad). Equal aliquots
of protein were boiled for 5 min in Laemmli sample buffer (250 mM
Tris—HCI, pH 6.8, 8% SDS, 40% glycerol, 0.01% bromophenol blue,
and 20% [-mercaptoethanol). Samples were separated on SDS-
polyacrylamide gels and then transferred to nitrocellulose mem-
branes. Membranes were blocked for 1 h in 5% bovine serum albumin
(BSA) in Tris-buffered saline and Tween 20 (TBST) before overnight
incubation at 4 °C with the appropriate primary antibody diluted in
TBST (1:1000 dilution). Primary antibodies used are listed in the
Supplemental Experimental Procedures. Following incubation, mem-
branes were washed with TBS-T before incubation with an appropriate
peroxidase-conjugated secondary antibody diluted in TBS-T (1:10'000
dilution). Antibody binding was detected using the enhanced chem-
iluminescence horseradish peroxidase (HRP) substrate detection kit
(32106, Pierce). Quantification of Western blots was performed with
the ImageJ software.
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2.9. Glycogen isolation

Around 10 mg of powdered Gastrocnemius muscle were homogenized
on ice in 200 pl water using a polytron device. Then, samples were
boiled for 5 min in order to inactivate enzymes. After centrifugation for
5 min at 13,000 rpm, supernatant was moved to new tube and
glycogen content measured using a glycogen assay kit (ab65620,
Abcam) according to the manufacturer’s instructions.

2.10. Generation of adenoviral vector

Adenovirus vectors were generated with the Adeno-X Adenoviral
System 3 following manufacturer’s instructions (Takara, #632267).
Briefly, mouse PGC-1[3 was PCR-amplified from the plasmid (Addgene,
#1031) plasmid. N-terminal HA and FLAG tags were introduced during
PCR amplification, with the amplicon subcloned into the pAdenoX-
ZsGreen1 vector to generate the HA-Flag-PGC-1 [ adenovirus.
Plasmid was corroborated via Sanger sequencing. Adenovirus was
produced and amplified in Adeno-X™ 293 cells (Takara, # 632271),
while titter was determined by fluorescence-activated cell sorting.

2.11. Adenovirus transduction

Cells were transduced with the HA-Flag-PGC-1f adenovirus at mul-
tiplicity of infection (MOI) 2. Adenovirus was prepared in the corre-
sponding medium and cells were transduced for 4 h. Next, cells were
washed once with phosphate buffered saline (PBS) and, then, incu-
bated in adenovirus-free medium for a total of 48 h.

2.12. Forskolin stimulation

Forty-eight hours post-transduction with HA-Flag-PGC-1[3 adenovirus,
cells were serum starved for 1 h and next incubated with DMSO alone
(control) or 10 uM Forskolin (Sigma, #F3917) in DMSO for 6 h. Sub-
sequently, cells were collected for immunoblot analysis as described,
using the following antibodies: PGC-13 (Proteintech, #22378-I-AP),
eEF2 (Cell Signaling Technology, #2332S), p-CREB®'®® (Cell Signaling
Technology, #9198S) and CREB (Cell Signaling Technology, #9197S).

2.13. Reporter gene assays

Reporter gene assays were performed in 96 well plates using 3x 104
HEK293 cells per well grown in growth medium without antibiotics.
Cells were transfected using Opti-MEM™ (Thermo Fisher Scientific,
#31985070) and polyethylenimine (Polysciences, # 23966). Plasmids
and polyethylenimine were diluted in Opti-MEM™, following which
they were mixed in a 1:3 ratio of g DNA:pg polyethylenimine and
incubated for 20 min at room temperature before adding to the cells.
Cells were transfected 24 h after seeding with 5 ng pRL-SV40
(Promega, #E2231), 15 ng pNFAT-luc (Addgene, #17870), 10 ng
pcDNA-NFAT, 40 ng pcDNA-f:PGC1b (Addgene, #1031). The total
amount of plasmid DNA was kept constant at 110 ng per well by using
the control plasmid pAdenoX-LacZ. Forty-eight hours after trans-
fection, firefly and Renilla luciferase activities were measured with
Dual-Glo® Luciferase Assay System (Promega, #E2920) following
manufacturer’s instructions. Renilla luciferase activity was used for
normalization.

2.14. Statistical analysis

Values are expressed as means =+ standard deviation (SD). Statistical
significance was determined with unpaired two-tailed t-tests using
Excel software and p < 0.05 was considered as significant. Significant
differences between fed WT and fed MKO mice and fasted WT and
fasted MKO mice, respectively, are indicated by an asterisk (*). Sig-
nificant differences between fed and fasted WT and fed and fasted
MKO mice, respectively, are indicated by a hashtag (#).

3. RESULTS

3.1. PGC-1f expression is downregulated in skeletal muscle by
fasting

The regulation of PGC-1f in skeletal muscle is still largely unexplored,
and might differ from that of PGC-1a. As a first step, we therefore
interrogated the gene expression of PGC-1o. and PGC-1p in exercise
and fasting. In contrast to PGC-1a, PGC-1f transcript levels were
unaffected by an acute bout of endurance exercise (Figure 1A), similar
to previous observations [26,27]. Second, as published [28], both PGC-
10, and PGC-1B transcripts were elevated by fasting in the liver
(Figure 1B). Intriguingly, fasting resulted in a repression of PGC-1f in
skeletal muscle, while PGC-1a transcription was unchanged
(Figure 1C). Thus, these two factors differ in terms of regulation in
skeletal muscle. PGC-1f furthermore exhibits diametrically opposite
reactions to fasting in liver and muscle, indicative of a broader func-
tional role for this coactivator in the fasting-feeding paradigm. To
further explore this hypothesis, we generated PGC-1f MKOs by
crossing HSA-Cre transgenic mice with floxed PGC-13 mice [21],
leading to a deletion of exons 4-6 of the PGC-1[3 gene specifically in
skeletal muscle while other tissues were unaffected (Figure 1D).
Similar to other PGC-13 MKO models [18], no compensatory change in
PGC-1a., but a broad effect on various mitochondrial target genes like
cytochrome C (CytC), cytochrome C oxidase subunit 4 isoform 1
(Cox4i1) and cytochrome C oxidase subunit 5B (Cox5B) was observed
under basal conditions (Figure 1E). PGC-1 ablation resulted in a
reduction in the protein levels of only the mitochondrial NADH dehy-
drogenase 1 beta subcomplex subunit 8 (NDUFB8), part of complex | of
the respiratory chain, while proteins belonging to other mitochondrial
complexes, including ATP synthase 5 alpha (ATP5A), mitochondrial
cytochrome b-c1 complex subunit 2 (UQCRC2) and mitochondrial
succinate dehydrogenase iron-sulfur subunit (SDHB) were not altered
by the ablation of Pppargc1b/PGC-1B (Figure 1F,G). Nevertheless,
MKO mice showed a reduction in the enzymatic activities of the two
mitochondrial enzyme complexes succinate dehydrogenase (SDH),
entirely nuclear encoded, and cytochrome oxidase (COX), which con-
sists of nuclear and mitochondrial encoded proteins (Figure 1H,I). A
similar reduction in oxidative phosphorylation (OXPHOS) has been re-
ported in other studies of skeletal muscle-specific loss-of-function of
PGC-1p [17,18]. Taken together, our data validate this mouse model
and revealed a hitherto undescribed regulation of PGC-1f in fasting in
skeletal muscle.

3.2. PGC-1B MKO animals mitigate body weight loss after 24 h of
fasting

To assess the consequences of the regulation of muscle PGC-1f in
fasting, WT and MKO mice were food-deprived for 24 h. First, plasma
glucose levels dropped after a 24 h fasting period, regardless of
presence or absence of a functional PGC-1[3 in muscle (Figure 2A).
Inversely, non-esterified fatty acids (NEFASs) (Figure 2B) and the ketone
body [B-hydroxybutyrate (B-OHB) (Figure 2C) plasma levels were
significantly elevated after 24 h of fasting in WT and PGC-1 MKO
animals. Similarly, assessment of the oxygen consumption rate (VOo)
(Figure 2D), respiratory exchange ratio (RER) (Figure 2E), body tem-
perature (Figure 2F), food consumption (Figure 2G) and drinking
behavior (Figure 2H) under basal conditions revealed a significant ef-
fect of fasting on all of these parameters during nighttime, however
again independent of the genotype. In addition, activity levels were
similar between fed and fasted and WT and MKO animals (Figure 21—
K). In contrast, while body composition as measured by gNMR of ad-
libitum fed mice was indistinguishable between the genotypes
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Figure 1: PGC-1[3 expression is downregulated in skeletal muscle upon fasting. (A) Gene expression of PGC-1f and PGC-1¢. relative to TATA-box binding protein (TBP) in
Quadriceps muscle of sedentary or exercised mice. (B and C) Gene expression of PGC-13 and PGC-1a. relative to 18S in liver (B) and Gastrocnemius muscle (C) of ad-libitum fed or
24 h fasted mice. (D) Gene expression of PGC-1 relative to TATA-box binding protein (TBP) in different muscles and other tissues of control (WT) and PGC-1f muscle-specific
knockout (MKO) mice. (E) Gene expression of PGC-1[3, mitochondrial target genes and PGC-1¢. relative to TATA-box binding protein (TBP) in Gastrocnemius muscle of WT and MKO
mice. (F and G) Protein levels of different mitochondrial chain complexes (F) in Gastrocnemius muscle of WT and MKO mice and representative immunoblots (G). As a loading
control eukaryotic elongation factor 2 (eéEF2) was used. (H and I) Quantification of (H) and representative succinate dehydrogenase (SDH) and cytochrome oxidase (COX) stainings of
Gastrocnemius muscle cryo-sections () of WT and MKO mice. * indicates significant differences between sedentary and exercised mice, fed and fasted mice and WT and MKO

mice; n = 3—6.
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Figure 2: MKO animals preserve body weight and lean mass after a 24h fasting period. (A—C) Plasma glucose (A), non-esterified fatty acids (NEFA) (B) and B-hydrox-
ybutyrate (3-OHB) (C) levels of ad-/ibitum fed or 24 h fasted mice. (D—K) Average oxygen consumption rate (VO,) normalized to body mass (D), respiratory exchange ratio (RER) (E),
body temperature (F), food intake (G), drinking behavior (H), X- (I) and Y- (J) ambulatory activity and rearing activity (K) measured during nighttime by indirect calorimetry over a
48 h period in ad-libitum fed or 24 h fasted mice. L-M) Body composition measured by gNMR of ad-/ibitum fed or 24 h fasted mice with an initially identical body weight. *
indicates significant differences between WT and MKO mice; # indicates significant differences between fed and fasted conditions; n = 5—8.

(Figure 2L), the MKO of PGC-1f mitigated the fasting-induced loss in
body mass in comparison to their WT fasted counterparts (Figure 2M).
Collectively, these results indicate that the systemic fasting response is
not affected by muscle PGC-1f3 in a major way, albeit with a small, but
significant effect on fasting-induced loss in body weight.

6

3.3. Muscle PGC-1 is necessary for fasting-induced fiber atrophy

To assess the consequence of PGC-1B ablation on the fasting
response in muscle, we measured individual muscle weights (absolute
and relative) and fiber cross-sectional areas. Gastrocnemius
(Figure 3A) and Soleus (Figure 3B), but not the Tibialis anterior (TA)
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Figure 3: PGC-1J is necessary for the fasting-induced fiber atrophy. (A—C) Gastrocnemius (A), Soleus (B) and Tibialis anterior (TA) (C) absolute and relative muscle weights of
ad-libitum fed or 24 h fasted mice. D-G) Minimal fiber ferrets (minFerret) of oxidative (D and E) and glycolytic (F and G) Gastrocnemius muscle cross-sections of ad-libitum fed (D
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(Figure 3C) muscles of fasted MKO animals were significantly heavier
compared to fasted WT mice. To evaluate if the preserved muscle
mass in fasted MKO animals is associated with the cross-sectional
area (CSA) of single fibers, we analyzed the minimal fiber ferets
(minFeret) in Gastrocnemius muscle cross-sections in two different
areas, the center with a high proportion of oxidative, and the periphery
with mostly glycolytic fibers. First, the CSA of oxidative fibers was not
different between genotypes in fed (Figure 3D) and fasted (Figure 3E)
conditions. Glycolytic fiber sizes were likewise indistinguishable be-
tween fed WT and MKO mice (Figure 3F). In contrast, bigger glycolytic
fibers were found in fasted MKO compared to their WT counterparts
(Figure 3G,H). Moreover, the fasting-induced reduction in glycolytic
fibers in the WT animals was not observed in MKO mice (Supp.
Figure S1A—F). For all the four groups, fiber type distribution was
indistinguishable and thus cannot explain for the differences in CSA
(Supp. Figure 1E). Together, these results demonstrate that at least in
some muscles, and predominantly glycolytic fibers in which PGC-1[3
expression has been reported to be higher [15], fasting-induced loss in
mass and fiber size depends on functional muscle PGC-1p.

3.4. Transcriptional changes induced by PGC-1f MKO are linked to
muscle proteostasis

On afirst glance, it seems curious that the main phenotypic differences
between WT and MKOs emerge in the fasted muscle, in which
endogenous PGC-1P gene expression is reduced, and not in fed ani-
mals in which PGC-1f transcript levels are higher (Figure 1C). To
interrogate the mechanisms that could explain for this apparent
discrepancy, transcriptomic analysis of fed and fasted WT and MKO
Gastrocnemius muscles was performed. In line with the phenotypic
observations of atrophy protection in fasting and minimal differences in
the fed state, more genes were differentially expressed between fasted
WT and MKO muscles (417 genes) compared with the corresponding
fed muscles (207 genes), with only a small overlap of 77 genes be-
tween the two conditions (Figure 4A). A selection of Annotation clusters
(the complete lists are attached as Supplemental Dataset 1) revealed
that OXPHOS genes are different between WT and MKO across all
comparisons (Figure 4A), with an enrichment of genes encoding for
OXPHOS complex | primarily in the fasted condition. Notably, fasted
MKO muscles exhibited a differential expression of genes related to
ubiquitin protein ligase activity (Figure 4A). Second, the comparison of
the physiological fasting response in WT animals to that observed in
MKOs resulted in a split of around 27% (1091 out of 4033 genes) of
gene expression changes that are dependent on muscle PGC-1, and
73% (2942 out of 4033 genes) that respond to fasting in the presence
or absence of muscle PGC-1B, at least in a qualitative manner
(Figure 4B). Intriguingly, transcripts that are involved in proteostasis,
e.g. those related to ribosome, translation, ubiquitin protein catabo-
lism, NFKB and mTOR signaling, or proteolysis, were distributed over
all three groups of genes (Figure 4B). These observations imply that
different aspects of proteostasis are affected in these conditions.
Indeed, the heatmaps depicting genes involved in ribosome and pro-
tein synthesis (Figure 4G, left panel), and in protein ubiquitination and
proteasome (Figure 4C, right panel) underline a selective gene
expression. For example, fasting regulation of a number of ribosomal
proteins is strongly reduced in MKO muscle. Second, the control of the
F-box protein 40 (Fbxo40) [29] and the ubiquitin-specific proteases 29,
50 and 54 (USP29/50/54) [30,31] in fasted WT and MKO muscles,
respectively, indicate a potential shift in protein ubiquitination patterns
elicited by PGC-1p towards deubiquitination in the MKOs, potentially
linked to reduced atrophy. Together, these transcriptome analyses
confirmed that, despite a downregulation of PGC-1[ gene expression,

the more extensive phenotypic difference between WT and MKOs
occurs in the fasting context. It is conceivable that the ablation of
muscle PGC-1f in the basal, fed-state, in which the difference be-
tween WT and MKO gene expression is larger, predisposes fasted
muscles to react differently. It is also possible that gene expression
levels might be misleading and not reflect PGC-1f3 protein content and/
or activity. Unfortunately, the quantification of the levels of endogenous
muscle PGC-1B by Western blots and mass spectroscopy was not
possible, even when attempting immunoprecipitation before detection,
and using synthetic peptides for targeted mass spectroscopy. Inter-
estingly, a large overlap between the signaling pathways engaged in
fasting and exercise exists, e.g. AMPK or protein kinase A (PKA)/cyclic
adenosine monophosphate (cCAMP) [32,33]. Thus, as an indirect proxy
measure for PGC-1P protein levels, epitope-tagged, overexpressed
PGC-1f was quantified after stimulation of muscle cells with phar-
macological modulators of these fasting-associated signaling path-
ways. To assess the transcriptional and translational response, we
therefore treated muscle cells with forskolin (a PKA activator), CPT-
cAMP (a cAMP analog) and IBMX (a phosphodiesterase inhibitor). As
expected, all three treatments promoted a robust induction of
endogenous PGC-1a. gene expression (Figure 4D). In contrast, tran-
script levels of endogenous muscle PGC-1f3 were reduced. These
changes mimic the observed regulation of muscle PGC-1a in exercise
(Figure 1A) and muscle PGC-1 in fasting (Figure 1C), respectively. In
the same experimental paradigm, epitope-tagged, overexpressed
PGC-1B was visualized by Western blot, and an increase in protein
levels was detected (Figure 4E). Thus, these results imply that tran-
scriptional regulation of PGC-1f could be dissociated from the cor-
responding protein content in fasted muscle, at least at certain time
points, providing an explanation for the large transcriptional and
phenotypic differences between WT and MKO mice in this setting.

3.5. Fasted MKO mice show a reduced induction of myostatin and
atrophy marker gene expression

The differential analyses of gene expression between different con-
ditions indicate a selective regulation of genes belonging to Annotation
Clusters related to proteostasis in the presence or absence of muscle
PGC-1p. Interestingly, in a more detailed interrogation, the top over-
represented GO categories in the comparison between fasted WT and
MKOs included, besides “electron transport chain”, also “transforming
growth factor (TGF)- receptor signaling pathway” as one of the most
significant terms (Figure 5A, Supp. Table 3). TGF-B signaling and in
particular the associated differentially expressed gene (DEG) myostatin
(Mstn) (Supp. Table 3) induce muscle atrophy by activating the ubig-
uitin proteolytic system [34,35]. Furthermore, Mstn is a well charac-
terized negative regulator of skeletal muscle mass via small worm
phenotype/mothers against decapentaplegic (SMAD) signaling [34]. In
our RNAseq data, Mstn was significantly reduced in fasted MKO
compared to fasted WT mice suggesting a downregulation of Mstn-
associated TGF- signaling. The RNAseq result was confirmed by
gPCR revealing significantly lower Mstn expression in fasted MKO
mice, and a fasting-linked induction that was confined to WT animals
(Figure 5B). Moreover, the fasting induction of the ubiquitin ligase
muscle RING finger 1 (MuRF-1) involved in muscle atrophy [35] was
blunted in fasted MKO animals, in contrast to the muscle atrophy F-box
(MAFbx) (Figure 5B). Functionally, the reduced expression of MuRF-1 is
in line with with lower ubiquitination of proteins in fasted MKO animals,
completely abrogating the increase in protein ubiquitination by fasting
as observed in WTs (Figure 5C,D). Transcriptional induction of MuRF-1
is controlled by forkhead box O (FoxO) transcription factors [36], which
include the three family members Fox01, Fox03, and Fox04 [37]. In
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atrophic contexts, dephosphorylation of FoxO transcription factors
leads to nuclear translocation and transcriptional induction of target
genes [38]. The transcriptional regulation of all three FoxO members by
fasting was similar between WT and MKO animals (Figure 5E). In
contrast, phosphorylation of Fox03 was elevated in fed and fasted
MKOs, even though the increase in total protein in the fasted context
was preserved (Figure 5F,G). These data suggest that the mitigated
muscle atrophy might be associated with the blocked and blunted
fasting induction of Mstn and MuRF-1 gene expression, respectively,
as well as abrogated protein ubiquitination.

3.6. MKO mice show reduced activation of AMPK and PKA upon
fasting

To investigate further mechanisms by which muscle PGC-1[3 controls
proteostasis, ubiquitination and fiber atrophy in fasting, we investi-
gated major signaling pathways that are engaged in this context. AMPK
is a central cellular energy sensor activated by changes in the intra-
cellular AMP:ATP ratio. AMPK then promotes catabolic pathways in
part to generate ATP, while concomitantly reducing anabolic pathways
consuming ATP, respectively, e.g. by inhibiting the mammalian target
of rapamycin (mTOR) and thereby protein biosynthesis [39]. Inversely
to AMP, muscle glycogen directly binds to and inhibits AMPK in fed
animals. In contrast to the short-term activation of AMPK in exercise
leading to a metabolic remodeling and a training effect, more long-
term activation of AMPK in fasting results in a catabolic state, in
which protein synthesis is inhibited, and protein breakdown and
autophagy are activated [5,39]. In fasting, elevated Mstn signaling
further boosts AMPK signaling to regulate glucose and glycogen ho-
meostasis in skeletal muscle [40]. Thus, we evaluated AMPK activity in
fed and fasted WT and MKO animals. Correlating with lower Mstn
expression, fasting-induced phosphorylation of AMPK as seen in WT
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was completely blunted in MKOs (Figure 6A,B). Moreover, AMPK ac-
tivity could be additionally inhibited by higher muscle glycogen in
fasted MKO compared to WT mice (Figure 6C). These findings could
indicate that in the absence of muscle PGC-1f, fasting fails to
adequately activate AMPK and thereby promote catalytic processes.
Intramuscular glycogen levels are regulated by various pathways and
factors [41]. Catecholamine signaling, through activation of PKA, elicits
strong glycogenolytic activity [42]. In light of the elevated fasting
muscle glycogen levels in the MKOs (Figure 6C), we therefore inter-
rogated PKA/cCAMP signaling. Mirroring the activation pattern of AMPK
(Figure 6A,B), PKA phosphorylation was elevated by fasting, but only in
WT animals (Figure 6A,D). A cAMP-dependent downstream effector of
the PKA signaling pathway, cAMP-response element binding protein
(CREB) however exhibited a different pattern absent of fasting-linked
changes in the ratio of phosphorylated to total protein, indicating
that the phosphorylation of Serine 133 might be also affected by other
kinases in this context (Figure 6A and E).

3.7. Nfatc1 activity is increased in fasted MKO animals

To infer and predict potential transcription factors that are involved in
the differential response of the MKO animals to fasting, we performed
integrated motif activity response analysis (ISMARA) [25] on the
RNAseq data. The activity of a number of transcription factor binding
motifs were either associated with the genotype (presence or absence
of muscle PGC-1p), or the feeding state (fasting response in WT or
MKO Gastrocnemius muscles) (Figure 7A, Supplemental Dataset 2).
Two motifs, Irf2_Irf1_Irf8_Irf9_Irf7 (abbreviated as Irf) and Nfatc1 were
the only predicted binding sites with an interaction between genotype
and feeding state (Figure 7A). Intriguingly, of those two, the fasting
regulation of the Irf motif was independent of presence or absence of
PGC-1B. However, the activity of the putative binding site for the
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Figure 6: MKO mice show reduced activation of AMPK and PKA in fasting. (A, B and D, E) Representative immunoblots of total and phosphorylated AMP-dependent protein
kinase (AMPK), cAMP-dependent protein kinase (PKA) and cAMP response element hinding protein (Creb) protein levels (A) in Gastrocnemius muscle of ad-libitum fed or 24 h
fasted mice and corresponding quantifications (B, D and E). As a loading control eukaryotic elongation factor 2 (eEF2) was used. (C) Total glycogen content in Gastrocnemius
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n = 5-6.
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MKO mice, and the fasting response in WT and MKO animals. (B) Nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1) is the top ISMARA predicted motif from the gene
expression profiles obtained in Gastrocnemius muscle of 24 h fasted WT and MKO mice. (C) Gene expression of Nfatc1 and predicted Nfatc1 target genes PGC-1a., protein-0-mannose
kinase (Pomk), membrane associated ring-CH-type finger 1 (March1), SH3 domain containing kinase binding protein 1 (Sh3kbp1), methyltransferase like 11B (Mettl11b) and nitric
oxide synthase 1 (Nos1) relative to 18S in Gastrocnemius muscle of ad-libitum fed or 24 h fasted mice. (D) Reporter gene assay using a 3x NFAT-luc plasmid, and co-transfection of
NFATC1 alone or together with PGC-1[3 overexpression plasmids. (E and F) Representative immunoblots of total and phosphorylated Ca?*/calmodulin-dependent protein kinase llo.
(CaMKllat) protein levels in Gastrocnemius muscle of ad-libitum fed or 24 h fasted mice (E) and corresponding quantifications (F). As a loading control eukaryotic elongation factor 2
(eEF2) was used. * indicates significant differences between WT and MKO mice; # indicates significant differences between fed and fasted conditions; n = 3—6.

nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1) was posi-
tively affected by the absence of PGC-1P, and was only reduced in
activity in the WT animals upon fasting. In contrast, the MKO fasting
response was devoid of a significant change in the Nfatc1 motif,
implying that the repression of Nfatc1 in fasting might be dependent on
PGC-1p. Nfatc1, a known target protein of the phosphatase calcineurin

A [43], thus emerged as the most interesting candidate factor that
could influence the fasting response in a PGC-1[3-dependent manner.
Accordingly, Nfatc1 activity was the top motif with highly elevated
predicted activity in fasted MKO compared to fasted WT animals
(Figure 7B). Interestingly, PGC-1a. belongs to the predicted ISMARA
Nfatc1 target genes. Others include protein-0-mannose kinase
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(Pomk), membrane associated ring-CH-type finger 1 (March1), SH3
domain containing kinase binding protein 1 (Sh3kbp1), methyl-
transferase like 11B (Mettl11b) and nitric oxide synthase 1 (Nos1).
When assessing the transcriptional regulation of these Nfatc1 targets
in fasted and fed WT and MKO muscles, all of these targets were
elevated in fasted MKO animals except for March1, which did not reach
statistical significance (Figure 7C). At least in part, the transcription of
Nfatc1 targets was inhibited by fasting in WT animals (Figure 7C).
Interestingly, Nfatc1 expression was significantly upregulated by
fasting independently of the genotype (Figure 7C). These data imply a
functional derepression of Nfatc1 in fasting in the absence of PGC-18,
and a potential repressive effect of elevated PGC-1[3 protein levels on
this transcription factor activity in the physiological fasting context in
the WT mice. We tested this hypothesis in reporter gene assays with
Nfat response elements and indeed observed that cotransfection of
PGC-1p reduced Nfatc1 activity (Figure 7D). The PGC-1 proteins have
primarily been characterized as coactivators, and, at least in the case
of PGC-1a., inhibition of gene expression is mediated in an indirect,
secondary manner [44]. Since no transcriptional change in Nfatc1
expression by PGC-1f was found in the RNAseq data, we investigated
upstream regulators of this transcription factor. The ratio of phos-
phorylated to total protein of the Ca2+/calmodulin-dependent protein
kinases llo. (CaMKlle) was greatly elevated in fasted MKOs
(Figure 7E,F), which could be linked to the increased activity of Nfatc1
(Figure 7A) and phosphorylated CREB (Figure 6A,E) in this context.

4. DISCUSSION

The PGC-1a and -1 coactivators are crucial regulatory factors in the
control of cellular metabolism. A shared function of both proteins
pertains to the activation of mitochondrial biogenesis and oxidative
metabolism in different organs. PGC-1a exhibits a transcriptional
regulation that is closely related to its function in tissue-specific
adaptation to internal and external cues that elevate the energetic
demand, e.g. cold exposure in brown adipose tissue or contraction in
skeletal muscle. In contrast, the corresponding aspects of PGC-1[3
biology remain enigmatic, and this cofactor is understudied in terms of
regulation, posttranslational modifications and biological function. In
this manuscript, we report a strong inhibition of muscle PGC-1f by
fasting, distinct from the regulation of PGC-1a in this context. Since
PGC-1p levels are therefore higher in fed compared to fasted muscle,
the observation of a more extensive phenotype in the fasted MKO was
surprising. Similar, an at least partial protection of skeletal muscle
against fasting-induced atrophy in the absence of PGC-1 was un-
expected in light of previous results reporting a high endurance
phenotype in the gain-of-function context [15,16], PGC-13-mediated
protection from denervation-induced disuse atrophy [45], stimulation
of protein synthesis in muscle cells [46], and reduced antioxidant
defense in the loss-of-function setting [18]. Our results thus demon-
strate the very specific regulation of PGC-1a. and PGC-1f in skeletal
muscle, e.g. by exercise, fasting or cAMP signaling, linked to an
overlapping yet also quite distinct functional outcome. Second, our
data underline the large differences in PGC-1p-linked muscle atrophy
mechanisms in different settings, e.g. denervation-induced disuse or
fasting. Such a diversity was expected based on the narrow definition
of atrogenes, genes that change in expression in different atrophy
settings [36]. The common gene signature is primarily limited to the
ubiquitin proteasome system, thus implying different upstream and
downstream events as well as signaling pathways and molecular ef-
fectors to mediate muscle fiber atrophy in different physiological and
pathological contexts.

I
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In fasting, absence of a functional PGC-1p transcript mitigates muscle
atrophy by a number of potential mechanisms. The modulation of
proteostasis could be brought about by an altered expression profile of
genes encoding proteins involved both in protein synthesis such a
ribosomal proteins, including a cluster of mitochondrial ribosomal
proteins, which are essential to balance hypertrophy and atrophy in
muscle [47]. Second, the induction of MuRF-1 and Fbx proteins such
as Fbxo40, which is also observed in denervation disuse atrophy
[29,36], is absent in MKOs. Third, the prominent regulation of deubi-
quitinases [30,31] might contribute to the shift in overall protein
ubiquitination in fasted MKO muscle. Next, knockout of muscle PGC-
1 results in higher glycogen levels (that could conceivable contribute
to the increased water content in these mice), and a lower activation of
AMPK and other energy stress pathways, thereby alleviating pressure
for initiation of protein degradation [39]. Then, loss-of-function of
muscle PGC-1[3 mitigates fasting-induced elevation of Mstn, a strong
pro-atrophic factor [34]. Moreover, PGC-1P represses the activity of
Nfatc1, most likely by reducing the activity of upstream CaMK
signaling. Nfatc1 contributes to insulin-like growth factor 1 (IGF-1)-
activated hypertrophic signaling [48], and accordingly, elevated tran-
scriptional function of Nfatc1 could help to reduce fiber atrophy in
fasting in MKO mice. At least in part, the induction of the Nfatc1 target
gene PGC-1a in the fasted MKO muscle also could contribute to at-
rophy mitigation [49]. Finally, the reduction in OXPHOS gene expres-
sion and mitochondrial activity in the MKOs might limit the supply of
ATP for ubiquitin proteasomal activity. Of note, potential genotypic
differences in coprophagic behavior was not assessed.

These results obtained in the loss-of-function setting collectively imply
a strong catabolic role for muscle PGC-1p in fasting, linked to pro-
moting protein degradation and amino acid liberation, fueled by
mitochondrial oxidative metabolism of fatty acids and ketone bodies.
Such a function however would have to be based on several premises:
the transcriptional inhibition of muscle PGC-1 in the fasting context
either indicates that the phenotype of the MKO is caused by a pre-
conditioning in the fed state, or that opposite to the transcript levels,
PGC-1p protein is stabilized and/or activated. Due to technical limi-
tations to detect endogenous protein, we could only provide indirect
proof for the latter scenario. Hopefully, future studies will enable the
interrogation of the levels of endogenous muscle PGC-1 in fasting and
feeding. Of note, since muscle overexpression of PGC-1 is not linked
to muscle atrophy [15,16], posttranslational modifications and other
mechanisms that specify the role of this coactivator in fasting might be
expected. Overall, it is conceivable that the levels and function of PGC-
1B, and thereby proteostasis in fasting, are tightly regulated to ensure
an orchestrated balance between amino acid provisioning for gluco-
neogenesis and other critical functions, reduction of energetically
costly muscle mass, vis-a-vis the necessity to safeguard muscle
function for hunting and scavenging to bring fasting periods to an end.
Therefore, stabilization and activation of the protein could be balanced
by negative feedback loops on gene expression in the atrophic context.
For example, the transcriptional repression of muscle PGC-13 by
fasting is blunted in Foxo1 knockout mice [50].

In summary, our studies of PGC-13 MKOs revealed an unexpected
regulation and function of this coactivator in fasting-induced muscle
atrophy. Furthermore, these data also highlight the important role of
PGC-1p in orchestrating a complex transcriptional network in a highly
context-specific manner, affecting a number of different systems, e.g.
myostatin, protein ubiquitination, ribosomal gene expression, glycogen
depots, mitochondrial oxidative metabolism and several signaling
pathways. Thereby, a coordinated response is elicited, confined and
balanced by feedback mechanisms such as the transcriptional
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repression of the PGC-1f gene, at least in certain muscles, fibers and
specific fasting time points. Whether the selective effects in muscles
and fibers are due to differences in PGC-1f expression, motor unit
engagement, muscle activity or other parameters is currently unclear.
Nevertheless, these data indicate that this coactivator is important for
the balance between preservation of muscle mass, and protein
catabolism to liberate amino acids as energy substrates and to fuel
hepatic gluconeogenesis, as well as to reduce the energetically costly
maintenance of muscle mass. It is unclear whether the same mech-
anistic underpinnings of PGC-1 function are evolutionarily conserved,
since at least some of the stress-related pathways that are engaged in
the mouse are not affected by prolonged fasting in humans, at least at
the conditions and muscles in which this was assessed [51,52].
Nevertheless, a better understanding of this biological program thus
might help to address muscle atrophy contexts with overlapping eti-
ologies and progression, for example cachexia, as well as muscle
protective contexts such as hibernation.
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