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Abstract

Familial Hypercholesterolemia (FH) is an inherited disorder of cholesterol metabolism. Cur-

rent criteria for FH diagnosis, like Simon Broome (SB) criteria, lead to high false positive

rates. The aim of this work was to explore alternative classification procedures for FH diag-

nosis, based on different biological and biochemical indicators. For this purpose, logistic

regression (LR), naive Bayes classifier (NB), random forest (RF) and extreme gradient

boosting (XGB) algorithms were combined with Synthetic Minority Oversampling Technique

(SMOTE), or threshold adjustment by maximizing Youden index (YI), and compared. Data

was tested through a 10 × 10 repeated k-fold cross validation design. The LR model pre-

sented an overall better performance, as assessed by the areas under the receiver operat-

ing characteristics (AUROC) and precision-recall (AUPRC) curves, and several operating

characteristics (OC), regardless of the strategy to cope with class imbalance. When adopt-

ing either data processing technique, significantly higher accuracy (Acc), G-mean and F1

score values were found for all classification algorithms, compared to SB criteria (p < 0.01),

revealing a more balanced predictive ability for both classes, and higher effectiveness in

classifying FH patients. Adjustment of the cut-off values through pre or post-processing

methods revealed a considerable gain in sensitivity (Sens) values (p < 0.01). Although the

performance of pre and post-processing strategies was similar, SMOTE does not cause

model’s parameters to loose interpretability. These results suggest a LR model combined

with SMOTE can be an optimal approach to be used as a widespread screening tool.
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Introduction

Familial Hypercholesterolemia (FH) is an inherited disorder of lipid metabolism, character-

ized by increased low density lipoprotein cholesterol (LDLc) plasmatic concentrations [1]. If

left untreated, the high cholesterol levels from birth lead to premature atherosclerosis, which

constitutes a major risk factor for cardiovascular disease (CVD) [1, 2].

FH is caused by autosomal dominant mutations in one of three key encoding genes: LDLR,

APOB or PCSK9. Pathogenic variants in the LDLR gene are the most common, accounting for

around 90% of FH cases, while variants in APOB and PCSK9 genes are found in around 5%

and 1% of FH cases, respectively [3–5]. A very small percentage of FH cases is attributed to

rare monogenic variants in a novelty gene involved in lipoprotein metabolism, or to a severe

form of polygenic hypercholesterolemia [6]. According to inheritance pattern, FH can be clas-

sified as heterozygous (HeFH) or homozygous (HoFH). HeFH, hereinafter referred only as

FH, is the most common form of the disease, affecting 1:200–500 individuals worldwide [7, 8].

Because signs and symptoms are less pronounced in this case, the disease can go undetected

for several decades with severe, and often irreversible consequences. An early diagnosis of FH,

followed by introduction of adequate therapeutic measures, is therefore considered of para-

mount importance [9].

Genetic diagnosis can provide a definite FH diagnostic [10], but is costly and time-consum-

ing, thus a previous selection of patients to undergo molecular testing must be performed.

Simon Broome (SB) criteria [11], are among the most commonly used clinical methods avail-

able for the diagnosis of FH, and are based on LDLc and total cholesterol (TC) levels, presence

of tendon xanthomas and family history [6, 9]. Such criteria however present important limita-

tions, when applied to the general population. The first of all relates to the classical dilemma of

balance between sensitivity (Sens) and positive predictive value (PPV). In fact, for patients with

possible or definite FH according to SB criteria, Sens was shown to be very high, varying from

to 90–94%, but PPV was reduced, varying form 27–39% [12–14]. Results from these studies

illustrate that these criteria are very conservative, with most mutation carriers identified, but

with a high number of false positive cases also retained. Another limitation of SB criteria is

that they require information on family history of hypercholesterolemia and premature CVD,

which is often absent, restricting their applicability in clinical practice [15]. On the other hand,

they do not make use of other potentially informative indicators routinely assessed in primary

care settings, such as serum concentrations of additional biochemical parameters, or other bio-

logical and clinical variables. The development of classification algorithms incorporating such

features can prove to be a simple and effective approach to identify patients with the highest

risk of having FH.

Classification algorithms and strategies to deal with imbalanced data

The classification problem in the current study deals with a binary dependent variable, repre-

senting the positive or negative diagnosis for FH. The FH diagnosis is estimated with basis on

the relation with several categorical or quantitative predictor variables. There are several classi-

fication procedures available for this type of problem, based on different methodological

approaches. In the current study, logistic regression (LR), naive Bayes classifier (NB), random

forest (RF) and extreme gradient boosting (XGB) models have been tested.

LR is a classical statistical approach, and a special case of the generalized linear models

(GLM) methodology [16]. NB is a probabilistic classifier based on Bayes’ theorem. The term

“naive” arises from the assumption that predictor features are conditionally independent,

which is not always accurate. Despite its simplicity, NB classifier has shown comparable per-

formance even with highly sophisticated classification methods [17]. RF is a machine learning
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algorithm that aggregates the results of multiple individual classifiers, most commonly deci-

sion trees (DT), to classify an observation, and is therefore designated as an ensemble learning

method [18]. Each DT is grown using a random bootstrapped sample of the training data, a

method known as bagging [19], and only a random subset of predictor variables is tested in

each of the trees, a process designated as the random subspace selection method [20]. By weight-

ing the result over the many trees, the final outcome is less subject to random fluctuations in

the training dataset, which should provide an increased capacity for generalising patterns [18].

The XGB model is also an ensemble learning algorithm, part of the boosted classifiers family.

Simply put, XGB works by fitting a given classification model, calculating the model’s residu-

als, and fitting subsequent models on the estimated residuals [21]. For each iteration, optimiza-

tion of the the loss function is performed following a gradient descent method [22, 23]. Unlike

RF, the several DT that constitute XGB are not independent, but added sequentially, making

the final algorithm a stagewise additive model [21].

The imbalanced data problem refers to a classification task where the number of observations

in each class is not equally distributed. Furthermore, the observations that constitute the minor-

ity class, are generally the ones that represent the outcome of interest, and present higher misclas-

sification costs [24, 25]. The biggest concern regarding this matter, is the fact learning algorithms

are generally designed to minimize overall error, i.e., to achieve maximum predictive accuracy

(Acc). In such a situation, the classification algorithm will place more emphasis on learning from

data observations that occur more commonly, leading to higher misclassification rates for the

minority class [24, 26, 27]. This is a common problem in many areas of research, and is given

particular emphasis on the medical diagnosis field. In this case, the minority class is represented

by the patients which in fact are FH, whereas non-FH patients represent the majority class.

Several techniques have been suggested to deal with the class imbalance problem, at differ-

ent stages of the classification algorithm implementation process [24, 25, 27]. Interventions to

deal with imbalanced data issues at a pre-processing level generally refer to the use of data sam-

pling methods to balance class distribution [25]. One of the most cited approaches in this field

is the oversampling method proposed by Chawla et al. [26], designed as SMOTE (Synthetic
Minority Over-sampling Technique). According to SMOTE, observations in the dataset minor-

ity class are used to synthetically generate new data points, by interpolating between samples

in the original dataset. Unlike a simple resampling process, the dataset variance is not artifi-

cially reduced by this method, inducing the classifier to generalize better [26]. Post-processing

strategies to manage data imbalance issues typically refer to adjusting a suitable cut-off value

for the classification task, after implementing the classification algorithm. Since the output

obtained by a given classifier is generally a continuous value, taking the form of a certain sup-

port function, a class probability estimate, or number of votes with the more recent ensemble

algorithms, adjusting a threshold on this output is a relatively simple task, although deciding

on the cut-off value to adopt may not be as simple [24, 27]. Provost [28] has demonstrated that

more complex methods to deal with imbalanced data do not necessarily perform better than

adjusting the threshold value. On the other side, some limitations of threshold adjustment can

be pointed out, such as the possibility of overdriving the classifier towards the minority class,

thus largely increasing the error on the majority instances [28], or the fact that model’s

interpretability becomes meaningless as it was obtained optimising a loss function that is not

in accordance with the intended decision border [27].

Selection of metrics to assess classification performance

The results obtained by a given classification algorithm applied to a two-class problem, are

generally presented in a confusion matrix. The confusion matrix is a 2 × 2 contingency table
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which provides, for each class, the instances that were correctly and incorrectly classified, like

shown in Table 1.

Based on the different possible outcomes, several operating characteristics (OC), can be cal-

culated. Like mentioned before, Acc is the most frequently used metric to assess the perfor-

mance of a given classification algorithm, but may not be the most suitable measure in an

imbalanced domain. To achieve this goal, other measures, which quantify the classification

performance on positive and negative classes independently, are proposed. Other commonly

used metrics are sensitivity (Sens) and specificity (Spec), which respectively represent the pro-

portion of subjects with the disease that present a positive test result, and the proportion of

subjects without the disease that present a negative test result, and positive (PPV) and negative

(NPV) predictive values, which represent the proportion of subjects with a true positive test

among all those who tested positive for the disease, and the proportion of subjects with a true

negative test among all those who tested negative.

To achieve good classification results for both classes poses a particularly difficult challenge,

since some of these measures exhibit a trade-off, and it is impractical to simultaneously moni-

tor several measures. Alternative metrics have been developed for this reason, such as the G-

mean, the Fβ score, or the area under the curve (AUC) from receiver operating characteristic

(ROC) or precision-recall (PR) graphics.

G-mean is one of the most frequently used measures when dealing with an imbalanced

dataset [29]. This metric is simply the geometric mean between Sens and Spec, calculated as

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sens� Spec

p
: ð1Þ

G-mean is therefore an indicator of the balance between the majority and minority class

error in a classification test. Another interesting performance metric commonly used is the Fβ

score [29], which combines both Sens and PPV, and is defined as

Fb ¼
ð1þ b

2
Þ � PPV � Sens

b
2
� PPV þ Sens

: ð2Þ

Fβ is more informative about the effectiveness of a classifier on correctly predicting the

cases in the minority class. The β coefficient presented in the equation represents a constant to

adjust the relative importance of Sens with respect to PPV. Specifically, if β = 1, Sens and PPV
have the same weight, and this metric will correspond to the harmonic mean of the two OC.

A very popular metric in this field is the production of a ROC curve, a graphic of Sens ver-

sus 1 − Spec values over all possible cut-off values of the classifier [30]. This graphic allows the

visualization of the relative trade-off between benefits (TP rate) and costs (FP rate) [27]. The

area under the ROC curve (AUROC) is considered an overall measure of the test discrimina-

tory ability. This measure has been extensively used to compare performance between different

classification algorithms, and is suitable to use with imbalanced samples, since it takes the class

distribution into consideration [24, 27]. The ROC curve is also a very important instrument to

adjust the cut-off value for a given classifier. One of the most frequently used criteria to select

Table 1. Confusion matrix for a binary outcome (adapted from Fawcett [30]).

Predicted class

Positive Negative

Actual class Positive True positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

https://doi.org/10.1371/journal.pone.0269713.t001
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the best possible threshold from ROC curve analysis, is to maximize Sens and Spec summation,

also known as Youden index (YI), in the following way:

YImax ¼ max
t
fSensðtÞ þ SpecðtÞ � 1g; ð3Þ

where t denotes the threshold for which YI is maximal. Geometrically, this corresponds to the

point in the ROC curve with higher vertical distance from the y = x diagonal line. This criteria

attributes equal importance to Sens and Spec values, ignoring the relative size of both classes

[29, 31, 32]. Another metric of particular relevance, specially when dealing with an imbalanced

dataset, is the PR curve [33]. This curve is obtained by plotting the PPV (or precision),

against Sens (or recall), across all possible cut-off values. The area under the PR curve

(AUPRC) serves as an overall performance indicator of the model in classifying solely positive

instances [34].

Previous work

Previous studies implementing LR models for FH diagnosis have reported an overall good per-

formance for this model in identifying FH cases [35, 36]. In a study conducted with a cohort

from the Dutch FH screening programme, Besseling et al. [35] have reported an AUROC of

0.85 for a LR model, and an even higher AUROC of 0.95 in an external validation sample of

subjects from an outpatient lipid clinic. In a large cohort study, Weng et al. [36] have devel-

oped a LR model (FAMCAT) using data from the UK Clinical Practice Research Datalink,

obtaining a similar AUROC of 0.86 in the validation cohort. In a more recent external valida-

tion study, FAMCAT model presented an AUROC of 0.83, and significantly higher discrimi-

natory ability than SB or DLCN clinical criteria [37]. Interesting results have also been

obtained with the most recent use of ensemble learning algorithms. In a project supported by

the FH Foundation, Banda et al. [38] have developed a RF algorithm named FIND FH, for

which internal validation results showed a AUROC of 0.94, and a AUPRC of 0.71, with

PPV = 0.88, Sens = 0.75 and Spec = 0.99. Pina et al. [39] have tested the performance of a gradi-

ent boosting machine (GBM) in two independent cohorts, with reported AUROC of 0.83 and

0.78, respectively. The GBM developed in this study revealed higher discriminatory ability

than DLCN criteria and other machine learning algorithms, such as DT and a neural network.

To the knowledge of the authors, there are no published studies assessing the performance of

NB classifier for FH diagnosis.

Comparison of different classification algorithms applied to FH diagnosis is a relatively a

scarce topic in the literature. In a recent paper however, Akyea et al. [40] have investigated the

performance of an array of machine learning algorithms in identifying FH in a large cohort of

more than 4 million patients in the UK, reporting an AUROC of 0.81 for a LR model, and a

higher AUROC of 0.89 for RF and GBM models. In another study, Niehaus et al. [41] focused

on comparing the performance of FIND FH with a LR model, and found improved AUROC

(0.91 vs 0.82), Sens (0.61 vs 0.56) and Spec (0.96 vs 0.91) values for the RF model compared to

the LR model.

The main purpose of this work was to explore alternative classification procedures for FH

diagnosis, based on different biological and biochemical indicators, and compare their perfor-

mance with SB traditional clinical criteria. The classification algorithms developed for this pur-

pose were LR, NB, RF and XGB models. An optimal cut-off value for FH diagnosis was

searched either by applying a SMOTE pre-processing method, or a post-processing technique,

selecting the threshold which maximizes YI.
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Materials and methods

Study sample and data

The sample used in the current study was taken from the Portuguese FH study, an ongoing

study started in 1999 with the purpose of identifying and characterizing FH in the Portuguese

population [42]. 513 observations, corresponding to index adult patients of both sexes (18–78

years of age), with TC and LDLc values over the 75th percentile defined for the Portuguese

population [43], which corresponds to TC�212 mg/dL or LDLc�123 mg/dL for women, or

TC�216 mg/dL or LDLc�141 mg/dL for men, were initially retrieved. For patients undergo-

ing lipid lowering therapy (LLT) at time of biochemical assessment, pre-medicated cholesterol

values were used as inclusion criteria, or in case these were not available, estimated using the

correction factors proposed by Benn et al. [44]. Patients undergoing other forms of LLT than

statin therapy, prescribed either as monotherapy or combined with ezetimibe, as well as

patients without information regarding LLT and with no previous cholesterol values, present-

ing a variant of unknown significance (VUS), a monogenic variant in a rare gene or HoFH,

were excluded from the study. The final dataset was comprised of 451 individuals, n = 334

medicated patients (n = 111 with positive molecular diagnosis for FH), and n = 117 non-medi-

cated patients (n = 35 with positive molecular diagnosis for FH). All subjects were white, of

European ancestry. At time of assessment, participants were receiving standard healthcare and

nutritional advice from the family physician at the hospital. Participants signed an informed

consent, and information was registered in a confidential database, legalized by the National

Data Protection Commission. The study complies with the Declaration of Helsinki and was

approved by the ethics committee of the Instituto Nacional de Saúde Doutor Ricardo Jorge

(INSA), in Lisbon.

Serum concentrations for a panel of several biochemical variables related to lipid metabo-

lism were used as candidate predictor variables: TC, LDLc, high density lipoprotein cholesterol

(HDLc), triglycerides (TG), apolipoproteins AI (ApoAI) and B (ApoB), and lipoprotein(a) (Lp

(a)). Concentrations were determined in mg/dL, by enzymatic and colorimetric methods,

using a Cobas Integra 400 Plus (Roche) analyzer [45]. Additional variables, regarding biologi-

cal and clinical information, were also included. These variables were age, body mass index

(BMI), presence of physical signs (corneal arcus before the age of 45, tendon xanthomas,

xanthelasma), occurrence and age of a previous CVD event (defined as history of miocardial

infarction, acute coronary syndrome, cerebrovascular accident, transient ischemic attack,

peripheral artery disease, percutaneous transluminal coronary angioplasty or coronary artery

bypass graf), hypertension, diabetes (type I or type II), hypothyroidism, and smoking and

drinking habits. Other secondary causes of hypercholesterolaemia, such as liver disease (fatty

liver disease, cirrhosis, chronic liver failure, alcoholic liver disease), kidney disease (chronic

kidney disease, renal impairment, acute renal failure), and nephrotic syndrome [36], were

excluded. Molecular diagnosis was performed by the study of the LDLR, APOB and PCSK9
genes, through next-generation sequencing (NGS) [45]. Participants with a positive molecular

diagnosis were classified as FH, and participants with a negative molecular diagnosis classified

as non-FH.

Comparison between classification algorithms combined with techniques

to manage data imbalance

Exploratory analysis of biological and biochemical variables was initially performed for FH

and non-FH subjects in both datasets. Non parametric Mann-Whitney-Wilcoxon test

(MWW) was used to test for differences in continuous variables, given poor adjustment to
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normal distribution by some of these predictors, and chi-squared test was used to assess for

differences in categorical predictor variables. Missing values were imputed in a two-step pro-

cess. In a first step, LLT usage was imputed for patients possessing a lipid profile assessed in a

previous moment, by means of a previously validated GLM model, using the percentage differ-

ences between two lipidic measures [46]. In a second step, other variables with missing values

were imputed by means of k-nearest neighbours method using Gower’s dissimilarity measure

[47]. Variables which required imputation presented a percentage of missing values between

1% and 14%, which under the correct assumptions, can be expected to provide unbiased

results [48].

Feature selection for LR models was performed by purposeful selection methods, after

assessing for collinearity through variance inflation factors (VIF) analysis. For NB models, all

variables for which significant differences were found between FH and non-FH patients, and

presenting low correlation values among each other (r� 0.4) [49] were retained. For highly

correlated variables, selection of the variable to retain was performed through AUROC com-

parison. Continuous variables were also log-transformed for the NB models, whenever a better

adjustment to the Normal distribution was obtained. Search for optimal RF models was con-

ducted iteratively, using out-of-bag (OOB) estimates for performance comparisons. In a first

step, hyperparameter tuning was performed for ntree, mtry and node size. RF with ntree
between 10 and 2000, by increments of 10 trees, mtry ranging from 1 to 7 variables, and node
size = 1, 5, 10, 15 and 20 were explored. In a second step, less informative variables were

sequentially excluded, from the initial set of candidate predictors. The RF model was devel-

oped and implemented using the randomForest package from R [50]. Optimal XGB parameter

tuning was also performed by iterative procedures, using a grid-search built-in method, with a

5-fold cross validation (CV) design. Grid-search was conducted for nrounds, max_depth,

min_child_weight, colsample_bytree, eta, subsample, and gamma. The XGB model was devel-

oped and implemented using the rgboost package from R [21].

Except for the LR algorithm, which can incorporate LLT as a covariate in the model, a two-

branch training model was defined for the other classification algorithms, considering medi-

cated and non-medicated observations, with testing observations posteriorly integrated in a

single sample, according to estimated probabilities by either branch. Such division was made

because use of this variable violates the assumption of independence in NB, and tree-based

classifiers must separate medicated from non-medicated patients at the root node of every

tree, in order for cut-off values of predictor variables in subsequent nodes to make sense.

Two different techniques were adopted to cope with data imbalance issues. As a pre-pro-

cessing technique, SMOTE oversampling method was used to balance the number of observa-

tions in FH positive class [26]. New synthetic data was generated considering k = 5 nearest

neighbours, using Gower similarity measure. Proportion of FH patients relatively to non-FH

subjects was around 1:2, both for medicated and non-medicated samples. As a post-processing

technique, a new cut-off value based on YI maximization was calculated. Both of these tech-

niques were tested against the default cut-off c = 0.5, obtained from original data. For all classi-

fication models, combined with the different pre- and post-processing techniques, different

OC were calculated: Acc, Sens, Spec, PPV, NPV, G-mean and F1 score [30, 51].

Model comparison was performed by means of repeated 10-fold CV, sampling 10 random

replicas of the dataset. For each of the CV samples, the different classification models were fit-

ted to the training sample, and then used to classify the testing observations. AUROC and

AUPRC values were obtained for testing observations in each of the 10 dataset replicas, both

for datasets using only original data and SMOTE data. Mean values of different OC were cal-

culated for each fold, among each dataset replica, and compared using the corrected resampled

t-test proposed by Nadeau & Bengio [54]. All models were also compared with adapted SB
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criteria for possible or definite FH, defined as TC>290 mg/dL or LDLc >190 mg/dL, plus one

of the following criteria: physical signs, or history of premature CVD (before age 60 if female,

or before age 55 if male) in the patient, or in a first or second degree relative, or family history

of hypercholesterolemia (TC >290 mg/dL in an adult first or second degree relative, or TC

>260 mg/dL in a child or sibling under 16 years of age). Statistical analysis was performed

using R and R Studio software, adopting a significance level of α = 0.05, and using Bonferroni

method to correct for multiple testing.

Results

Descriptive statistics

Descriptive statistics for biochemical and biological variables regarding FH and non-FH

patients, in medicated and non-medicated datasets, are presented in Table 2. The number and

percentage of missing values, which have been imputed, are presented in supporting informa-

tion (S1 Table).

Table 2. Comparison of biological and biochemical values between FH and non-FH patients, according to statins usage.

Medicated patients non-Medicated patients

FH non-FH p-value FH non-FH p-value

n (%) 111 (33.2) 223 (66.8) - 35 (30.0) 82 (70.0) -

Gene: n (%)

LDLR 104 (93.7) - - 31 (88.6) - -

APOB 5 (4.5) - - 3 (8.6) - -

PCSK9 2 (1.8) - - 1 (2.8) - -

Male: n (%) 47 (42.3) 107 (48.0) 0.39 12 (34.3) 40 (48.8) 0.21

Age: mean (sd) 47.3 (14.8) 48.2 (13.0) 0.55 33.7 (12.2) 39.7 (10.8) <0.01

BMI: mean (sd) 25.9 (4.2) 26.3 (3.9) 0.16 25.5 (4.7) 23.9 (3.4) 0.15

Physical signs: n (%) 27 (24.3) 19 (8.5) <0.01 5 (14.3) 5 (6.1) 0.28

CVD disease: n (%) 32 (28.8) 74 (33.2) 0.50 6 (17.1) 9 (11.0) 0.54

Age CVD: mean (sd) 45.9 (11.8) 47.2 (9.8) 0.64 42.5 (10.3) 34.1 (6.7) 0.22

Hypertension: n (%) 39 (35.1) 62 (27.8) 0.62 4 (11.4) 6 (7.3) 0.71

Smoking: n (%) 16 (14.4) 49 (22.0) 0.13 5 (14.3) 23 (28.0) 0.17

Cigarettes/day: mean (sd) 11.8 (9.8) 13.5 (7.9) 0.29 14.0 (8.0) 12.5 (8.2) 0.72

Alcohol use: n (%) 16 (14.4) 49 (22.0) 0.99 4 (11.4) 24 (29.3) 0.07

Alcohol units/week: mean (sd) 10.3 (10.4) 10.0 (8.7) 0.67 2.5 (3.0) 6.4 (6.8) 0.14

Lipid profile (in mg/ dL)

TC: mean (sd) 254.0 (58.0) 209.0 (46.0) <0.01 335.0 (75.0) 279.0 (45.0) <0.01

LDLc: mean (sd) 176.2 (52.6) 127.5 (41.0) <0.01 256.7 (70.3) 195.2 (41.1) <0.01

HDLc: mean (sd) 55.2 (15.9) 56.7 (16.1) 0.31 52.7 (17.5) 57.1 (17.5) 0.17

TG: mean (sd) 116.3 (57.1) 141.5 (74.5) <0.01 123.9 (51.1) 141.2 (61.6) 0.23

Lp(a): mean (sd) 59.0 (56.2) 59.7 (63.5) 0.74 42.2 (60.7) 42.7 (52.7) 0.61

ApoAI: mean (sd) 151.0 (36.0) 161.0 (35.0) <0.01 146.0 (39.0) 162.0 (40.0) 0.05

ApoB: mean (sd) 132.4 (44.9) 99.5 (31.4) <0.01 179.9 (38.3) 136.4 (36.1) <0.01

FH: familial hypercholesterolemia; BMI: body mass index; CVD: cardiovascular disease; TC: total cholesterol; LDLc: low density lipoprotein cholesterol; HDLc: high

density lipoprotein cholesterol; TG: triglycerides; Lp(a): lipoprotein(a); Apo: apolipoprotein.

https://doi.org/10.1371/journal.pone.0269713.t002
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AUROC and AUPRC values

The AUROC and AUPRC for medicated and non-medicated datasets, as obtained in testing

sets from every sampled replica of the dataset, concerning original and SMOTE data, are pre-

sented in Table 3 and Fig 1. Global estimates for AUROC and AUPRC, calculated from the

combined probability estimates of all testing observations, are also presented in Table 3.

Operating characteristics comparison

The mean values of selected OC, obtained when applying different classification algorithms,

combined with different strategies to cope with data imbalance, together with OC values oba-

tained when applying SB diagnosis criteria, are presented in Table 4. Significant differences for

the OC values between the different classification algorithms among a same data processing

method, between these and SB criteria, and between different strategies to manage data imbal-

ance among each classifier, are presented in Table 5, respectively. The distribution of the

obtained OC for each classification method is presented in Fig 2.

Discussion

The current work combined several classification algorithms with data processing techniques,

in order to search for the best method to classify FH patients in a cohort of dyslipidemic adult

subjects. The different models were compared both with molecular diagnosis and SB biochem-

ical criteria. The molecular diagnosis of FH was considered as the gold standard, due to the

Table 3. Area under the ROC and PR curves for medicated patients, using the original and SMOTE sample data.

Model m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 M
AUROC original data

LR 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

NB 0.80 0.81 0.82 0.81 0.81 0.81 0.81 0.82 0.81 0.80 0.81

RF 0.81 0.82 0.82 0.82 0.82 0.81 0.82 0.82 0.82 0.82 0.82

XGB 0.81 0.83 0.83 0.82 0.83 0.81 0.82 0.83 0.82 0.82 0.82

AUROC SMOTE data

LR 0.84 0.84 0.84 0.84 0.84 0.84 0.83 0.84 0.84 0.84 0.84

NB 0.80 0.82 0.81 0.81 0.81 0.80 0.80 0.81 0.81 0.80 0.81

RF 0.82 0.82 0.83 0.82 0.82 0.81 0.80 0.82 0.82 0.82 0.82

XGB 0.80 0.82 0.81 0.82 0.81 0.81 0.82 0.83 0.82 0.82 0.82

AUPRC original data

LR 0.70 0.71 0.71 0.71 0.71 0.71 0.70 0.71 0.70 0.70 0.71

NB 0.65 0.67 0.68 0.66 0.66 0.66 0.66 0.67 0.66 0.65 0.66

RF 0.70 0.72 0.71 0.70 0.71 0.69 0.69 0.69 0.71 0.70 0.70

XGB 0.68 0.72 0.71 0.70 0.71 0.68 0.69 0.70 0.69 0.69 0.70

AUPRC SMOTE data

LR 0.70 0.70 0.71 0.71 0.72 0.71 0.70 0.71 0.71 0.71 0.71

NB 0.65 0.68 0.67 0.66 0.66 0.66 0.66 0.67 0.66 0.66 0.66

RF 0.70 0.71 0.70 0.71 0.70 0.68 0.68 0.70 0.72 0.70 0.70

XGB 0.66 0.70 0.69 0.71 0.67 0.68 0.68 0.69 0.69 0.69 0.69

AUROC: area under the receiver operating characteristics curve; AUPRC: area under the precision-recall curve; LR: logistic regression; NB: naive bayes; RF: random

forest; XGB: extreme gradient boosting; SMOTE: synthetic minority oversampling technique; Each different replica from the dataset is represented by mn, and M
represents the combination of estimates obtained for observations in every replica.

https://doi.org/10.1371/journal.pone.0269713.t003
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biological definition of the disease, in which FH is characterized as a genetic disorder of lipid

metabolism [6], corroborated by evidence from large cohort studies, in which individuals with

clinical criteria for FH that are confirmed to have a causative pathogenic variant present a sig-

nificant increase in the risk of CVD, when compared to clinical FH patients in whom a causa-

tive variant is not found [52].

Fig 1. Comparison of areas under the ROC and PR curves, for each replica of the dataset. On the left column are presented the results using original

sample data, and on the right column the results using SMOTE sample data. AUROC: area under the receiver operating characteristics curve; AUPRC:

area under the precision-recall curve; LR: logistic regression; NB: naive bayes; RF: random forest; XGB: extreme gradient boosting; SMOTE: synthetic

minority oversampling technique.

https://doi.org/10.1371/journal.pone.0269713.g001
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Except for LR algorithm, which can incorporate LLT variable directly in the model, a two-

branch training model was implemented for the other classifiers, with separate models built

for medicated and non-medicated patients, and testing observations classified according to the

appropriate branch. This was done since LLT is a confounding factor, by altering the serum

concentration of lipidic parameters, which violates the independence assumption required for

NB model, and prevents tree-based learning ensembles like RF and XGB of dividing the sam-

ple according to biochemical variables, without accounting for this factor. This procedure was

preferred relatively to using pre-medication lipid concentrations for medicated patients, or

estimating them using available correction factors, since pre-medication values are missing in

many cases, and correction factors for statin usage only adjust for LDLc concentrations, not

accounting for the potential effect of LLT on other biochemical markers.

An analysis of the AUROC and AUPRC, using both original and SMOTE training samples,

was initially performed. The probability values for the construction of these curves were

obtained for the testing samples in each of the 10-folds, and combined for each of the 10 sam-

pled replicas of the dataset. Estimates from every replica were further combined to obtain a

global performance measure. For both curves, the LR model revealed the the best performance,

followed by RF and XGB models with similar performance, and NB model performing notice-

ably worst. The performance of LR model also seems to be more stable across dataset replicas,

compared to the other two classifiers. Results were similar for original and SMOTE samples.

The range of values found for the AUROC (0.81–0.84) and AUPRC (0.66–0.71) is generally

comprised in the values presented by other authors [35–39]. However, unlike other studies

[40, 41], higher discriminatory ability was generally found for LR model, which may be related

to several factors. While the previously mentioned studies have included a vast number of pre-

dictor variables readily available in primary care records, in the current work, fewer and more

specific biochemical parameters, were included. By decreasing the variability of the constituent

trees in learning ensembles such as RF or XGB, the overall performance of such models may

Table 4. Mean and standard deviation values of operating characteristics (OC), for different classification algorithms and techniques to cope with data imbalance,

and values obtained with SB criteria.

Model Acc Sens Spec PPV NPV G-mean F1 score

c = 0.5, original dataset

LR 0.79 (0.06) 0.57 (0.12) 0.89 (0.06) 0.72 (0.14) 0.81 (0.07) 0.71 (0.08) 0.63 (0.10)

NB 0.79 (0.06) 0.51 (0.13) 0.92 (0.04) 0.75 (0.15) 0.80 (0.07) 0.68 (0.09) 0.60 (0.12)

RF 0.79 (0.06) 0.57 (0.13) 0.89 (0.06) 0.72 (0.13) 0.81 (0.07) 0.71 (0.08) 0.63 (0.10)

XGB 0.78 (0.06) 0.57 (0.14) 0.89 (0.05) 0.71 (0.14) 0.81 (0.07) 0.71 (0.09) 0.62 (0.12)

c = YI, original dataset

LR 0.75 (0.06) 0.81 (0.12) 0.72 (0.09) 0.58 (0.10) 0.89 (0.07) 0.76 (0.07) 0.67 (0.09)

NB 0.70 (0.07) 0.75 (0.15) 0.67 (0.12) 0.53 (0.12) 0.85 (0.08) 0.70 (0.08) 0.60 (0.11)

RF 0.75 (0.07) 0.69 (0.13) 0.78 (0.09) 0.60 (0.13) 0.84 (0.07) 0.73 (0.08) 0.64 (0.10)

XGB 0.77 (0.06) 0.71 (0.13) 0.81 (0.07) 0.64 (0.13) 0.85 (0.07) 0.75 (0.08) 0.66 (0.10)

c = 0.5, SMOTE dataset

LR 0.76 (0.06) 0.76 (0.11) 0.76 (0.08) 0.61 (0.11) 0.87 (0.07) 0.76 (0.07) 0.67 (0.09)

NB 0.73 (0.06) 0.71 (0.12) 0.75 (0.08) 0.58 (0.13) 0.84 (0.07) 0.72 (0.07) 0.63 (0.10)

RF 0.76 (0.07) 0.67 (0.13) 0.80 (0.07) 0.61 (0.13) 0.83 (0.07) 0.73 (0.09) 0.63 (0.11)

XGB 0.75 (0.07) 0.73 (0.13) 0.77 (0.07) 0.60 (0.12) 0.85 (0.07) 0.75 (0.08) 0.65 (0.11)

SB 0.47 0.91 0.26 0.37 0.86 0.48 0.53

Acc: accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative predictive value; SMOTE: synthetic minority oversampling technique; LR:

logistic regression; NB: naive Bayes; RF: random forest; XGB: extreme gradient boosting; SB: Simon Broome criteria.

https://doi.org/10.1371/journal.pone.0269713.t004
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diminish compared to classical statistical models like LR. The referred studies are also mostly

applied to electronic health records (EHR) of patients in the general population, and not with

specific lipid traits, like in the current case. Additionally, the LR algorithm is, from the investi-

gated models, the only one which accommodates for possible interactions among predictor

variables, which may be significant in the present problem. The number of variables included

in the LR model, including interactions, allowed fulfilling, for all cross-validation samples, the

condition of having at least 10 events per variable (EPV), previously referred to provide unbi-

ased estimates for the regression coefficients. [53].

In a second step of this work, specific cut-off values were calculated for each of the classifi-

cation algorithms, and selected OC calculated, and compared with the values obtained using

SB criteria for FH diagnosis. The definition of an optimal cut-off value is important, since it

makes it possible to propose clear thresholds to consider a diagnosis of FH, and to directly

compare the results obtained by different classification algorithms with the established clinical

criteria. The selected cut-off values were the default c = 0.5 obtained with original data, a post-

processing method of threshold adjustment, calculated according to the maximization of You-

den index (c = YI), and a c = 0.5 applied after implementing SMOTE, a pre-processing over-

sampling technique. Both pre and post-processing methods aim to solve the problem of

imbalanced data, by assigning equal importance to the classification error of FH positive

instances, which are under represented in the sample. The results concerning the different OC

were compared by means of the corrected resampled t-test, which accounts for the increased

probability of committing a type I error, that occurs by violating the assumption of indepen-

dence between observations, in a repeated k-fold testing design [54].

When comparing the distinct classification algorithms, significant differences only occur

when data processing methods are applied, in particular when adjusting the cut-off value by

maximizing YI. In this scenario, NB seems to be the model which reveals the worst balance

across all OC. In fact, this model suffered great loss in terms of Acc, Spec and PPV compared

with the other models (p< 0.05), suggesting that shifting the classifier towards the minority

class will result in a worst performance in classifying negative instances correctly. Also, LR

showed significantly higher Sens levels than RF and XGB, and lower Spec than XGB (p< 0.05).

When using SMOTE method, significant differences are only found for RF, presenting lower

Acc and Spec values than LR, and higher Spec values than NB (p< 0.05). Because the current

work attempts to model an ideal cut-off value to optimize Sens and Spec values, a direct com-

parison of the obtained OC values with other studies is made difficult. Nevertheless, when con-

sidering only the default c = 0.5, the found OC values for the LR model are either in line [41],

or somewhat improved [40], relatively to the ones reported by previous studies, whereas

machine learning ensemble models values are generally lower [38, 40, 41], for motives already

explored.

When compared to SB biochemical criteria, differences generally become much more pro-

nounced. All classification models presented significantly lower Sens (p< 0.05), but higher val-

ues of Acc, Spec, PPV and G-means (p< 0.01), and in most cases significantly higher F1 score

(p< 0.05), across the three data processing methods. It is important to note that the elevated

Sens values in SB criteria are essentially due to very conservative cut-off values, which results

in a high number of FP cases [9]. Significantly higher values shown by other classification

methods, regarding metrics that ally Sens with Spec, in the case of G-mean, or with PPV, in the

case of F1 score, suggest reducing the number of retained FP cases, while still maintaining a

high true positive rate, may benefit the overall performance of the diagnosis algorithm. More-

over, reducing the number of potential candidates to undergo the molecular diagnosis, may

have important repercussions in terms of the process cost-effectiveness. The obtained OC
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Table 5. Significant differences for operating characteristics (OC) values among several classification methods.

5.1: Significant differences for operating OC values between different classification algorithms.

Model Acc Sens Spec PPV NPV G-mean F1 score

c = YI, original dataset

LR-NB 0.04" - - - - 0.04" 0.04"

LR-RF - 0.02" - - - - -

LR-XGB - 0.04" 0.02# - - - -

NB-RF 0.01# - 0.01#� 0.02# - - -

NB-XGB <0.01#� - <0.01#� <0.01#� - 0.01# 0.04#

c = 0.5, SMOTE dataset

LR-RF 0.03" - 0.04" - - - -

NB-RF - - 0.04# - - - -

5.2: Significant differences for OC values between SB criteria and classification algorithms.

Model Acc Sens Spec PPV NPV G-mean F1 score

c = 0.5, original dataset

SB-LR <0.01#� <0.02"� <0.01#� <0.01#� - <0.01#� 0.01#�

SB-NB <0.01#� <0.01"� <0.01#� <0.01#� 0.01" <0.01#� -

SB-RF <0.01#� <0.01"� <0.01#� <0.01#� - <0.01#� 0.01#�

SB-XGB <0.01#� <0.01"� <0.01#� <0.01#� - <0.01#� 0.02#

c = YI, original dataset

SB-LR <0.01#� 0.01" <0.01#� <0.01#� - <0.01#� <0.01#�

SB-NB <0.01#� <0.01"� <0.01#� <0.01#� - <0.01#� 0.04#

SB-RF/XGB <0.01#� <0.01"� <0.01#� <0.01#� - <0.01#� <0.01#�

c = 0.5, SMOTE dataset

SB-LR/XGB <0.01#� <0.01"� <0.01#� <0.01#� - <0.01#� <0.01#�

SB-NB/RF <0.01#� <0.01"� <0.01#� <0.01#� - <0.01#� 0.01#�

5.3: Significant differences for OC values between data processing methods.

Model Acc Sens Spec PPV NPV G-mean F1 score

LR

0.5—YI - <0.01#� <0.01"� <0.01"� <0.01#� - -

0.5—SMT - <0.01#� <0.01"� <0.01"� <0.01#� - -

YI—SMT - - 0.03# - - - -

NB

0.5—YI <0.01"� <0.01#� <0.01 " � <0.01"� <0.01#� - -

0.5—SMT 0.02" <0.01#� <0.01"� <0.01"� <0.01#� - -

YI—SMT 0.04" - <0.01#� 0.04# - - -

RF

0.5—YI - <0.01#� <0.01"� <0.01"� 0.01#� - -

0.5—SMT - <0.01#� <0.01"� <0.01"� - - -

XGB

0.5—YI - <0.01#� <0.01"� 0.01"� 0.01#� 0.04# -

0.5—SMT - <0.01#� <0.01"� <0.01"� 0.01#� - -

YI—SMT - - 0.04" - - - -

Significant differences are signalled with an " or #, depending on whether the first model performs better or worst than the second. If �, differences are still significant

after applying Bonferroni correction. If -, non-significant for p< 0.05; Acc: accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative

predictive value; SMOTE: synthetic minority oversampling technique; YI: Youden Index; LR: logistic regression; NB: naive Bayes; RF: random forest; XGB: extreme

gradient boosting; SB: Simon Broome criteria. Non-reported pairwise comparisons did not present any significant difference.

https://doi.org/10.1371/journal.pone.0269713.t005
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values with the application of SB criteria are comparable to the ones reported in previous work

[12–14].

Finally, differences in OC values across the several data processing methods, for a same

classification algorithm, were calculated. From the observation of these results, it becomes evi-

dent that adjusting for data imbalance issues, either by thresholding or oversampling methods,

substantially improves Sens and NPV, while decreasing Spec and PPV (p< 0.01). This means

that it is possible to greatly improve the correct classification rates of FH patients, with a corre-

sponding increase in the misclassification rates of non-FH patients. NB was the only model

that revealed significant differences on Acc levels, with losses from the original data c = 0.5 cut-

off to c = YI and SMOTE data model (p< 0.05). Additionally, NB model revealed significant

worst Spec and PPV values with the YI cut-off, compared to SMOTE processing technique

(p< 0.05). These results seem to confirm that NB may be the most unstable model when

applied together with a data processing method, particularly when attempting to adjust a cut-

off value at the post-processing stage. No significant differences were found for G-means and

F1 score according to data processing method. A potential advantage of using SMOTE pre-

Fig 2. Comparison of operating characteristics values between different classification algorithms, and strategies to deal with data imbalance. The

dashed line represents the value obtained when applying SB criteria. Acc: accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value;

NPV: negative predictive value; SMT: synthetic minority oversampling technique; YI: Youden Index; LR: logistic regression; NB: naive Bayes; RF:

random forest; XGB: extreme gradient boosting; SB: Simon Broome criteria.

https://doi.org/10.1371/journal.pone.0269713.g002
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processing technique is the fact that model parameters and outcomes in the SMOTE model do

not loose interpretability. For example, it would be much easier for a practitioner to under-

stand that a given algorithm diagnoses a patient as FH positive because the predicted probabil-

ity of having the disease is p = 0.6, as obtained from a SMOTE model, than p = 0.35, as

obtained by adjusting the threshold according to c = YI to a model constructed using original

data.

Important to note, the most relevant variables retained by the different classification algo-

rithms are generally the same. As expected, LDLc is the most important predictor variable for

all classification algorithms, independently of being medicated or not. For learning ensembles,

which can incorporate highly correlated variables, ApoB and TC are also very important.

Other biochemical variables, like ApoAI and/or HDLc, and TG, or clinical and biological indi-

cators, such as Physical Signs and Age are also consistently important. Some of the predictor

variables, such as Lpa, Gender, BMI, CVD, Hypertension or Alcohol Use, seem to be relevant

only for some models, and dependent if the patient is on LLT. A thorough interpretation on

the biological importance of these variables, including an analysis of the relationship between

biochemical markers in lipoprotein metabolic pathway, will be addressed in a separate paper.

In summary, LR was considered the most robust and parsimonious model in the current

problem. Independently of the chosen classification algorithm, adjustment of the cut-off values

through pre or post-processing methods largely improves the retention of FH cases, with a

modest decrease in Acc, and increase in G-mean and F1 score values. Although the perfor-

mance of both strategies is similar, SMOTE technique improves the model interpretability.

When compared to SB criteria, metrics which combine misclassification rates of positive and

negative instances, specifically Acc, G-mean and F1 score, improve significantly. The final

model fit for the LR model, as obtained in combination with SMOTE technique, is presented

in supporting information (S2 Table). A pilot internet application, named FH.ID.Tool, was

developed using R Studio Shiny package, and can be consulted at https://fhidtool.shinyapps.

io/dyslipid/. Physicians that collaborate with the Portuguese FH study will be invited to test

this application and provide feedback on how to improve its functionality to a final version,

that will be proposed for implementation at the national health system.

Conclusion

Several conclusions can be taken from the current study. The LR model was the one which pre-

sented higher AUROC and AUPRC values, both for the original and SMOTE datasets, while

NB presented the lowest values. When comparing OC values for specifically selected cut-off

points, resulting from the implementation of several classification algorithms combined with

different data processing methods, LR kept an overall robust performance, while NB presented

the most imbalanced metrics, particularly when adjusting the cut-off value by maximizing YI.
Differences become much more pronounced when comparing the several classification algo-

rithms with SB criteria for FH diagnosis. All classification models presented significantly

higher Acc, Spec, PPV and G-means, and in most cases significantly higher F1 score than SB

criteria (p< 0.01), across all data processing methods. Higher Sens values obtained with SB cri-

teria are obtained at the expense of high FP retention, revealing poor discriminatory ability.

Based on the differences in OC values between different strategies to adjust the cut-off value,

for a same classification algorithm, Sens and NPV seem to improve greatly with use of pre or

post-processing techniques, with the inverse tendency verified for Spec and PPV. A non-signif-

icant loss in Acc is attributed to the incorrect classification of non-FH patients, while other

metrics that attribute the same weight to positive and negative error rates, G-means and F1

score, seem to benefit from data processing strategies. The results obtained using c = YI with
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original data, or applying SMOTE method, were similar, with SMOTE method presenting the

advantage of maintaining the interpretability of the model parameters. For the presented prob-

lem, the use of a LR model, combined with SMOTE pre-processing technique, is the proposed

method for more parsimonious and interpretable results.
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